
remote sensing

Article

A Genetic Optimization Resampling Based Particle Filtering
Algorithm for Indoor Target Tracking

Ning Zhou 1 , Lawrence Lau 2,* , Ruibin Bai 3 and Terry Moore 4

����������
�������

Citation: Zhou, N.; Lau, L.; Bai, R.;

Moore, T. A Genetic Optimization

Resampling Based Particle Filtering

Algorithm for Indoor Target Tracking.

Remote Sens. 2021, 13, 132.

https://doi.org/10.3390/rs13010132

Received: 30 November 2020

Accepted: 30 December 2020

Published: 2 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 International Doctoral Innovation Center, University of Nottingham Ningbo China, Ningbo 315100, China;
ning.zhou@nottingham.edu.cn

2 Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University,
Hong Kong, China

3 School of Computer Science, University of Nottingham Ningbo China, Ningbo 315100, China;
ruibin.bai@nottingham.edu.cn

4 Nottingham Geospatial Institute, University of Nottingham, Nottingham NG7 2RD, UK;
terry.moore@nottingham.ac.uk

* Correspondence: lsgi-lawrence.lau@polyu.edu.hk

Abstract: In indoor target tracking based on wireless sensor networks, the particle filtering algorithm
has been widely used because of its outstanding performance in coping with highly non-linear
problems. Resampling is generally required to address the inherent particle degeneracy problem in
the particle filter. However, traditional resampling methods cause the problem of particle impov-
erishment. This problem degrades positioning accuracy and robustness and sometimes may even
result in filtering divergence and tracking failure. In order to mitigate the particle impoverishment
and improve positioning accuracy, this paper proposes an improved genetic optimization based
resampling method. This resampling method optimizes the distribution of resampled particles by
the five operators, i.e., selection, roughening, classification, crossover, and mutation. The proposed
resampling method is then integrated into the particle filtering framework to form a genetic opti-
mization resampling based particle filtering (GORPF) algorithm. The performance of the GORPF
algorithm is tested by a one-dimensional tracking simulation and a three-dimensional indoor tracking
experiment. Both test results show that with the aid of the proposed resampling method, the GORPF
has better robustness against particle impoverishment and achieves better positioning accuracy than
several existing target tracking algorithms. Moreover, the GORPF algorithm owns an affordable
computation load for real-time applications.

Keywords: genetic algorithm; indoor positioning; particle filter; particle impoverishment; resampling;
target tracking

1. Introduction

Indoor target tracking (i.e., dynamic positioning) based on wireless sensor networks
(WSN) has received considerable attention in engineering and industrial fields in recent
years [1]. The applications include product tracking in logistics, automated guided vehi-
cles (AGV) tracking in indoor industrial scenarios, and process monitoring in car smart-
manufacturing factories, etc. As one of the mathematical methods used in indoor target
tracking, the Bayesian filter (a.k.a. Bayesian estimation) estimates the target position by
combining the position estimation at the previous time step with the known specific system
motion model and the latest measurements. Kalman filter (KF) is a well-known estimation
method in the Bayesian framework, but it can only deal with the linear problems with Gaus-
sian models. For the tracking problems, which are generally with non-linear state-space
models, two variants of KF called extended Kalman filter (EKF) [2] and unscented Kalman
filter (UKF) [3] are used instead. Some research on using EKF and UKF in target tracking
is described in [4–6]. However, these two estimation methods have some limitations. For

Remote Sens. 2021, 13, 132. https://doi.org/10.3390/rs13010132 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-8589-3001
https://orcid.org/0000-0001-8783-9666
https://doi.org/10.3390/rs13010132
https://doi.org/10.3390/rs13010132
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13010132
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/1/132?type=check_update&version=3

Remote Sens. 2021, 13, 132 2 of 22

example, both of them have difficulties in dealing with the problems with non-Gaussian
models. Moreover, they require known prior information of the initial position, which is
usually difficult to obtain in practice [6].

Another effective estimation method in the Bayesian framework is particle filter [7].
Its key idea is to approximate the required posterior distribution of target position by a set
of discrete independent random particles (samples) with associated weights [6]. Similar
to the other estimation methods in the Bayesian framework (including EKF and UKF),
particle filter recursively performs position estimation through two important phases,
i.e., prediction and update. In the prediction phase, the particles are propagated to the
next time step using the specific system motion model, and a set of predicted particles
are generated. Then in the update phase, each predicted particle is evaluated by the
latest measurements and assigned with importance weight. A particle filter is widely
used for target tracking since it can perform global positioning (i.e., positioning when
the initial position is unknown). Compared to the EKF and UKF, a particle filter can
provide position estimations with higher accuracy in the highly non-linear problems with
arbitrary distribution [8]. However, the particle filter still suffers from some problems.
There are two main problems that significantly affect the performance of a particle filter
in indoor target tracking, namely, the inaccuracy of the measurements and the particle
impoverishment. The former problem generally results from the non-line-of-sight (NLOS)
and multipath signals. A lot of research on this problem has been done in the past two
decades and a series of solutions have been proposed [9–13]. In contrast, the research on
particle impoverishment is still relatively limited. Comprehensive and exhaustive research
on this problem is required.

Resampling is generally performed after the state estimation to tackle the inherent par-
ticle degeneracy problem in particle filtering algorithm [6]. Resampling aims to select and
copy the particles with high weights and replace the ones with low weights. However, this
operation will lead to the loss of particle diversity, also known as particle impoverishment.
When the number of particles (i.e., sample size) used in the filter or the measurement noise
of a dynamic system is small, this particle impoverishment becomes more serious [6,8]. The
particle impoverishment degrades the positioning accuracy and robustness, sometimes it
may even cause filtering divergence and tracking failure. In this sense, mitigating particle
impoverishment in a particle filtering algorithm is crucial for accurate and robust indoor
target tracking.

To date, some solutions to the particle impoverishment problem have been proposed.
A simple solution is adding Gaussian jitter noise to the over-centralized resampled par-
ticles [14]. Besides, the regularized particle filter (RPF) proposed in [15] constructs a
diffusion kernel density function for each particle before resampling to prevent particle
impoverishment. However, both solutions above are ineffective in situations where the
measurement noise or the number of particles is very small. In the resample-move se-
quential Markov chain Monte Carlo (RM-SMCMC) algorithm proposed in [16], the particle
diversity is maintained by moving a resampled particle to a neighboring region according
to a given acceptance probability. The drawback of this solution is that it requires sub-
stantial computation to run the algorithm until convergence. Moreover, the risk sensitive
particle filter (RSPF) in [17] mitigates particle impoverishment by constructing explicit risk
functions. Li et al. [18] propose a deterministic resampling method that can strictly keep
the original state density and maintain particle diversity. In the recent decade, solutions
based on genetic algorithms are widely used for improving the particle filter-based target
tracking performance. Since it is indicated that the particle filter has similar implemen-
tation characteristics to that of a genetic algorithm [19,20], the evolutionary ideas can be
introduced to the particle filter by treating the filtering problem as a sequential optimiza-
tion problem. Park et al. [21] propose an evolutionary particle filter that uses the genetic
algorithm-inspired proposal distribution for particle sampling. Zhang et al. [22] propose
an evolutionary particle filter based on self-adaptive multi-features fusion. The genetic
algorithm can be specifically used in the resampling phase and increases the diversity

Remote Sens. 2021, 13, 132 3 of 22

of particles [23]. Wang et al. [24] propose a genetic algorithm-based resampling method,
in which the crossover and mutation probabilities used in the genetic operation are both
determined adaptively according to the degree of particle degeneracy. Zhao and Li [25] use
a particle swarm optimization (PSO) strategy in the resampling phase to shift the particles
to the higher likelihood region. Moghaddasi and Faraji [26] propose an algorithm called
reduced particle filter based upon genetic algorithm (RPFGA), where the particles with
the highest weights are selected to perform evolution using a genetic algorithm in the
resampling phase. Test results of the above solutions show that they can mitigate particle
impoverishment and improve state estimation performance to some extent. However, most
of these solutions have more complexity and suffer from higher computation load, which
is a challenge for real-time applications. Moreover, few of these solutions take into account
the quality of resampled particles and their effects on state estimation. Therefore, it is
difficult to guarantee these solutions are still effective when the number of particles used
in the filter is very small.

Aiming at mitigating the effect of particle impoverishment on positioning and improve
the positioning accuracy, this paper proposes an improved genetic optimization based
resampling method. The proposed resampling method consists of five operators, i.e., selec-
tion, roughening, classification, crossover, and mutation. This resampling method is then
integrated into the particle filtering framework to form a genetic optimization resampling
based particle filtering (GORPF) algorithm. The results of two different tracking tests show
that with the aid of the proposed resampling method, the GORPF achieves significantly
better positioning accuracy than several existing indoor target tracking algorithms with an
affordable computation load for real-time applications. The contributions of this paper are
listed as follows.

(1) The proposed improved genetic optimization based resampling method is able to
optimize the distribution and maintain the diversity of the resampled particles, which is
generally unavailable for the traditional resampling methods.

(2) The proposed GORPF algorithm can improve the positioning accuracy by about
25% when comparing with the state-of-the-art positioning algorithms. Moreover, it has
strong robustness to the particle impoverishment resulted from a small number of particles
and small measurement noise.

The remaining paper is structured as follows. In Section 2, the materials and methods
are described. In Section 3, the test results of the proposed algorithm are presented. In
Section 4, discussions of the test results are made. Finally, the conclusions are drawn in
Section 5.

2. Materials and Methods

This section first briefly introduces the basics of the particle filter and genetic algorithm
that were used in the algorithm development in this work. Inspired by the idea of a genetic
algorithm, an improved genetic optimization resampling method was proposed. This
proposed resampling method was integrated into the particle filtering framework to form a
GORPF algorithm. The description of the proposed resampling method, as well as the full
procedure of the GORPF algorithm, were presented. Finally, the performance assessment
of the proposed GORPF algorithm in target tracking was carried out. Two different and
independent tracking tests were described.

2.1. Basics of a Generic Particle Filter and Genetic Algorithm

This subsection first introduces the principle of a generic particle filter. Then, the
concept of a genetic algorithm is briefly described.

