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Abstract: Surface soil water content (SWC) is a major determinant of crop production, and accurately
retrieving SWC plays a crucial role in effective water management. Unmanned aerial systems
(UAS) can acquire images with high temporal and spatial resolutions for SWC monitoring at the
field scale. The objective of this study was to develop an algorithm to retrieve SWC by integrating
soil texture into a vegetation index derived from UAS multispectral and thermal images. The
normalized difference vegetation index (NDVI) and surface temperature (Ts) derived from the UAS
multispectral and thermal images were employed to construct the temperature vegetation dryness
index (TVDI) using the trapezoid model. Soil texture was incorporated into the trapezoid model
based on the relationship between soil texture and the lower and upper limits of SWC to form the
texture temperature vegetation dryness index (TTVDI). For validation, 128 surface soil samples, 84 in
2019 and 44 in 2020, were collected to determine soil texture and gravimetric SWC. Based on the
linear regression models, the TTVDI had better performance in estimating SWC compared to the
TVDI, with an increase in R2 (coefficient of determination) by 14.5% and 14.9%, and a decrease in
RMSE (root mean square error) by 46.1% and 10.8%, for the 2019 and 2020 samples, respectively. The
application of the TTVDI model based on high-resolution multispectral and thermal UAS images has
the potential to accurately and timely retrieve SWC at the field scale.

Keywords: unmanned aerial system; thermal images; soil water content; TVDI; TTVDI; soil texture

1. Introduction

The surface soil water content (SWC) constitutes a small portion of the agroecosystem,
but it plays a critical role in agricultural production [1,2]. Accurate estimation of surface
SWC is indispensable in ecology, hydrology, climatology, and environmental and agricul-
tural water management [3–7]. Different methods have been used to measure or estimate
SWC, including field measurements, remote sensing, and soil water balance simulation
models [8–11]. Compared with the cost-prohibitive, labor-intensive, and time-consuming
in-situ measurements and complex model predictions, remote sensing technology has
demonstrated great potential for estimating and monitoring surface SWC for its timeliness
and convenience at larger spatial scales [12]. For instance, studies have reported that
satellite data, such as those from MODIS, Landsat, and Sentinel l/2, in the wavelengths of
near-infrared, thermal infrared, and microwave, can be applied to monitor SWC at different
scales [1,6,13].

Based on various satellite data, a wide variety of models for estimating surface SWC
have been developed over the past decades [14–17]. For instance, Nemani et al. (1993)
developed the temperature vegetation dryness index (TVDI) based on the relationship be-
tween the surface temperature (Ts) and the normalized difference vegetation index (NDVI)
by plotting NDVI against Ts values [16]. In the TVDI model, temperature changes are
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mainly explained by the variation in land SWC, i.e., for a given NDVI value, temperature
varies mainly as a function of surface SWC change [18,19]. The TVDI model has various
applications, such as the estimation of crop water stress, drought, and evapotranspira-
tion [20–23].

Studies have demonstrated the potential of using the TVDI for SWC estimation at large
scales, such as river valley, state, regional, or worldwide [24–27]. Nevertheless, information
on the feasibility of using the TVDI for monitoring surface SWC on the size of a typical
agricultural field is very limited [28,29]. This is because the TVDI model requires a large
number of pixels with wide ranges of NDVI and Ts values to build the trapezoid model and
determine the dry and wet boundary conditions [30]. Satellite data of medium resolutions,
such as Landsat (30 m) and Sentinel (20 m) data, and coarse resolutions, such as MODIS
data (250–1000 m), cannot provide a sufficiently large number of pixels to build the NDVI
and temperature trapezoid model at the field scale [31–33]. Although some remote sensing
data have high resolutions, they do not contain the thermal bands required for the TVDI
calculation. Image re-sampling and down-scaling methods can be employed to improve
the applicability of traditional remote sensing images at the field scale [34–36]. However,
calibrated data based on low-resolution images are often not consistent with the scale of
SWC distribution due to the strong spatial variability. Besides, the long revisit time and
weather limitation of traditional satellite platforms limit accurate and dynamic monitoring
of SWC at the field scale [37,38].