2.1.1. Generic Particle Filter

A particle filter is a sequential Monte Carlo method in the framework of a Bayesian
filter. Before the brief introduction of a generic particle filter, the state-space model of
the dynamic system should be defined first. The state-space model aimed to find out the

Remote Sens. 2021, 13, 132 4 of 22

optimal state estimate given the observed data. A general form of the dynamic state-space
model was defined as follows [6]

xk = f(xk−1) + wk (1)

yk = h(xk) + vk (2)

where xk and yk were the state vector and measurement vector at time step k, respectively.
wk and vk were the additive white process and measurement noise, respectively. The
covariance of process noise and measurement noise denoted Q and R, respectively. f(·)
and h(·) were the two known transition and measurement functions, respectively, and
they were probably non-linear. The particle filter assumed that the states xk subject to the
first-order Markov process, and yk were conditionally independent given the states.

The particle filter approximated the posterior distribution of state p(xk|y1:k) by a set

of particles
{

xi
k
}Np

i=1 that were randomly sampled from a known proposal distribution
q(xk|y1:k), given by

p(xk|y1:k) = ∑Np
i=1 wi

kδ
(

xk − xi
k

)
(3)

in which δ(·) was the Dirac delta function, Np was the number of particles, and wi
k was the

normalized importance weight (also called weight in the following) of the ith particle. The
weight (unnormalized) of the ith particle at time step k (i.e., w̃i

k) could be updated by

w̃i
k = w̃i

k−1

p
(
yk
∣∣xi

k
)

p
(

xi
k

∣∣∣xi
k−1

)
q
(

xi
k

∣∣∣xi
k−1, yk

) (4)

The choice of the proposal distribution affected the state estimation performance. In practi-
cal applications, the transition distribution p(xk|xk−1) was usually used as the proposal
distribution, i.e., q(xk|y1:k) = p(xk|xk−1). In this case, the weight update in Equation (4)
was simplified as

w̃i
k = w̃i

k−1 p
(

yk

∣∣∣xi
k

)
(5)

The weights obtained from Equation (5) needed to be normalized before resampling. The
weight normalization was given by

wi
k = w̃i

k/ ∑Np
i=1 w̃i

k (6)

After a few of the iterations, all but a small number of particles would have negligible
weights, this was the so-called particle degeneracy problem. This problem resulted in a lot
of computation being wasted on updating the particles that had negligible contributions to
the approximation of posterior distribution. The approximated effective sample size N̂e f f
is usually used to measure the degree of particle degeneracy, which was given by

N̂e f f =
1

∑
Np
i=1

(
wi

k
)2 (7)

A small N̂e f f value indicated a severe particle degeneracy and vice versa. When a severe
particle degeneracy was observed (i.e., N̂e f f was less than a manually predefined threshold
Nthr), resampling was implemented, otherwise, the posterior particles were directly used
for the state prediction at the next time step. The above N̂e f f calculation was specifically
designed for the generic particle filter. It was also available to perform resampling in every
iteration without calculating N̂e f f , such as the sequential importance resampling (SIR)
algorithm (a.k.a. bootstrap filter) [6]. SIR is the most widely used particle filter in practice.

Remote Sens. 2021, 13, 132 5 of 22

2.1.2. Genetic Algorithm

The genetic algorithm is a population-based optimization method that simulates the
natural biological evolution process. Every candidate solution in the solution space of the
optimization problem corresponds to every individual in nature, and they are updated in
every generation.

The traditional genetic algorithm requires an encoding operation before the update of
the candidate solutions. Encoding is the process of representing a candidate solution in
the form of a string that conveys the information, this process is similar to the formation
of chromosomes in biology. Each bit in the string represents a piece of information in the
candidate solution. One of the most widely used encoding methods is binary encoding,
which represents a candidate solution with the strings of 0 and 1 [27]. This encoding method
is usually used in knapsack problems [28]. Another more simple and straightforward
encoding method is real-value encoding. It represents the candidate solution with a vector
of real numbers. More details of the real-value encoding method can be found in [29].

The update of candidate solutions in the standard genetic algorithm is generally
performed through three important operators, i.e., selection, crossover, and mutation. The
selection operator selects the candidate solutions based on the law of “the survival of
the fittest”—selecting good solutions and eliminating bad solutions while keeping the
population size constant. The quality of a candidate solution is evaluated by the fitness
function and quantified by the fitness value. This fitness value reflects how close the
candidate solution is to the optimal solution. Some common selection methods in the
genetic algorithm are introduced in [30]. The selected solutions are then inputted into
the mating pool (i.e., a collection of the selected solutions), and they will be used in the
following crossover operator. The crossover operator randomly selects two candidate
solutions (i.e., parents) from the mating pool and exchanges part of their information to
create new solutions (i.e., offspring). Some common crossover methods are introduced
in [31]. Similar to individuals in nature, the mutation may happen on the offspring solutions
in the genetic algorithm. The mutation operator is to change part of the information in the
offspring solutions, this is important for maintaining population diversity and preventing
the genetic algorithm trapping into local optimal solutions.

This paper introduced the idea of a genetic algorithm to the resampling phase. An
improved genetic optimization resampling method was proposed. The introduction of this
proposed resampling method is described in the next subsection.

2.2. Genetic Optimization Resampling-Based Particle Filter (GORPF)

In this subsection, the proposed improved genetic optimization resampling method is
described first. Then, the procedure of the GORPF algorithm is presented.

2.2.1. Improved Genetic Optimization Resampling Method

The improved genetic optimization resampling method was designed to mitigate the
particle impoverishment problem and improve positioning accuracy. Before describing
the proposed resampling method, the encoding method needed to be determined first. As
aforementioned, binary encoding is widely used. However, this encoding method may not
be appropriate for particle filter-based tracking problems. The particles used in the tracking
problem consisted of a string of real numbers. When using the binary encoding method,
each component in the particle (such as the position and velocity in this work) needs to be
coded as a binary string to enable the selection, crossover, and mutation, and then each
binary string requires to be decoded as a real number to calculate the goal function [32].
This process requires a high computation load, especially when the solution space of the
problem is large. Besides, binary encoding is often not natural for many problems and
sometimes corrections must be made after crossover and/or mutation [33]. In the target
tracking problems based on a particle filter, each particle is essentially a candidate solution
of the state estimation that contains a vector of real numbers. These real numbers can be the
coordinates, velocity, acceleration, heading angle, etc. of the target. Compared to the binary

Remote Sens. 2021, 13, 132 6 of 22

encoding method, the real-value encoding method can characterize these particles more
accurately and has a lower computation load. Therefore, the real-value encoding method
was used directly in the proposed genetic optimization resampling method. A flowchart of
the proposed resampling method is given in Figure 1. The proposed resampling method
contained five operators, i.e., selection, roughening, classification, crossover, and mutation.
Each operator in the method is described as follows.

Remote Sens. 2020, 17, x FOR PEER REVIEW 6 of 23

then each binary string requires to be decoded as a real number to calculate the goal func-
tion [32]. This process requires a high computation load, especially when the solution
space of the problem is large. Besides, binary encoding is often not natural for many prob-
lems and sometimes corrections must be made after crossover and/or mutation [33]. In the
target tracking problems based on a particle filter, each particle is essentially a candidate
solution of the state estimation that contains a vector of real numbers. These real numbers
can be the coordinates, velocity, acceleration, heading angle, etc. of the target. Compared
to the binary encoding method, the real-value encoding method can characterize these
particles more accurately and has a lower computation load. Therefore, the real-value en-
coding method was used directly in the proposed genetic optimization resampling
method. A flowchart of the proposed resampling method is given in Figure 1. The pro-
posed resampling method contained five operators, i.e., selection, roughening, classifica-
tion, crossover, and mutation. Each operator in the method is described as follows.

Figure 1. The flowchart of the improved genetic optimization resampling method.

A set of weighted posterior particles

Particles obtained after selection 𝒙 , 1/𝑁 ୀଵே

Particles obtained after roughening 𝒙 , 𝑤 ୀଵே

𝑁 𝑁௧ ?

Particle set with
high-weight
particles 𝑿ு

Particle set with
low-weight
particles 𝑿

Particle set with the particles after
crossover operation 𝑿 = 𝑿ுᇲ, 𝑿ᇲ

Selection operator

Roughening operator

Crossover
operator

yes

Crossover
operator

no

Particle set with high-
weight particles after
crossover operation 𝑿ுᇲ

Particle set with low-
weight particles after
crossover operation 𝑿ᇲ

Mutation operator

Particle set with the particles after
mutation operation 𝑿

Resampled particles used for the
state estimation at next time step

Classification operator

Figure 1. The flowchart of the improved genetic optimization resampling method.

Selection

Consider that a set of normalized weighed particles are obtained and formulated as{
xi

k, wi
k
}Np

i=1, where xi
k is the particle and wi

k is the weight. Np is the total number of particles.
Taking the computation complexity and quality of the selected particles into consideration,
the Roulette wheel selection [34] method was used. The probability of a particle to be
selected was proportional to its weight in this method. The steps of the Roulette wheel
selection are described as follows.

Remote Sens. 2021, 13, 132 7 of 22

(1) Sorting the particles in descending order according to the weights and create a
cumulative weight table as

W(i) = ∑i
j=1 wj

k, i = 1, . . . , Np (8)

(2) Randomly generate Np random numbers uj
(

j = 1, . . . Np
)

from the standard
uniform distribution U ∼ [0, 1].

(3) For each random number uj, the ith particle is selected if

W(i− 1) < uj < W(i) (9)

The above selection operation is equivalent to the traditional simple random resam-
pling. The high-weight particles are selected and copied, and those low-weight ones are
eliminated. However, the particles obtained from Equation (9) suffered from particle
impoverishment due to the multiple copies of a few high-weight particles. Moreover, the
particles remained may trap into the local optimal regions. In our proposed resampling
method, these selected particles needed to be optimized (by the operators described in the
following) before they could be used for the state estimation at the next time step. This was
different from the traditional simple random resampling method which uses the resampled
particles for the state estimation at the next time step directly. The weights of the selected
particles were reset to 1/Np.

Roughening

The diversity of the particles obtained from the selection operator were seriously
reduced. In order to increase the diversity of these particles, a simple roughening operator
was implemented by adding a random zero-mean Gaussian jitter noise to each particle. This
jitter noise assumed that each component in the particle (i.e., state vector) was independent,
thus its covariance matrix was a diagonal matrix. For a particular component in the particle,
its standard deviation σjitter was given by

σjitter = KENp
−1/d (10)

where E was the difference between the maximum and minimum values of this component
among all the particles (before roughening), d was the dimension of the state vector, K
was a constant tuning parameter which affects the magnitude of jitter noise, and Np was
the total number of particles. The magnitude of the jitter noise significantly affected
the particle distribution after roughening. A too-large jitter noise would result in very
dispersive particles. This may cause particle degeneracy since some of the dispersed
particles may fall into the solution regions that have negligible contributions to the state
estimation. A too-small jitter noise would cause tight clusters of points to be distributed
around the original particles. As a result, the roughening operation tended to be ineffective
for particle impoverishment mitigation. Therefore, the tuning parameter K should be
determined carefully, and its determination method can be found in [14]. In order to
improve the robustness of the resampling method, it was necessary to evaluate the quality
of the particles after roughening. The weight of each particle was recalculated by Equation
(5). Since the original particles (i.e., the particles obtained in selection operator) had the
same weights (i.e., 1/Np), the weights of the particles after the roughening operation were
proportional to their measurement likelihood values, i.e., wi

k ∝ p(yk
∣∣xi

k) . These particles as
well as their normalized weights were then input to the mating pool.

Classification

As aforementioned, the particle degeneracy may happen when the tuning parameter
K was not set properly. For the purpose of evaluating the degeneracy degree of the particles
obtained after roughening, the approximated effective sample size N̂e f f was calculated

Remote Sens. 2021, 13, 132 8 of 22

according to Equation (7). If N̂e f f was greater than the predefined threshold Nthr, these
particles could be used in the state estimation at the next time step directly without the
additional operations. Otherwise, a particle classification was performed as follows.

(1) Sorting the particles in descending order according to their weights as

X =
{
{x̃1

k , w̃1
k}, . . . , {x̃Np

k , w̃
Np
k }

}
(11)

where X was the mating pool that contains Np particles obtained from roughening opera-
tion. {x̃i

k, w̃i
k}(i = 1, . . . , Np) denoted the sorted particle and its normalized weight.

(2) Finding out the integer m which satisfies

m ≤ N̂e f f < m + 1 (12)

(3) Classifying the sorted particles in X into two disjoint particle sets as XH = {x̃1
k , w̃1

k}, . . . , {x̃m
k , w̃m

k }

XL = {x̃m+1
k , w̃m+1

k }, . . . ,
{

x̃
Np
k , w̃

Np
k

} (13)

in which XH denoted the particle set containing high-weight particles, and XL denoted
the particle set containing low-weight particles. The integer m was the boundary between
the high-weight and low-weight particles. This classification reflected the quality of
each particle.

Crossover

Crossover is performed to increase the diversity of particles and avoid the particles
trapping into the local optimal solutions. In this paper, the parental particles in the two
different particle sets in Equation (13) implemented the crossover operation with different
rules. Note that the fitness of a particle is determined by the measurement likelihood
function in this paper, i.e., f i

k = p
(
yk
∣∣xi

k
)
, where f i

k was the fitness of particle xi
k. f i

k
measured the goodness of fit (i.e., the degree of similarity) of a particle to the measurement.
The crossover operations for the particles in the two different particle sets are described
as follows.

For the crossover operation of the particles in XH , particle pairs were generated by
randomly selecting two different parental particles xpar,1

k,H and xpar,2
k,H from XH first. Each

particle in XH could only be selected once. If m in (12) was an even number, m/2 particle
pairs could be generated. If m was an odd number, (m− 1)/2 particle pairs could be gen-
erated, the only one particle left did not implement a crossover operation and it remained
unchanged in XH . The fitness values of xpar,1

k,H and xpar,2
k,H were f par,1

k,H and f par,2
k,H , respectively.

Each particle pair was applied to the arithmetic crossover [35] with a probability pc. The
arithmetic crossover was an interpolating linear combination of the two particles. With the
arithmetic crossover, two offspring particles, xco f f ,1

k,H and xco f f ,2
k,H , could be calculated by xco f f ,1

k,H = α1xpar,1
k,H + (1− α1)x

par,2
k,H

xco f f ,2
k,H = α2xpar,2

k,H + (1− α2)x
par,1
k,H

(14)

where α1 and α2 were the weighting factors determined by α1 = f par,1
k,H /

(
f par,1
k,H + f par,2

k,H

)
α2 = f par,H2

k,H /
(

f par,1
k,H + f par,2

k,H

) (15)

Remote Sens. 2021, 13, 132 9 of 22

The fitness of the two offspring particles was calculated and denoted as fitness f co f f ,1
k,H

and f co f f ,2
k,H , respectively. The crossover probability pc was determined adaptively using the

Sigmoid function [36] in neural networks, which was given by [37]

pc =

pc1, f ′ < favg

pc2 − pc2−pc1

1+exp
{

λ

[
2(f ′− favg)
fmax− favg

−1
]} , f ′ ≥ favg (16)

in which pc1, pc2 were the predefined empirical upper and lower bounds of crossover
possibility. λ was a determined coefficient with the value of 9.903438. fmax and favg are the
maximum and average fitness values of the parental particles in XH , respectively. f ′ wais
the larger fitness value of the two selected parental particles, i.e., f ′ = max

{
f par,1
k,H , f par,2

k,H

}
.

The offspring particles xco f f ,1
k,H and xco f f ,2

k,H obtained by Equation (14) were accepted based
on the Metropolis rule [38]. This rule accepts the degraded offspring particle with a certain
probability. If f co f f ,1

k,H was greater than f ′, xco f f ,1
k,H was accepted. Otherwise, xco f f ,1

k,H was

accepted with the probability of f co f f ,1
k,H / f ′. This was implemented by generating a random

number ε from a standard uniform distribution and comparing it with f co f f ,1
k,H / f ′. If ε <

f co f f ,1
k,H / f ′, xco f f ,1

k,H was accepted, otherwise, it is rejected. The accepted xco f f ,1
k,H replaced its

parental particle xpar,1
k,H in XH , otherwise xpar,1

k,H remained unchanged in XH . This Metropolis

rule was also applied for xco f f ,2
k,H . The crossover operation above was repeated until all the

particle pairs were implemented. After the crossover operation, the particle set XH was re-
denoted as XH′ . The fitness values of the m particles in the XH′ were recalculated. Different
to the traditional genetic algorithms, in which the crossover probability is a predefined
constant, the crossover probability used here was adaptively determined according to the
fitness of every particle in XH . When the particles had the risk of suffering from premature
convergence to the local optimal solution (i.e., f ′ was close to favg), it increased the values
of crossover probability; when the particles had the risk of suffering from divergency in the
solution space (i.e., f ′ was close to fmax), it decreased the values of crossover probability.
This adaptive crossover probability could improve the robustness to against premature
convergence and divergence.

For the crossover operation of the particles in XL, a modified arithmetic crossover
operator was designed. Each particle in XL implemented the crossover with another
parental particle selected from XH′ , and their offspring particle xco f f

k,L was calculated by

xco f f
k,L = βxpar

k,L + (1− β)xpar
k,H′ (17)

in which xpar
k,L was the parental particle from XL, and xpar

k,H′ was the parental particle selected
(using the Roulette wheel selection method according to the fitness values) from XH′ . β was
a random weighting factor which was drawn from the uniform distribution [0, β], where β
was the upper bound of β. The value of β at a certain time step could be calculated as

β =
Np − N̂e f f

Np
(18)

where Np was the total number of particles, and N̂e f f was the approximated effective
sample size calculated by Equation (7). β characterized how much information from
xpar

k,H′ was transmitted to the offspring particle xco f f
k,L . The smaller the value of β, the more

information was transmitted. The offspring particle xco f f
k,L replaced its parental particle xpar

k,L
in XL. After the crossover operation, the particle set XL was re-denoted as XL′ . The fitness
values of the Np − m particles in the XH′ were recalculated. Different to the arithmetic
crossover operator used for the particles in XH , this modified arithmetic crossover operator

Remote Sens. 2021, 13, 132 10 of 22

was only implemented on the low-weight particle from XL, and only one offspring particle
was generated. For the parental particle from XH′ , it did not generate offspring particles.
This modified arithmetic crossover operator could modify the low-weight particles into
high-weight ones while the modified particles would not overlap the high-weight particles.
This could shift the particles to the region of the global optimal solution and maintain the
diversity of particles.

Mutation

Redefine Xc as the combination of XH′ and XL′ , i.e., Xc = {XH′ , XL′}. For each particle
in Xc, the mutation was performed with a probability pm, given by

xm
k = xc

k + η, (19)

where xm
k was the particle obtained after mutation operation, and its fitness was calculated

and denoted as f m
k . xc

k was the particle drawn from Xc. η was a zero-mean Gaussian
distributed random variable with the covariance Σ. The mutation probability pm was
determined adaptively using the Sigmoid function, which was given by [37]

pm =

pm1, f < favg

pm2 − (pm2−pm1)

1+exp
{

λ

[
2(f− favg)
fmax− favg

−1
]} , f ≥ favg (20)

where pm1, pm2 were the predefined empirical upper and lower bounds of mutation
possibility. λ was the coefficient whose value was 9.903438. f was the fitness of the particle
xc

k. fmax and favg were the maximum fitness and average fitness of the parental particles
in Xc, respectively. The particles xm

k obtained by Equation (19) was accepted based on the
Metropolis rule. If f m

k was greater than f , xm
k was accepted. Otherwise, xm

k was accepted
with the probability of f m

k / f . The accepted xm
k replaced its parental particle xc

k in Xc,
otherwise xc

k remained unchanged in Xc. The mutation operation above was repeated
until Np particles were obtained. After the mutation operation, the particle set Xc was
re-denoted as Xm. Similar to the characteristics of crossover probability in Equation (16),
the adaptive mutation probability here could maintain the diversity of the particles while
ensuring stable convergency. After performing the five operators in the improved genetic
optimization resampling, each particle was treated equally. The weights of the particles
were reset to 1/Np.

2.2.2. Genetic Optimization Resampling-Based Particle Filter

The GORPF algorithm was proposed by integrating the improved genetic optimization
based resampling method into the particle filtering framework. In the proposed GORPF,
the transition distribution was used as the proposal distribution and hence the weights
of the particles could be updated according to Equations (5) and (6). Once the weighted
particles

{
xi

k, wi
k
}Np

i=1 were obtained, the state at the time step k could be estimated using
the weighted sum of the particles, given by

x̂k = ∑Np
i=1 wi

kxi
k (21)

where x̂k denoted the state estimated by the GORPF algorithm, xi
k and wi

k denoted the state
and corresponding weight of the ith particle, respectively. After the state estimation, the
proposed resampling was performed. The resampled particles were then used in the state
estimation at the next time step. The full procedure of the proposed GORPF algorithm is
presented in Table 1.