The emergence and development of the unmanned aerial systems (UAS) provide a
potential solution to the challenges encountered by traditional remote sensing in real-time
and efficient monitoring, especially at the field scale [39,40]. UAS remote sensing systems
not only provide high-resolution data at the field scale, but also reduce the limitation of
revisit time, weather factors, and operating costs [41,42]. Agricultural managers can use
the real-time information obtained from the UAS and combine ground measurements to
accomplish more reliable techniques for agricultural monitoring. UAS remote sensing has
been applied in agriculture to monitor or predict SWC [43], plant population [44,45], crop
water stress [46], crop nutrient deficiency [47,48], plant biomass, leaf area [49,50], and crop
yield [51,52].

Although the TVDI model has been used to estimate SWC using UAS images in recent
years, its application in estimating SWC only incorporates the spectral characteristics of
surface objects without considering the soil properties that affect SWC [27,43,53–55]. For
instance, soil texture, an important soil parameter affecting SWC, is not considered in the
TVDI model [4,56]. Soil texture is a stable soil physical property, and its variation results in
large spatial and temporal variability in SWC distribution [57,58]. Besides, soil surface tem-
perature used to estimate SWC in remote sensing studies is also governed by the variation
in soil texture [59]. Several authors have found that the upper and lower limits of SWC
are a function of soil clay and sand content [43,60,61]. More importantly, the interaction
between soil texture and SWC is highly correlated with electromagnetic radiation at various
wavelengths, from the visible to the thermal infrared spectral regions [62–64]. Amazirh
et al. (2018) integrated soil texture in the Sentinel-1 radar and Landsat thermal imagery
to improve SWC retrieval accuracy on a large scale [65]. Thus, incorporating the effect of
soil texture in the TVDI model has the potential to enhance the SWC retrieval accuracy.
To date, no studies have reported the integration of soil texture and the TVDI model in
SWC retrieval. At the field scale, the lack of information is equally true for SWC’s timely
and accurate retrieval and hinders the development of precision agriculture. Therefore, the
objective of this study was to develop a new model that integrates soil texture, Ts, and the
NDVI from high-resolution multispectral and thermal UAS images to retrieve SWC at the
field scale.
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2. Materials and Methods
2.1. Study Area

The study was conducted in a dryland field (~40 ha) located 15 km southeast of Slaton
(33◦19′28.33” N, 101◦33′13.40” W), Garza County, Texas (Figure 1). The local climate is
semiarid, characterized by large diurnal temperature variations and day-to-day variability.
The average annual rainfall is 487 mm and the mean annual temperature is 16 ◦C [66]. The
elevation of this field varies from 914 m at the northwest corner to 908 m at the playa lake
on the south side. A terrace was constructed in the middle of the field for soil and water
conservation. As indicated by the soil map units (Figure 1) from the National Resources
Conservation Service (NRCS) Soil Survey Geographic Database (SSURGO), soil types
varied from fine sandy loam and loam in the main part of the field, to clay at the playa lake
in the south. The study was conducted in the entire field in 2019 (red polygon, ~40 ha), and
in the south half in 2020 (green polygon, ~21 ha) due to the construction of wind turbines.

Figure 1. Study field with soil sampling locations and soil map units in Garza County, Texas.
AcA: Acuff loam, 0 to 1% slopes (fine-loamy, mixed, superactive, thermic Aridic Paleustolls); AmB:
Amarillo fine sandy loam, 1 to 3% slopes (fine-loamy, mixed, superactive, thermic Aridic Paleustalfs);
Ra: Randall clay, 0 to 1% slopes, occasionally ponded (fine, smectitic, thermic Ustic Epiaquerts); OIA:
Olton loam, 0 to 1% slopes (fine-loamy, mixed, superactive, thermic Aridic Paleustolls); and AcB:
Acuff loam, 1 to 3% slopes (fine-loamy, mixed, superactive, thermic Aridic Paleustolls).