Remote Sens. 2021, 13, 132 11 of 22

Table 1. The procedure of the genetic optimization resampling based particle filtering (GORPF)
algorithm.

GORPF Algorithm

Data: Np, T, yk, Q, R
Result: x̂k

1. begin
2. - Generate initial particles of the position estimate:

{
xi

0, 1/Np

}Np

i=1
3. for k = 1 : T do
4. for i = 1 : Np do
5. - xi

k = f
(

xi
k−1

)
+ wk

6. - w̃i
k = 1√

2πdet(R)
exp

{
− 1

2

(
yk − h

(
xi

k

))T
R−1

(
yk − h

(
xi

k

))}
7. end for
8. - Calculate the sum of weight: t = ∑

Np

i=1 w̃i
k

9. for i = 1 : Np do
10. - Weight normalization: wi

k = t−1w̃i
k

11. end for
12. - Calculate position estimate: x̂k = ∑

Np

i=1 wi
kxi

k
13. - Implement improved genetic optimization resampling to get

{
xi

k, 1/Np

}Np

i=1
14. end for
15. end

† wk is the process noise generated based on Q.

2.3. Assessment of the Proposed Method

This subsection describes the performance assessment of the proposed GORPF algo-
rithm in target tracking. Two different and independent tracking tests were carried out. The
first test was assessing the proposed algorithm in a one-dimensional tracking problem with
a univariate growth model [21] through a simulation, and the second test was assessing
the proposed algorithm in a three-dimensional tracking problem with a constant velocity
motion model [8] through an experiment. In both tests, the positioning performance of the
proposed GORPF algorithm was compared to the four state-of-the-art tracking algorithms
in the literature, i.e., SIR [6], SIR with Gaussian jitter noise (SIR-GJN) [14], IGPF [24], and
RPFGA [26]. The five particle filter-based algorithms (including the GORPF algorithm)
use different strategies to mitigate the particle impoverishment and different methods to
determine the parameters needed in genetic operation. Among the five algorithms, the
SIR does not use any strategy for particle impoverishment mitigation. The SIR-GJN uses
the roughening strategy, the RPFGA, IGPF, and GORPF use strategies based on genetic
algorithms. The parameters needed in the genetic operation in the RPFGA algorithm are
predefined constants while these parameters are adaptively determined in the IGPF and
GORPF algorithms.

The data processing in both Test A (simulation) and Test B (experiment) were per-
formed in the same computer system and software. The system configuration and software
version are given in Table 2.

Table 2. The computer system and software used in the two tests.

Computer Lenovo ideapad 500S-13ISK

CPU Intel Core i5-6200U CPU @ 2.30GHz

RAM 4.00 GB

Operating System Windows 10 Home Version 1903, 64 bits

Software MATLAB 9.1.0.441655 (R2016b) 64 bits

Remote Sens. 2021, 13, 132 12 of 22

2.3.1. Test A: One-Dimensional Tracking

A one-dimensional target tracking problem with a univariate growth model was
considered in this test. This model is highly non-linear, multimodal, and nonstationary,
and it is widely used to assess the performance of estimation methods. The state-space
model in this problem was formulated as

xk =
xk−1

2
+

25xk−1

1 + xk−1
2 + 8 cos[1.2(k− 1)] + wk (22)

yk =
xk

2

20
+ vk (23)

where wk ∼ N
(
0, σ2

w
)

and vk ∼ N
(
0, σ2

v
)

represented the mutually independent Gaussian
process and measurement noises, respectively. In the test, the variance of the process
noise was set to σ2

w = 5. The particle impoverishment was related to the magnitude
of measurement noise and particle number used in the filter. In order to evaluate the
robustness of the algorithms to these two factors, the variance of the measurement noise
in this test was set to two different values (i.e., σ2

v = 1 for normal measurement noise
and σ2

v = 0.04 for small measurement noise), and the particle number was set to two
different values (i.e., 100 and 20). xk (k = 1, 2, . . .) was the position that needed to be
estimated, the initial position was x0 = 0 and its variance was set to 1. The initial particles
xi

0
(
i = 1, . . . , Np

)
were generated from the Gaussian distribution, i.e., xi

0 ∼ N (0, 1). In
this test, the true position of the target, as well as the measurement at each time step, were
simulated based on the state-space model in Equations (22) and (23) beforehand. The units
of position xk and time step k was meter and second, respectively.

Regarding the parameters (pc1, pc2, pm1, and pm2) in the GORPF algorithm, they were
determined by tuning the parameters around the values provided by [22]. The parameters
pc1 and pc2 used for crossover probability determination in Equation (16) were set to
0.9 and 0.6, respectively, and the parameters pm1 and pm2 used for mutation probability
determination in Equation (20) were set to 0.1 and 0.01, respectively. Our proposed method
generally had optimal performance with the above parameter settings. The variance Σ
for generating the random number in the mutation operator was set to the same value
as the variance of process noise. The threshold Nthr was set to 0.7Np. For an unbiassed
assessment, the above parameters used for the genetic operation were also used in the
RPFGA and IGPF algorithms unless some parameters could be determined adaptively. The
position estimation started at the time step k = 1 and finished at the time step k = 50. Each
algorithm obtained 50 position estimations which corresponded to the 50 time steps. The
test was repeatedly performed 20 times (different runs with different seeds) and the mean
values were used to represent the positioning results. Root mean square error (RMSE) was
used as the positioning accuracy assessment metric in this test, given by

RMSE =

√
∑n

k=1(xk − x̂k)
2

n
, (24)

where n was the total number of time steps (i.e., 50). k was the time step from 1 to n. xk
and x̂k were the estimated and “truth” positions at time step k, respectively.

2.3.2. Test B: Three-Dimensional Tracking

A three-dimensional target tracking problem with a constant velocity model was
considered in this test. The test was performed in the atrium of the Sir Peter Mansfield
Building at the University of Nottingham Ningbo China (UNNC). There were six ultraw-
ideband (UWB) sensors installed on the wall of the building. Compared to the traditional
wireless positioning techniques (such as WiFi), UWB transmits information based on a
non-sinusoidal narrow pulse (nanosecond-level), but not carrier phase, over a wide portion
of the frequency spectrum [4]. Inherently, the extremely high time resolution, as well as the

Remote Sens. 2021, 13, 132 13 of 22

large bandwidth of UWB, enables it to have the advantages such as high ranging accuracy,
high penetrating power [39], less interference from multipath effect [40], high-speed data
transmission [41], etc. Therefore, UWB sensors were used to generate the measurements
required for target position estimation in this test.

A closed traverse survey was carried out before the test to obtain the coordinates
of the UWB sensors in the Universal Transverse Mercator (UTM) reference system. The
closed traverse involved four stations, and the total length was 104.697 m. The angular
misclosure and linear misclosure of the traverse were 17.5′′ and 4.48 mm, respectively. The
fractional linear misclosure was 1 in 23370. A leveling survey was carried out to determine
the normal heights of the traversing stations. The leveling involved three instrument points.
The misclosure of leveling was 1 mm. The coordinates of the two traversing stations in
the atrium, i.e., C1 and C2 (see Figure 2), were determined through traverse and leveling.
To minimize the errors in traverse and leveling propagating into the coordinates of UWB
sensors, the coordinates of the six UWB sensors were determined through the total station
survey from C1 and C2. The calculations of the traverse were performed by a MicroSurvey
software called Star*Net. The basics of the traverse, leveling, and total station survey can
be found in [42].

A trolley was used in this test. As shown in Figure 3, two ranging rods were tightly
attached to the trolley, and a UWB tag was fixed on the top of a ranging rod. A rectangular
track with the size of 9.6 m × 6.4 m was set in the middle of the atrium. The trolley
and track helped to obtain the well-controlled tag position and height for the algorithm
validation. Twenty test points with an interval of 1.6 m were distributed on the rectangular
track (see Figure 2). These test points were used for the positioning accuracy assessment.
The horizontal coordinates of all the test points were known by the total station survey
from C1 and C2, and the heights of the test points were determined by the leveling survey.
The UWB measurements were collected by moving the trolley between the twenty test
points with a stop-and-go method. The stop-and-go method meant to start the trolley at
rest at a test point and move towards and stop at the next test point for five seconds. When
the trolley stopped, the measurements at that point could be used to estimate the position,
and this position estimate was compared with the “truth” for evaluation purposes. This
rigorous stop-and-go test allowed us to get the UWB measurements at each test point
accurately because it was free from the effect of residual in UWB time synchronization,
dynamics of the moving trolley platform, and the accuracy of visiting test points at a
particular time. In our measurement collection, the trolley started from the test point P1,
it moved steadily on the track in the clockwise direction and stopped (with the tip of the
ranging rod pointed at the known test point on the track) at each test point in turn. Finally,
the trolley moved back to P1.

The state-space model of the 3-D tracking problem in this test was defined as follows.
We defined the state vector of the target as xk =

[
xk, yk, zk,

.
xk,

.
yk,

.
zk
]T , in which (xk, yk, zk)

was the 3-D position and (
.
xk,

.
yk,

.
zk) was the 3-D velocity. A random-walk model was used

as the state model without loss of generality, which was given by [8]

xk = Axk−1 + Gwk, (25)

where

A =

1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, G =

T2/2 0 0
0 T2/2 0
0 0 T2/2
T 0 0
0 T 0
0 0 T

,

and T was the sampling interval. wk was the zero-mean Gaussian random process noise
with known covariance Qk. This state model assumed that the velocity was subject to an
unknown acceleration which was characterized by the motion process noise.

Remote Sens. 2021, 13, 132 14 of 22
Remote Sens. 2020, 17, x FOR PEER REVIEW 14 of 23

Figure 2. Locations of the known UWB sensors and test points at the test site. The red dots are the
UWB sensors, and the green dots are the test points. The black dashed line is the rectangular track
which the trolley travels on.

Figure 3. The trolley used in the test.

The UWB system used in the test provided both time-of-arrival (TOA) and angle-of-
arrival (AOA) measurements. TOA was the signal travel time between tag and sensor, this
travel time could be converted to a range measurement by multiplying the travel time
with the speed of light. AOA was based on the direction of incidence from which the re-
ceived signal arrived. For 3-D positioning, the AOA measurements contained azimuth
and elevation measurements. It was indicated that the positioning method using both
range and angle measurements could improve the positioning accuracy and robustness
[43]. Therefore, both TOA and AOA measurements were used in the test. Since six UWB
sensors were used in the test, the measurement vector consisted of eighteen measure-
ments, i.e., 𝒛 = [𝑑ଵ,, 𝛼ଵ,, 𝜑ଵ,, … , 𝑑,, 𝛼,, 𝜑,] , where (𝑑,, 𝛼,, 𝜑,) (𝑖 = 1, … ,6) was
the range (derived from TOA), azimuth, and elevation measurement of the 𝑖th sensor,
respectively. The UWB TOA and AOA measurement models can be found in [44]. The
measurement noises of TOA, azimuth, and elevation are mutually independent, their
standard deviations were denoted as 𝜎்ை, 𝜎௭ and 𝜎, respectively.

The parameters used in this test are summarized in Table 3. Since the number of par-
ticles used affected the positioning accuracy of the particle filter-based algorithm, we per-
formed tuning and found that the accuracy tended to be stable when 2000 particles were

Figure 2. Locations of the known UWB sensors and test points at the test site. The red dots are the
UWB sensors, and the green dots are the test points. The black dashed line is the rectangular track
which the trolley travels on.

Remote Sens. 2020, 17, x FOR PEER REVIEW 14 of 23

Figure 2. Locations of the known UWB sensors and test points at the test site. The red dots are the
UWB sensors, and the green dots are the test points. The black dashed line is the rectangular track
which the trolley travels on.

Figure 3. The trolley used in the test.

The UWB system used in the test provided both time-of-arrival (TOA) and angle-of-
arrival (AOA) measurements. TOA was the signal travel time between tag and sensor, this
travel time could be converted to a range measurement by multiplying the travel time
with the speed of light. AOA was based on the direction of incidence from which the re-
ceived signal arrived. For 3-D positioning, the AOA measurements contained azimuth
and elevation measurements. It was indicated that the positioning method using both
range and angle measurements could improve the positioning accuracy and robustness
[43]. Therefore, both TOA and AOA measurements were used in the test. Since six UWB
sensors were used in the test, the measurement vector consisted of eighteen measure-
ments, i.e., 𝒛 = [𝑑ଵ,, 𝛼ଵ,, 𝜑ଵ,, … , 𝑑,, 𝛼,, 𝜑,] , where (𝑑,, 𝛼,, 𝜑,) (𝑖 = 1, … ,6) was
the range (derived from TOA), azimuth, and elevation measurement of the 𝑖th sensor,
respectively. The UWB TOA and AOA measurement models can be found in [44]. The
measurement noises of TOA, azimuth, and elevation are mutually independent, their
standard deviations were denoted as 𝜎்ை, 𝜎௭ and 𝜎, respectively.

The parameters used in this test are summarized in Table 3. Since the number of par-
ticles used affected the positioning accuracy of the particle filter-based algorithm, we per-
formed tuning and found that the accuracy tended to be stable when 2000 particles were

Figure 3. The trolley used in the test.

The UWB system used in the test provided both time-of-arrival (TOA) and angle-of-
arrival (AOA) measurements. TOA was the signal travel time between tag and sensor, this
travel time could be converted to a range measurement by multiplying the travel time
with the speed of light. AOA was based on the direction of incidence from which the
received signal arrived. For 3-D positioning, the AOA measurements contained azimuth
and elevation measurements. It was indicated that the positioning method using both
range and angle measurements could improve the positioning accuracy and robustness [43].
Therefore, both TOA and AOA measurements were used in the test. Since six UWB sensors
were used in the test, the measurement vector consisted of eighteen measurements, i.e.,
zk = [d1,k, α1,k, ϕ1,k, . . . , d6,k, α6,k, ϕ6,k], where (di,k, αi,k, ϕi,k) (i = 1, . . . , 6) was the range
(derived from TOA), azimuth, and elevation measurement of the ith sensor, respectively.
The UWB TOA and AOA measurement models can be found in [44]. The measurement
noises of TOA, azimuth, and elevation are mutually independent, their standard deviations
were denoted as σTOA, σazi and σele, respectively.

The parameters used in this test are summarized in Table 3. Since the number of
particles used affected the positioning accuracy of the particle filter-based algorithm, we
performed tuning and found that the accuracy tended to be stable when 2000 particles

Remote Sens. 2021, 13, 132 15 of 22

were used in each algorithm. After that, an increase in the particle number did provide
significant accuracy improvement in each algorithm. This was because the prior densi-
ties enabled the predicted particles to be distributed closer to the mean of the posterior
densities. Therefore, 2000 particles were used in each particle filter-based algorithm in
this test. The crossover and mutation probabilities used in this test were the same as
those in Test A. The covariance of process noise (i.e., Qk) was determined by tuning. The
variance of the process noise in each direction was assumed to be the same in this test,
i.e., Qk = diag

(
σ2

w, σ2
w, σ2

w
)
, where σ2

w was the variance of the process noise in the three
directions. The standard deviations of the measurement noise were determined by statisti-
cal method. The parameter Σ in the mutation operation in this test could be expressed as
Σ = diag

(
σ2

mp, σ2
mp, σ2

mp, σ2
mv, σ2

mv, σ2
mv

)
, where σ2

mp was the variance of the random variable

added to the position component and σ2
mv was the variance of the random variable added

to the velocity component. For an unbiased assessment, the above genetic parameters
used in the GORPF algorithm were also used in the RPFGA and IGPF algorithms unless
some parameters could be determined adaptively. EKF is another positioning algorithm
in the Bayesian framework which is widely used for three-dimensional target tracking
problem because of its high positioning accuracy [4]. For the purpose of verifying the
three-dimensional positioning performance of EKF, it was included in the assessment along
with the five particle filter-based algorithms. The test was repeatedly performed 20 times
(different runs with different seeds) and the mean values were used to represent the posi-
tioning results. The positioning accuracy was assessed by comparing the coordinates of the
twenty test points determined by each algorithm with the “truth” that was determined by
the total station survey. The mean radial spherical error (MRSE) was used as the assessment
metric for evaluating the positioning accuracy in 3-D space

MRSE =

√
∑n

i=1(xi − x)2 + ∑n
i=1(yi − y)2 + ∑n

i=1(zi − z)2

n
(26)

where n was the number of test points, i was the samples from 1 to n. xi, yi and zi were
the estimated easting, northing, and height, respectively of sample i. x, y, and z were the
“truth” coordinates determined by the total station survey. In addition to the positioning
accuracy, computation load is another important metric that requires to be assessed in
three-dimensional target tracking problems. The averaged computation time required
for positioning at a point was used as the assessment metric of computation load. The
computation time of the particle filter-based algorithm was dependent on the number
of particles used. Since the particle number was set to 2000 in each particle filter-based
algorithm, this computation load assessment was unbiased. The computation time was
determined through the function of “tic” and “toc” in MATLAB.

Table 3. The parameters used in Test B.

Parameter Value

Np 2000 (unitless)

σw 0.2 m/s2

σTOA 0.25 m

σazi 3◦

σele 5◦

σmp 0.2 m

σmv 0.01 m/s

pc1 0.9 (unitless)

pc2 0.6 (unitless)

pm1 0.1 (unitless)

pm2 0.01 (unitless)

Remote Sens. 2021, 13, 132 16 of 22

3. Results

This section presents the results of the two tracking tests. The results of Test A and
Test B are presented in Sections 3.1 and 3.2, respectively.

3.1. Results of Test A

The RMSEs of the five algorithms (i.e., SIR, SIR-GJN, RPFGA, IGPF, and GORPF)
in the different test conditions (different particle numbers and different magnitudes of
measurement noise) are presented in Table 4. Moreover, the tracking trajectories as well
as the absolute errors of the five algorithms in the different test conditions are shown in
Figures 4–6.

Table 4. The RMSEs (m) of the five particle filter-based algorithms in different test conditions.

Test Number Test Conditions
Algorithms

SIR SIR-GJN RPFGA IGPF GORPF

Test 1 Np = 100, σ2
v = 1 3.0117 2.8601 2.7280 2.6625 2.1999

Test 2 Np = 20, σ2
v = 1 3.5766 3.4715 3.2275 3.1752 2.4809

Test 3 Np = 100, σ2
v = 0.04 4.2175 4.0914 3.6317 3.6546 2.9284

Remote Sens. 2020, 17, x FOR PEER REVIEW 16 of 23

This section presents the results of the two tracking tests. The results of Test A and
Test B are presented in Subsections 3.1 and 3.2, respectively.

3.1. Results of Test A
The RMSEs of the five algorithms (i.e., SIR, SIR-GJN, RPFGA, IGPF, and GORPF) in

the different test conditions (different particle numbers and different magnitudes of meas-
urement noise) are presented in Table 4. Moreover, the tracking trajectories as well as the
absolute errors of the five algorithms in the different test conditions are shown in Figures
4–6.

Table 4. The RMSEs (m) of the five particle filter-based algorithms in different test conditions.

Test Number Test Conditions
Algorithms

SIR SIR-GJN RPFGA IGPF GORPF
Test 1 𝑁 = 100, 𝜎௩ଶ = 1 3.0117 2.8601 2.7280 2.6625 2.1999
Test 2 𝑁 = 20, 𝜎௩ଶ = 1 3.5766 3.4715 3.2275 3.1752 2.4809
Test 3 𝑁 = 100, 𝜎௩ଶ = 0.04 4.2175 4.0914 3.6317 3.6546 2.9284

(a) (b)

Figure 4. Target tracking performance of the five particle filter-based algorithms (with 100 particles) under normal meas-
urement noise condition (𝜎௩ଶ = 1). (a) Tracking trajectories; (b) Absolute errors at each time step.

0 10 20 30 40 50
Time (s)

-30

-20

-10

0

10

20

30

0 10 20 30 40 50
Time (s)

0

3

6

9

12

15

Figure 4. Target tracking performance of the five particle filter-based algorithms (with 100 particles) under normal
measurement noise condition (σ2

v = 1). (a) Tracking trajectories; (b) Absolute errors at each time step.