2.2. UAS Platform and Sensors

A DJI Matrice 600 UAS (DJI, Shenzhen, China) was applied as a platform for sensors
to acquire images (Figure 2). A RedEdge sensor (MicaSense, Seattle, WA, USA) was used
to collect multispectral images, with central wavelengths of 475, 560, 668, 717, and 840
nm for the blue, green, red, red edge, and NIR, respectively. A thermal infrared (TIR)
sensor (Zenmuse XT, FLIR System, Shenzhen, China) was used to acquire thermal images.
This sensor has a dimension of 103 mm × 74 mm × 102 mm, and a weight of 270 g. It is
capable of capturing the wavelength range of 7.5 to 13.5 µm with 30 Hz full frame rates.
This sensor is sensitive to the temperature range of −25 to 135 ◦C. The focal length of the
sensor is 19 mm, with a digital image format at 640 × 512 pixels in radiometric JPEG, JPEG
(8-bit), and TIFF (14-bit) (FLIR, 2016). These two commercial sensors have been proven to
be particularly suitable for UAS remote sensing research in agriculture [67–69].

Figure 2. UAS platform and sensors applied in acquiring multispectral and thermal images for
retrieval of surface SWC. (A) DJI Matrice 600 Pro UAS platform; (B) MicaSense RedEdge multispectral
sensor; and (C) DJI Zenmuse XT thermal sensor.
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2.3. UAS Image Acquisition

The image acquisitions were conducted on 28 April 2019, and 19 May 2020. Both
days were sunny with light wind (<5 m/s). The air temperature was 11.6–31.7 ◦C and
20.6 –37.8 ◦C on 28 April 2019, and 19 May 2020, respectively. The flight plan for image
collection was designed and executed using the Pix4D Planner software (Pix4D S.A.,
Switzerland). The RedEdge sensor and TIR sensor were flown separately with a gap of
30 min. For both sensors, forward and side overlaps were assigned 75% and 80%. Flight
height was 80 m for both sensors, resulting in 15 cm and 10 cm image resolutions for the
thermal and multispectral images. These image acquisitions were completed approximately
one hour around the local solar noon (12:00–1:00 p.m.).

To aid in acquiring imagery with accurate reflectance in changing illumination con-
ditions, a Downwelling Light Sensor (DLS) was mounted on the top of the drone for the
RedEdge sensor to measure incoming irradiance in the five individual bands [70]. Before
and after each UAS flight, spectral calibration was conducted by acquiring an image of a
Calibrated Reflectance Panel (CRP) by Micasense. The CRP has known reflectance values
across the visible and near-infrared light spectrum, and it can provide an accurate repre-
sentation of light conditions during the flight [39,71]. To calibrate the thermal infrared
images, the temperatures of soil, plant canopy, and calibration panels were measured
simultaneously using a hand-held MI-220 thermal infrared sensor (Apogee Electronics,
Santa Monica, CA) during the collection of thermal infrared images with the UAS. The
accuracy of this sensor is ±0.1 ◦C. The UAS TIR-derived temperature was consistent with
the in-situ temperature measurement (R2 = 0.93 and RMSE = 2.09 ◦C). This was in line with
previous research [65], in which errors in the land surface temperature of less than 3 ◦C
had a relatively small effect on the accuracy of the SWC estimation.