Remote Sens. 2020, 17, x FOR PEER REVIEW 16 of 23

This section presents the results of the two tracking tests. The results of Test A and
Test B are presented in Subsections 3.1 and 3.2, respectively.

3.1. Results of Test A
The RMSEs of the five algorithms (i.e., SIR, SIR-GJN, RPFGA, IGPF, and GORPF) in

the different test conditions (different particle numbers and different magnitudes of meas-
urement noise) are presented in Table 4. Moreover, the tracking trajectories as well as the
absolute errors of the five algorithms in the different test conditions are shown in Figures
4–6.

(a) (b)

Figure 4. Target tracking performance of the five particle filter-based algorithms (with 100 particles) under normal meas-
urement noise condition (𝜎௩ଶ = 1). (a) Tracking trajectories; (b) Absolute errors at each time step.

(a) (b)

Figure 5. Target tracking performance of the five particle filter-based algorithms (with 20 particles) under normal meas-
urement noise condition (𝜎௩ଶ = 1). (a) Tracking trajectories; (b) Absolute errors at each time step.

0 10 20 30 40 50
Time (s)

-30

-20

-10

0

10

20

30

0 10 20 30 40 50
Time (s)

0

3

6

9

12

15

Figure 5. Target tracking performance of the five particle filter-based algorithms (with 20 particles) under normal measure-
ment noise condition (σ2

v = 1). (a) Tracking trajectories; (b) Absolute errors at each time step.

Remote Sens. 2021, 13, 132 17 of 22

Remote Sens. 2020, 17, x FOR PEER REVIEW 17 of 23

(a) (b)

Figure 5. Target tracking performance of the five particle filter-based algorithms (with 20 particles) under normal meas-
urement noise condition (𝜎௩ଶ = 1). (a) Tracking trajectories; (b) Absolute errors at each time step.

(a) (b)

Figure 6. Target tracking performance of the five particle filter-based algorithms (with 100 particles) under small meas-
urement noise condition (𝜎௩ଶ = 0.04). (a) Tracking trajectories; (b) Absolute errors at each time step.

3.2. Results of Test B
The MRSEs and computation time of the six algorithms (the five particle filter-based

algorithms and the EKF algorithm) are shown in Table 5. The positioning errors of each
algorithm at the twenty test points are presented in Figure 7. Note that the results in Table
5 are based on the condition that sufficient particles (i.e., 2000) are used. In order to eval-
uate the robustness of each algorithm on the particle number, we set the value of 𝑁 to
eight different numbers (i.e., 50, 100, 200, 500, 800, 1000, 1500, 2000). The MRSEs of each
algorithm with respect to the particle number are shown in Figure 8.

Table 5. The MRSEs (m) and computation time (s) of the six algorithms.

Performance Metric
Algorithms

SIR
SIR-
GJN RPFGA IGPF GORPF EKF

MRSE (m) 0.2603 0.2436 0.2306 0.2234 0.2019 0.2677

0 10 20 30 40 50
Time (s)

-30

-20

-10

0

10

20

30

0 10 20 30 40 50
Time (s)

0

5

10

15

20

Figure 6. Target tracking performance of the five particle filter-based algorithms (with 100 particles) under small measure-
ment noise condition (σ2

v = 0.04). (a) Tracking trajectories; (b) Absolute errors at each time step.

3.2. Results of Test B

The MRSEs and computation time of the six algorithms (the five particle filter-based
algorithms and the EKF algorithm) are shown in Table 5. The positioning errors of each
algorithm at the twenty test points are presented in Figure 7. Note that the results in
Table 5 are based on the condition that sufficient particles (i.e., 2000) are used. In order to
evaluate the robustness of each algorithm on the particle number, we set the value of Np to
eight different numbers (i.e., 50, 100, 200, 500, 800, 1000, 1500, 2000). The MRSEs of each
algorithm with respect to the particle number are shown in Figure 8.

Table 5. The MRSEs (m) and computation time (s) of the six algorithms.

Performance Metric
Algorithms

SIR SIR-GJN RPFGA IGPF GORPF EKF

MRSE (m) 0.2603 0.2436 0.2306 0.2234 0.2019 0.2677

Computation time (s) 0.1602 0.1766 0.2253 0.2805 0.3382 1.2861

Remote Sens. 2020, 17, x FOR PEER REVIEW 18 of 23

Computation time (s) 0.1602 0.1766 0.2253 0.2805 0.3382 1.2861

Figure 7. The positioning errors at the twenty test points of the six algorithms.

Figure 8. The comparison of MRSE with different numbers of particles.

4. Discussion
This section discusses the test results presented in Section 3. The results of the two

tests are discussed separately first. The future research direction is then briefly discussed.
Regarding Test A, as the SIR algorithm does not use any strategy for particle impov-

erishment mitigation, it is used as the baseline for performance comparison. The results
in Table 4 show that with the same particle number and measurement noise magnitude,
the four algorithms with the strategies for particle impoverishment mitigation (called al-
gorithms with strategies in the following) outperform the SIR algorithm. Among these
four algorithms with strategies, the GORPF algorithm performs best. Compared to the SIR
algorithm, the GORPF algorithm improves the positioning accuracy by about 29.4% on
average while SIR-GJN, RPFGA, and IGPF improve the accuracy by about 3.65%, 11.02%,
and 12.05% on average, respectively. Considering the effect of particle number and meas-
urement noise magnitude on positioning, we found that decreasing the values of these
two parameters will lead to the positioning accuracy reduction. Specifically, by comparing
Test 1 with Test 2 (both tests use the same magnitude of measurement noise but a different

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Test point number

0

0.1

0.2

0.3

0.4

0.5

SIR

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Test point number

0

0.1

0.2

0.3

0.4

0.5

SIR-GJN

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Test point number

0

0.1

0.2

0.3

0.4

0.5

RPFGA

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Test point number

0

0.1

0.2

0.3

0.4

0.5

IGPF

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Test point number

0

0.1

0.2

0.3

0.4

0.5

GORPF

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Test point number

0

0.1

0.2

0.3

0.4

0.5

EKF

Figure 7. The positioning errors at the twenty test points of the six algorithms.

Remote Sens. 2021, 13, 132 18 of 22

Remote Sens. 2020, 17, x FOR PEER REVIEW 18 of 23

Computation time (s) 0.1602 0.1766 0.2253 0.2805 0.3382 1.2861

Figure 7. The positioning errors at the twenty test points of the six algorithms.

Figure 8. The comparison of MRSE with different numbers of particles.

4. Discussion
This section discusses the test results presented in Section 3. The results of the two

tests are discussed separately first. The future research direction is then briefly discussed.
Regarding Test A, as the SIR algorithm does not use any strategy for particle impov-

erishment mitigation, it is used as the baseline for performance comparison. The results
in Table 4 show that with the same particle number and measurement noise magnitude,
the four algorithms with the strategies for particle impoverishment mitigation (called al-
gorithms with strategies in the following) outperform the SIR algorithm. Among these
four algorithms with strategies, the GORPF algorithm performs best. Compared to the SIR
algorithm, the GORPF algorithm improves the positioning accuracy by about 29.4% on
average while SIR-GJN, RPFGA, and IGPF improve the accuracy by about 3.65%, 11.02%,
and 12.05% on average, respectively. Considering the effect of particle number and meas-
urement noise magnitude on positioning, we found that decreasing the values of these
two parameters will lead to the positioning accuracy reduction. Specifically, by comparing
Test 1 with Test 2 (both tests use the same magnitude of measurement noise but a different

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Test point number

0

0.1

0.2

0.3

0.4

0.5

SIR

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Test point number

0

0.1

0.2

0.3

0.4

0.5

SIR-GJN

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Test point number

0

0.1

0.2

0.3

0.4

0.5

RPFGA

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Test point number

0

0.1

0.2

0.3

0.4

0.5

IGPF

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Test point number

0

0.1

0.2

0.3

0.4

0.5

GORPF

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Test point number

0

0.1

0.2

0.3

0.4

0.5

EKF

Figure 8. The comparison of MRSE with different numbers of particles.

4. Discussion

This section discusses the test results presented in Section 3. The results of the two
tests are discussed separately first. The future research direction is then briefly discussed.

Regarding Test A, as the SIR algorithm does not use any strategy for particle impov-
erishment mitigation, it is used as the baseline for performance comparison. The results
in Table 4 show that with the same particle number and measurement noise magnitude,
the four algorithms with the strategies for particle impoverishment mitigation (called
algorithms with strategies in the following) outperform the SIR algorithm. Among these
four algorithms with strategies, the GORPF algorithm performs best. Compared to the SIR
algorithm, the GORPF algorithm improves the positioning accuracy by about 29.4% on
average while SIR-GJN, RPFGA, and IGPF improve the accuracy by about 3.65%, 11.02%,
and 12.05% on average, respectively. Considering the effect of particle number and mea-
surement noise magnitude on positioning, we found that decreasing the values of these
two parameters will lead to the positioning accuracy reduction. Specifically, by comparing
Test 1 with Test 2 (both tests use the same magnitude of measurement noise but a different
number of particles), it is found that decreasing the particle number from 100 to 20 results
in the positioning accuracy reductions of the five particle filter-based algorithms. This can
be also reflected by comparing Figure 4 to Figure 5 which demonstrates that the positioning
errors in Figure 5 are generally larger than those in Figure 4. Insufficient particles cannot
accurately represent the posterior distribution and also increase the degree of particle
impoverishment. Moreover, it increases the risk of suffering from premature convergence
to the local optimal solution. Table 4 shows that the four algorithms with strategies can
always outperform SIR even though the particle number used is decreased. This reveals
that the strategies used in these four algorithms are all effective in maintaining particle di-
versity and improving positioning accuracy. However, when taking the extent of accuracy
reduction into account, Table 4 shows the accuracy of SIR-GJN decreases by about 21.4%,
which is the largest among the four algorithms with strategies. The comparison between
Figures 4 and 5 shows that the SIR-GJN algorithm has significantly larger errors at some
time steps than those of the other three algorithms with strategies. This implies that using
roughening alone for the mitigation of particle impoverishment (caused by a small number
of particles) is less effective than the strategies used in the other three algorithms (i.e.,
RPFGA, IGPF, and GORPF). Table 4 shows that the accuracy of the GORPF is decreased by
about 12.8%, which is the least among the four algorithms with strategies. This implies the
proposed resampling method used in the GORPF algorithm has the best performance on
maintaining particle diversity and improving positioning accuracy. When comparing Test
1 with Test 3 (both tests use the same number of particles but different measurement noise),
it is found that decreasing the covariance of measurement noise from 1.0 to 0.04 results in
the positioning accuracy reduction of the five particle filter-based algorithms. This can be
also reflected by comparing Figure 4 to Figure 6 which shows that the positioning errors
in Figure 6 are significantly larger than those in Figure 4. The small measurement noise
implies that the likelihood function p

(
yk
∣∣xi

k
)

concentrates in a small region of the state

Remote Sens. 2021, 13, 132 19 of 22

space, the predicted particles obtained by the dynamic model in the prediction phase tend
to locate at the tail of likelihood function [45]. This can cause particle impoverishment,
and hence the position estimation accuracy will be significantly decreased. The four al-
gorithms with strategies outperform SIR under the small measurement noise condition,
which reveals the effectiveness of the strategies used in these four algorithms. Again,
taking the extent of accuracy reduction into account, it shows that both the accuracies
of the GORPF and RPFGA algorithms are decreased by about 33.1% while those of the
other three algorithms are decreased by about 40%. This implies that the strategies used
in the GORPF and RPFGA algorithms have a better effect on the mitigation of particle
impoverishment (caused by small measurement noise) than the strategies used in the other
two algorithms (i.e., SIR-GJN and IGPF). Based on the discussions above, comprehensively,
the proposed GORPF algorithm has better robustness against particle impoverishment
(caused by small measurement noise and a small number of particles) and achieves better
positioning accuracy than the other four algorithms.

Regarding Test B, both the SIR algorithm and the EKF algorithm do not use any strat-
egy to mitigate particle impoverishment. The positioning accuracy of the two algorithms
is similar. The results in Table 5 shows that the RMSE difference is only 7.4 mm. Figure 7
shows the maximum error of the EKF algorithm (about 0.45 m) is slightly larger than that
of the SIR algorithm (about 0.4 m). However, the difference in computation time between
them is very large. EKF requires almost 8 times longer time than that of SIR for position
estimation at a point. This is because EKF requires calculation of the Jacobian matrix at each
time step. The Jacobian matrix calculation is very time-consuming in large dimensional
problems, such as the case in the tracking problem in Test B where the dimension of the
measurement vector was eighteen. Regarding the five particle filter-based algorithms,
when taking the SIR algorithm (without particle impoverishment mitigation strategy) as a
baseline, the other four algorithms all achieve improved positioning accuracies. Table 5
shows that the GORPF algorithm performs best in terms of positioning accuracy among
them. Compared to the SIR algorithm, the GORPF algorithm improves positioning accu-
racy by about 22.4%. Figure 7 shows that the maximum error of the GORPF algorithm is
about 0.35 m and the minimum error is less than 0.1 m. Both values are less than those in
the other five algorithms. As shown in Figure 8, the number of particles does affect the
positioning accuracy of each particle filter-based algorithm. Increasing the particle number
will improve the positioning accuracy of each algorithm. When insufficient particles are
used in the filtering (such as Np is less than 200), the positioning accuracy will reduce sig-
nificantly. Nevertheless, the SIR-GJN, RPFGA, IGPF, and GORPF algorithms can generally
outperform the SIR algorithm because of their strategies used for particle impoverishment
mitigation. This finding agrees with the finding in Test A. A very small number of particles
can cause a serious loss of particle diversity. Figure 8 shows that when only 50 particles are
used in each algorithm, the positioning accuracy of the GORPF is much higher than those
of the other four algorithms (which are almost 0.4 m). This reveals the GORPF has better
robustness to particle impoverishment than the others. The outstanding performance of
the GORPF mainly owes to the improved genetic optimization resampling method used.
Different from the Gaussian jitter noise roughening operation which is used alone in the
SIR-GJN algorithm, our proposed resampling method implements a genetic operation
based on the particles obtained from the roughening operation. This genetic operation
can avoid the particles falling into the region of the local optimal solution and make the
particles distribute in the region of the global optimal solution. Moreover, with the aid
of the classification operation used in the proposed resampling method, the low-weight
particles can be modified into high-weight particles. This classification operation improves
the “quality” of the offspring particles and hence improve the positioning robustness.
Therefore, the GORPF algorithm performs better in terms of positioning accuracy than the
RPFGA and IGPF algorithm (both of them do not implement the classification operation).
As for the computation time, the differences between the five particle filter-based algo-
rithms are large. SIR requires the shortest computation time. Since the SIR-GJN, RPFGA,

Remote Sens. 2021, 13, 132 20 of 22

IGPF, and GORPF algorithms use different strategies (i.e., Gaussian jitter noise or/and
genetic operators) for particle impoverishment mitigation, these added extra strategies
directly result in a higher computation load than the SIR. Although the proposed GORPF
algorithm requires the longest computation time (0.3382 s), such computation time is
affordable for most real-time indoor tracking applications.

As discussed above, the GORPF has a relatively high computation load because of
the added extra strategy for particle impoverishment mitigation. This is also the problem
in many other genetic algorithm based particle filters, such as [46] and [47]. Although
improving the computer system configuration is an effective way for improving compu-
tation efficiency, it will increase the cost. Therefore, decreasing the computation load by
optimizing the algorithm itself (such as reduce computation steps and optimize the logic)
may be a research direction for the genetic algorithm-based particle filter in the future.

5. Conclusions

This paper proposes an improved genetic optimization resampling method which
consists of five operators, i.e., selection, roughening, classification, crossover, and mutation.
The proposed resampling method is integrated into the particle filtering framework to
form a genetic optimization resampling based particle filtering (GORPF) algorithm. The
proposed algorithm is assessed by a one-dimensional tracking simulation test and a three-
dimensional tracking experiment. The results in both tests show that the GORPF algorithm
achieves better positioning accuracy than the state-of-the-art indoor positioning algorithms
in the literature, even if the particle number and measurement noise magnitude are small.
The proposed novel resampling method in the GORPF algorithm can effectively address the
particle degeneracy, maintain the particle diversity, and improve the positioning accuracy
and robustness. Moreover, the computation time of the GORPF algorithm is affordable for
most real-time tracking applications. The improved positioning accuracy and robustness
as well as the relatively low computation load of the GORPF algorithm make it possible to
be used in people tracking in airports, object tracking in logistics, and machine guidance in
Industry 4.0.

Author Contributions: Conceptualization: N.Z. and L.L.; Data curation: N.Z.; Formal analysis: N.Z.
and R.B.; Investigation: N.Z., R.B., and T.M.; Methodology: N.Z. and L.L.; Software: N.Z.; Validation:
N.Z. and T.M.; Visualization: N.Z.; Writing—Original draft: N.Z.; Writing—review and editing: L.L.,
R.B., and T.M.; Supervision: L.L., R.B., and T.M.; Funding acquisition, project administration and
resources: L.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work is financially supported by the International Doctoral Innovation Centre, Ningbo
Education Bureau, Ningbo Science and Technology Bureau, and the University of Nottingham. This
work was also supported by the UK Engineering and Physical Sciences Research Council under grant
EP/L015463/1, and the Zhejiang Natural Science Foundation (ZJNSF) General Programme under
grant LY17D040001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, and in the decision to publish the results.

References
1. Khan, D.; Ullah, S.; Nabi, S. A generic approach toward indoor navigation and pathfinding with robust marker tracking. Remote

Sens. 2019, 11, 3052. [CrossRef]
2. Julier, S.; Uhlmann, J.K. A new extension of the Kalman filter to nonlinear systems. In Proceedings of the SPIE 3068, Signal

Processing, Sensor Fusion, and Target Recognition VI, Orlando, FL, USA, 28 July 1997; pp. 182–193. [CrossRef]
3. Merwe, R.V.D.; Doucet, A.; Freitas, N.D.; Wan, E.A. The unscented particle filter. In Proceedings of the International Conference

on Neural Information Processing Systems, Denver, CO, USA, 17 January 2000; pp. 563–569.

http://doi.org/10.3390/rs11243052
http://doi.org/10.1117/12.280797

Remote Sens. 2021, 13, 132 21 of 22

4. Kim, T.; Park, T.H. Extended Kalman filter (EKF) design for vehicle position tracking using reliability function of radar and lidar.
Sensors 2020, 20, 4126. [CrossRef]

5. Chen, Z. Bayesian filtering: From Kalman filters to particle filters, and beyond. Statistics 2003, 182, 1–69. [CrossRef]
6. Risfic, B.; Arulampalam, S.; Gordon, N. Beyond the Kalman Filter: Particle Filters for Tracking Applications; Artech House: Norwood,

MA, USA, 2004. [CrossRef]
7. Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian

tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [CrossRef]
8. Pak, J.M.; Ahn, C.K.; Shmaliy, Y.S.; Shi, P.; Lim, M.T. Accurate and reliable human localization using composite particle/FIR

filtering. IEEE Trans. Hum. Mach. Syst. 2017, 47, 332–342. [CrossRef]
9. Guvenc, I.; Chong, C.C. A survey on TOA based wireless localization and NLOS mitigation techniques. IEEE Commun. Surv. Tut.