2.4. Soil Sampling and SWC Measurements

To ensure that the soil had enough water content early in the growing season, each data
collection was carried out about five days after a rainfall had occurred. The precipitation
was ~1.3 cm and ~2.0 cm on 23 April 2019, and 11 May 2020, respectively. To capture
the spatial variability pattern of the SWC, a soil sampling method was implemented
to incorporate sparse and dense sampling schemes (Figure 1b). The sparse sampling
scheme contained 30 sampling locations spaced at ~100 m across the field, while the dense
sampling scheme contained six sampling strips, each with nine samples spaced ~10 m
along an elevation gradient. As a result, 84 and 44 surface soil samples (0–15 cm) were
taken on 28 April 2019, and 19 May 2020, respectively, with a push probe (2.5 cm diameter).
A composite sample with three cores was collected within a 1 m radius at each sampling
location, which was determined using a Mesa 2 Geo differential GPS receiver (Juniper
Systems, Logon, Utah) with sub-meter accuracy. Gravimetric SWC was determined using
a 100 g sub-sample taken from each soil sample. Each sub-soil sample was oven-dried at
105 ◦C for 72 h until a constant dry weight was recorded. Gravimetric SWC was calculated
by dividing the weight of water by the weight of dry soil. A portion of each soil sample was
air-dried and sieved to pass a 2 mm sieve. For each sample, ~50 g of air-dried sub-sample
was used to determine soil particle distribution, including the percentages of clay, sand,
and silt particles using the sedimentation (hydrometer) method [72].

2.5. Image Processing

The thermal images were stitched using the Structure from Motion (SfM) workflow
in the Agisoft PhotoScan Professional software (Agisoft LLC, St. Petersburg, Russia). The
stitched thermal images were converted to digital temperatures using the calibration curve
derived from the ground temperature data. The multispectral images were calibrated
using the reflectance values of the Micasense calibration panel. The Pix4D was applied to
stitch and calibrate the multispectral images. The georeferencing process of the thermal
and multispectral imagery was performed in ArcGIS (Version 10.5, Esri, Redlands, CA,
USA), using the positional information of the ground control panels. These images were
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aligned and aggregated to the same spatial context. NDVI and Ts values were derived and
extracted from these images using the Spatial Analyst extension in ArcGIS.

2.6. Surface SWC Retrieval
2.6.1. Temperature Vegetation Dryness Index (TVDI)

The TVDI model is a dryness index derived from the NDVI–Ts relationship. Figure 3
shows the TVDI trapezoid model that relates SWC to Ts and the NDVI. The left edge of
the trapezoid represents bare soil from dry to wet (top-down) conditions. As the ground
cover represented by the NDVI increases along the x-axis, the surface temperature (Ts) on
the y-axis decreases. For dry conditions, a negative relation is defined by the upper edge,
which is the upper limit to surface temperatures for a given surface type [73]. The wet edge
of this trapezoid was computed from the mean of all minimum surface temperature (Tmin)
values corresponding to 1% NDVI increments (NDVI bin) [27,74]. The TVDI is defined as:

TVDI =
Ts − Ts,wet

b + aNDVI− Ts,wet
(1)

where Ts is the surface temperature derived from the thermal image; Ts,wet is the wet edge
y-intercept, i.e., the mean value of minimum Ts for an NDVI value for the model; a is
the slope of the dry edge linear regression function; and b is the y-intercept of the dry
edge, calculated from linear regression of maximum Ts value for an NDVI value within
the model. The NDVI was computed using the reflectance of the red (R) and near-infrared
(NIR) bands of the UAS images as:

NDVI = (NIR− R)/(NIR + R) (2)

Figure 3. The temperature vegetation dryness index (TVDI) model showing the relationship between
the NDVI and surface temperature Ts [16].