2009, 11, 107–124. [CrossRef]
10. Yu, K.; Dutkiewicz, E. NLOS identification and mitigation for mobile tracking. IEEE Trans. Aerosp. Electron. Syst. 2013, 49,

1438–1452. [CrossRef]
11. Yan, L.; Mao, Y. Wireless location technology of Gauss Particle filter under NLOS environment. In Proceedings of the 3rd

International Conference on Materials Engineering, Manufacturing Technology and Control, Taiyuan, China, 27 January 2016.
[CrossRef]

12. Yin, F.; Fritsche, C.; Gustafsson, F.; Zoubir, A.M. TOA-based robust wireless geolocation and Cramér-Rao lower bound analysis in
harsh LOS/NLOS environments. IEEE Trans. Signal Process. 2013, 61, 2243–2255. [CrossRef]

13. Nicoli, M.; Morelli, C.; Rampa, V. A jump Markov particle filter for localization of moving terminals in multipath indoor scenarios.
IEEE Trans. Signal Process. 2008, 56, 3801–3809. [CrossRef]

14. Gordon, N.J.; Salmond, D.J.; Smith, A.F.M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proc. F
Radar Signal Process. 1993, 140, 107–113. [CrossRef]

15. Oudjane, N.; Musso, C. Progressive correction for regularized particle filters. In Proceedings of the Third International Conference
on Information Fusion, Paris, France, 10 August 2000. [CrossRef]

16. Gilks, W.R.; Berzuini, C. Following a moving target—Monte Carlo inference for dynamic Bayesian models. J. R. Stat. Soc. Ser. B
(Stat. Methodol.) 2001, 63, 127–146. [CrossRef]

17. Orguner, U.; Gustafsson, F. Risk sensitive particle filters for mitigating sample impoverishment. IEEE Trans. Signal Process. 2008,
56, 5001–5012. [CrossRef]

18. Li, T.; Sattar, T.; Sun, S. Deterministic resampling: Unbiased sampling to avoid sample impoverishment in particle filters. Signal
Process. 2012, 92, 1637–1645. [CrossRef]

19. Goldberg, D.E. Genetic Algorithm in Search, Optimization, and Machine Learning; Addison-Wesley: Reading, MA, USA, 1989;
Volume 3. [CrossRef]

20. Higuchi, T. Monte carlo filter using the genetic algorithm operators. J. Stat. Comput. Sim. 1997, 59, 1–23. [CrossRef]
21. Park, S.; Hwang, J.P.; Kim, E.; Kang, H. A new evolutionary particle filter for the prevention of sample impoverishment. IEEE

Trans. Evol. Comput. 2009, 13, 801–809. [CrossRef]
22. Zhang, X.; Liu, H.; Sun, X. Object tracking with an evolutionary particle filter based on self-adaptive multi-features fusion. Int. J.

Adv. Robot. Syst. 2013, 10, 1. [CrossRef]
23. Gao, M.; Li, L.; Sun, X.; Yin, L.; Li, H.; Luo, D. Firefly Algorithm (FA) based particle filter method for visual tracking. Opt. Int. J.

Light Electron Opt. 2015, 126, 1705–1711. [CrossRef]
24. Wang, W.; Tan, Q.K.; Chen, J.; Ren, Z. Particle filter based on improved genetic algorithm resampling. In Proceedings of the

2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, China, 12–14 August 2016; pp. 346–350.
[CrossRef]

25. Zhao, J.; Li, Z. Particle filter based on particle swarm optimization resampling for vision tracking. Expert Syst. Appl. 2010, 37,
8910–8914. [CrossRef]

26. Moghaddasi, S.S.; Faraji, N. A hybrid algorithm based on particle filter and genetic algorithm for target tracking. Expert Syst.
Appl. 2020, 147, 113188. [CrossRef]

27. Gaffney, J.; Pearce, C.; Green, D. Binary versus real coding for genetic algorithms: A false dichotomy? ANZIAM J. 2010, 51,
347–359. [CrossRef]

28. Hassanat, A.; Almohammadi, K.; Alkafaween, E.; Abunawas, E.; Hammouri, A.; Prasath, V. Choosing mutation and crossover
ratios for genetic algorithms—A review with a new dynamic approach. Information 2019, 10, 390. [CrossRef]

29. Bessaou, M.; Siarry, P. A genetic algorithm with real-value coding to optimize multimodal continuous functions. Struct. Multidiscip.
Optim. 2001, 23, 63–74. [CrossRef]

30. Sivaraj, R.; Ravichandran, T. A review of selection methods in genetic algorithm. Int. J. Eng. Sci. Technol. 2011, 3, 3792–3797.
31. Umbarkar, A.J.; Sheth, P. Crossover operators in genetic algorithms: A review. ICTACT J. Soft Comput. 2015, 6, 1083–1092.

[CrossRef]
32. Huang, M.S.; Lin, T.Y.; Fung, R.F. Key design parameters and optimal design of a five-point double-toggle clamping mechanism.

Appl. Math. Model. 2011, 35, 4304–4320. [CrossRef]
33. Bautista, M.; Escalera, S.; Baró, X.; Radeva, P.; Vitrià, J.; Pujol, O. Minimal design of error-correcting output codes. Pattern Recogn.

Lett. 2012, 33, 693–702. [CrossRef]

http://doi.org/10.3390/s20154126
http://doi.org/10.1080/02331880309257
http://doi.org/10.1109/MAES.2004.1346848
http://doi.org/10.1109/78.978374
http://doi.org/10.1109/THMS.2016.2611826
http://doi.org/10.1109/SURV.2009.090308
http://doi.org/10.1109/TAES.2013.6557997
http://doi.org/10.2991/icmemtc-16.2016.48
http://doi.org/10.1109/TSP.2013.2251341
http://doi.org/10.1109/TSP.2008.920145
http://doi.org/10.1049/ip-f-2.1993.0015
http://doi.org/10.1109/IFIC.2000.859873
http://doi.org/10.1111/1467-9868.00280
http://doi.org/10.1109/TSP.2008.928520
http://doi.org/10.1016/j.sigpro.2011.12.019
http://doi.org/10.1111/j.1365-2486.2009.02080.x
http://doi.org/10.1080/00949659708811843
http://doi.org/10.1109/TEVC.2008.2011729
http://doi.org/10.5772/54869
http://doi.org/10.1016/j.ijleo.2015.05.028
http://doi.org/10.1109/CGNCC.2016.7828809
http://doi.org/10.1016/j.eswa.2010.05.086
http://doi.org/10.1016/j.eswa.2020.113188
http://doi.org/10.21914/anziamj.v51i0.2776
http://doi.org/10.3390/info10120390
http://doi.org/10.1007/s00158-001-0166-y
http://doi.org/10.21917/ijsc.2015.0150
http://doi.org/10.1016/j.apm.2011.03.001
http://doi.org/10.1016/j.patrec.2011.09.023

Remote Sens. 2021, 13, 132 22 of 22

34. Holland, J.H. Adaptation in Natural and Artificial Systems; MIT Press: Cambridge, MA, USA, 1992.
35. Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2003.

[CrossRef]
36. Menon, A.; Mehrotra, K.; Mohan, C.; Ranka, S. Characterization of a class of sigmoid functions with applications to neural

networks. Neural. Netw. 1996, 9, 819–835. [CrossRef]
37. Zhang, Y.; Zhang, H.; Fang, Z.; Wang, Q. Study on the facility layout in workshop based on improved adaptive genetic algorithm.

In Proceedings of the 2009 International Conference on Computational Intelligence and Software Engineering, Wuhan, China,
11–13 December 2009; pp. 1–4. [CrossRef]

38. Metropolis, N.; Rosenbluth, A.; Rosenbluth, M.; Teller, A.; Teller, E. Equation of state calculations by fast computing machines. J.
Chem. Phys. 1953, 21, 1087–1092. [CrossRef]

39. Geng, S.; Ranvier, S.; Zhao, X.; Kivinen, J.; Vainikainen, P. Multipath propagation characterization of ultra-wide band indoor radio
channels. In Proceedings of the 2005 IEEE International Conference on Ultra-Wideband, Zurich, Switzerland, 5–8 September
2005; pp. 11–15. [CrossRef]

40. Sahinoglu, Z.; Gezici, S.; Guvenc, I. Ultra-Wideband Positioning Systems: Theoretical Limits, Ranging Algorithms, and Protocols;
Cambridge University Press: Cambridge, UK, 2008. [CrossRef]

41. Mitchell, C.; Kohno, R. High data rate transmissions using orthogonal modified Hermite pulses in UWB communications. In
Proceedings of the 10th International Conference on Telecommunications, Papeete, Tahiti, French Polynesia, 23 February–1 March
2003; pp. 1278–1283. [CrossRef]

42. Uren, J.; Price, B. Surveying for Engineers, 5th ed.; Palgrave Macmillan: Basingstoke, UK, 2010. [CrossRef]
43. Lau, L.; Quan, Y.; Wan, J.; Zhou, N.; Wen, C.; Nie, Q.; Jing, F. An autonomous ultra-wide band-based attitude and position

determination technique for indoor mobile laser scanning. ISPRS Int. J. Geo-Inf. 2018, 7, 155. [CrossRef]
44. Muthukrishnan, K.; Hazas, M. Position estimation from UWB pseudorange and angle-of-arrival: A comparison of non-linear

regression and Kalman filtering. In Proceedings of the Location and Context Awareness, 4th International Symposium, LoCA
2009, Tokyo, Japan, 7–8 May 2009; pp. 222–239. [CrossRef]

45. Zuo, J.; Liang, Y.; Zhang, Y.; Pan, Q. Particle filter with multimode sampling strategy. Signal Process. 2013, 93, 3192–3201.
[CrossRef]

46. Yin, S.; Zhu, X.; Qiu, J.; Gao, H. State estimation in nonlinear system using sequential evolutionary filter. IEEE Trans. Ind. Electron.
2016, 63, 3786–3794. [CrossRef]

47. Roberge, V.; Tarbouchi, M.; Labonte, G. Comparison of parallel genetic algorithm and particle swarm optimization for real-time
UAV path planning. IEEE Trans Ind. Informat. 2013, 9, 132–141. [CrossRef]

http://doi.org/10.1108/aa.2004.24.3.324.1
http://doi.org/10.1016/0893-6080(95)00107-7
http://doi.org/10.1109/CISE.2009.5363179
http://doi.org/10.1063/1.1699114
http://doi.org/10.1109/ICU.2005.1569948
http://doi.org/10.1017/CBO9780511541056
http://doi.org/10.1109/ICTEL.2003.1191619
http://doi.org/10.1057/978-1-137-05279-7
http://doi.org/10.3390/ijgi7040155
http://doi.org/10.1007/978-3-642-01721-6_14
http://doi.org/10.1016/j.sigpro.2013.04.023
http://doi.org/10.1109/TIE.2016.2522382
http://doi.org/10.1109/TII.2012.2198665

	Introduction
	Materials and Methods
	Basics of a Generic Particle Filter and Genetic Algorithm
	Generic Particle Filter
	Genetic Algorithm

	Genetic Optimization Resampling-Based Particle Filter (GORPF)
	Improved Genetic Optimization Resampling Method
	Genetic Optimization Resampling-Based Particle Filter

	Assessment of the Proposed Method
	Test A: One-Dimensional Tracking
	Test B: Three-Dimensional Tracking

	Results
	Results of Test A
	Results of Test B

	Discussion
	Conclusions
	References