2.6.2. Theory and Algorithm for the Texture Temperature Vegetation Dryness Index (TTVDI)

Research in soil physics shows that the minimum and maximum SWC (SWCmin and
SWCmax, respectively) values depend mainly on the soil texture [75,76]. As in Amazirh
et al. [65] and Tomer et al. [77], the SWCmin value could be set to the wilting point, which
is related to clay fraction (fclay) by the formula [61]:

SWCmin = 0.15 × fclay (3)
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and the SWCmax value is calculated from the sand fraction (fsand) as in Cosby et al. [60],
which can be set to the SWC at field capacity [65,77]:

SWCmax = 0.489 − 0.126 × fsand (4)

Based on SWCmin and SWCmax values, SWC at a specific site can be estimated as:

SWC = SWCmin + (SWCmax−SWCmin) × SWCPT (5)

where soil water content percentage (SWCPT) is a percentage parameter based on surface
soil temperature, soil temperature on theoretical dry and wet conditions [65,78], which can
be estimated as:

SWCPT =
Ts,dry − Ts

Ts,dry − Ts,wet
(6)

After combining Equation (1) to Equation (6), SWCPT can be derived from the trape-
zoid model and replaced with TVDI:

SWCPT =
Ts,dry − Ts

Ts,dry − Ts,wet
= 1− Ts − Ts,wet

b + aNDVI− Ts,wet
= 1− TVD (7)

where Ts is soil surface temperature extracted from the thermal image. Ts, dry and Ts, wet
are the highest and lowest soil temperatures in fully dry and wet conditions, respectively.
The traditional trapezoid method (Figure 3) was used to estimate the Ts, dry and Ts, wet
values based on thermal and multispectral images [79,80].

Combining Equations (1)–(7), soil texture, surface temperature, and the NDVI are
incorporated into the texture temperature vegetation dryness index (TTVDI) as:

TTVDI = SWCmin + (SWCmax − SWCmin) × (1-TVDI) (8)

3. Results
3.1. Summary Statistics of Soil Texture and in-situ SWC

The summary statistics of soil texture and in-situ SWC in the 15 cm soil depth are
shown in Table 1. Soil sand content in the field ranged from 37.8% to 70.5%. Clay and
silt contents ranged from 8.1% to 33.1%, and from 9.0% to 41.2%, respectively. The high
variability of soil texture was likely due to the variation in topography over the study area,
leading to greater spatial variability in soil water holding capacity. Mean SWC was 18.7%,
ranging from 8.0% to 25.9% for the soil samples on 28 April 2019, and mean SWC was
19.6%, ranging from 8.2% to 33.4% for the samples on 19 May 2020.

Table 1. Summary statistics of soil texture and SWC of 84 soil samples collected on 28 April 2019,
and 44 samples on 19 May 2020, from a field near Slaton, Texas.

Soil Property Minimum Maximum Mean Std. Deviation Median

Clay (%) 8.1 33.1 20.9 5.8 21.3

Silt (%) 9.0 41.2 19.0 7.2 17.0

Sand (%) 37.8 70.5 60.1 5.5 60.4

SWC (%) (2019) 8.0 25.9 18.7 4.7 21.4

SWC (%) (2020) 8.2 33.4 19.6 6.7 18.6

3.2. Multispectral and Thermal Imagery

The maps of the NDVI and surface temperature derived from the UAS multispectral
and thermal images are shown in Figure 4. Plant cover had an impact on surface tempera-
ture (Ts) as low Ts values were associated with high NDVI values. Plant cover was mainly
triticum aestivum in the cultivated part or native vegetation in the playa lake. Conversely,
the areas with a low NDVI and high Ts indicated bare soil and sparse plant cover.
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Figure 4. The NDVI and temperature are derived from UAS multispectral and thermal infrared
images for an agricultural field in Garza County, Texas. (a) and (b) were derived from images
acquired on 28 April 2019; (c) and (d) were derived from images acquired on 19 May 2020.

3.3. SWC Retrieval Using the TVDI and TTVDI

Figure 5 shows the scatter plots of the NDVI against Ts values and their corresponding
TVDI parameters derived from the UAS multispectral and thermal images. The TVDI
trapezoid models well fit the image data with clear boundaries defined by the wet and dry
edges, as indicated by the high R2 values of the linear model for the dry edges (R2 = 0.968
for the images on 28 April 2019, and R2 = 0.941 for the images on 19 May 2020). The
wet edge for each date was calculated from the mean of Tmin values. The left edge of the
trapezoid model indicated the dry and wet conditions, meaning that temperature changes
are mainly explained by changes in water content over the bare soil. The NDVI values
increased with vegetation cover.

As shown in Figure 5, compared to the 2019 model, the 2020 model had an overall
higher Tmin value due to higher air temperature (Tmin = 37.3 ◦C in 2020, and Tmin = 27.2 ◦C
in 2019), and fewer high NDVI values greater than 0.6 due to the lower green wheat cover
crop in 2020. The high NDVI values for the 2019 model corresponded to the green wheat
crop in the south around the playa lake of the field in April, while in 2020, the wheat crop
had matured with little green plant material, resulting in low NDVI values in the same
area of the field. As shown in Figure 4, the high temperatures corresponding to bare soil
appeared in the south part of the field. Therefore, the model differences were mainly in the
south part of the field, and the change in the sampling area in 2020 had minimal impact on
the model construction.

Figure 6 presents the maps of SWC estimated by the TVDI and TTVDI. The SWC
calculated by the TVDI was 7.26%~39.57% and 6.28%~40.53% for the 2019 and 2020 sur-
veys, respectively. The SWC calculated by the TTVDI was 0~45.06% for the samples in
2019 and 2.78%~41.84% for those in 2020. An important aspect is that SWC varied sig-
nificantly across the field, which could be attributed to environmental factors, including
topography, vegetation and ground cover, and soil properties, especially soil texture in the
0–15 cm depth.
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Figure 5. Scatterplots and boundary condition functions of dry and wet edges for the TVDI trapezoid models consisting of
the NDVI and Ts values derived from UAS images for an agricultural field in Garza County, Texas.

The summary statistics of SWC retrieved using the TVDI and TTVDI on all sampling
points are shown in Table 2. For the sampling point on 28 April 2019, the mean SWCTTVDI
was 20.1%, ranging from 8.0% to 29.1%, while the SWCTVDI had a mean of 23.0%, ranging
from 3.3% to 44.3%. It indicated the TTVDI performs better than the TVDI. The mean
SWCTTVDI was 19.7%, ranging from 8.9% to 35.3%, compared to SWCTVDI with a mean of
20.2%, ranging from 10.3% to 34.3% for the sampling point on 19 May 2020.

Table 2. Summary statistics of SWC retrieved using the TVDI and TTVDI on 84 sampling points on
28 April 2019, and 44 sampling points on 19 May 2020.

Date SWC (%) Minimum Maximum Mean Std. Deviation Median

28 April
2019

SWCMeasured 8.0 25.9 18.7 4.7 21.4

SWCTVDI 3.3 44.3 23.0 8.2 23.3

SWCTTVDI 8.0 29.1 20.1 4.6 20.7

May 17,
2020

SWCMeasured 8.2 33.4 19.6 6.7 18.6

SWCTVDI 10.3 34.3 20.2 5.3 20.2

SWCTTVDI 8.9 35.3 19.7 5.8 19.2
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Figure 6. SWC distribution derived from the TVDI and TTVDI models. (a) and (b) are the SWC
estimation results for the UAS survey on 28 April 2019; (c) and (d) are the SWC estimation results for
the UAS survey on 19 May 2020.

The linear relationships between the in-situ SWC measurements and SWC derived
from the TVDI and TTVDI are shown in Figure 7. The TTVDI had a better performance
in estimating SWC than the TVDI, as suggested by higher R2 and lower RMSE values
for the regression models. The R2 value increased by 14.5%, from 0.588 for the TVDI
model to 0.673 for the TTVDI model for the 2019 survey, and it increased by 14.9%, from
0.57 for the TVDI model to 0.655 for the TTVDI model for the 2020 survey. The RMSE
decreased by 46.1%, from 5.68% to 3.06% for the 2019 survey, and it decreased by 10.8%,
from 4.36% to 3.89 % for the 2020 survey. The SWC values calculated by the TVDI were
overestimated in 2019, while they were overestimated when SWC was less than 20%, and
underestimated when SWC was greater than 20% for the 2020 survey. The TTVDI presented
a systematic overestimation when SWC was less than 20%, and underestimated when
SWC was greater than 20% for both the 2019 and 2020 surveys. This may be caused by
the difference in thermodynamic characteristics of different soil textures. Some studies
have found that thermal diffusivity for sandy soil was small at low SWC and increased
with SWC to a maximum value and decreased as SWC continued to increase towards
saturation [81,82]. This may cause an overestimation of SWC when retrieved under low
water content conditions in sandy soils. On the other hand, Abu-Hamdeh and Reeder
(2000) reported that beyond a certain bulk density, higher values of moisture content
increased thermal conductivity less rapidly in the case of clayey soils in comparison to
sandy soils [83]. So there is no obvious difference in the soil surface temperature when
SWC changes within a higher range [84]. That may be the cause of the underestimation of
SWC in some clay and high water content areas.

Figure 8 shows the comparison of the TVDI and TTVDI in SWC estimation results for
2019 and 2020. Integrating the relationship of soil texture and SWC, the TTVDI adjusted
the calculation results of most points closer to the identity line (1:1 line), which reduced the
model residuals. The TTVDI improved the SWC retrieval accuracy; it also increased the
prediction errors in some areas. For example, when the SWC was about 30%, the TTVDI
underestimated SWC while adjusting the overestimation of the TVDI. This error was likely
due to the fact that high-resolution images obtained by UAS are more susceptible to the
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mixture of vegetation cover, shade, and other surface features (e.g., plant residue, stone),
which might affect the model calculation.

Figure 7. SWC estimation using the TVDI and TTVDI compared to in-situ SWC measurements for a field in Garza County,
Texas. (a) and (b) for the UAS survey on 28 April 2019; (c) and (d) for the UAS survey on 19 May 2020.

Figure 8. Comparison of the TVDI and TTVDI in estimating SWC using UAS multispectral and thermal images in 2019
and 2020. (a) SWC retrieval results by the TVDI and TTVDI vs. SWC measurements. (b) Estimation residuals of the TVDI
and TTVDI.
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4. Discussions

The results of this study showed that the TTVDI generally performed better in estimat-
ing SWC as compared to the TVDI for the 2019 and 2020 UAS surveys. The estimation of
SWC using the TVDI has a strong dependence on surface temperature. However, the soil
temperature is dependent on the interactions between soil thermal properties (e.g., thermal
conductivity, thermal diffusivity, volumetric heat capacity, and emissivity characteristics)
and SWC, which are also influenced by soil texture [82–86]. Studies have shown that under
the same SWC, sandy soils have a higher emissivity and lower thermal resistivity (i.e.,
reciprocal of thermal conductivity) than clayey soils, resulting in a higher temperature for
sandy soils than clayey soils [87,88]. Therefore, SWC based on Ts will be underestimated
for sandy soils and overestimated for clayey soils. On the other hand, with the same soil
texture, emissivity increases with SWC, especially for sandy soils [89,90]. This may result in
underestimation of SWC when SWC increases, particularly for sandy soils with high SWC.

For the same soil sand/clay content, the TTVDI could effectively reduce the estimation
error compared to the TVDI. Studies have shown that, in the natural state, the range
of SWC mainly depends on the soil porosity, which has a strong relationship with soil
sand/clay contents [60,61,75,76]. In this study, soil texture was incorporated in the process
of determining the SWCmin and SWCmax. Within this range, SWC has a strong relationship
with soil thermal emissivity, which can be monitored dynamically by temperature [89,91].
Figure 9 shows that TTVDI-estimated SWC within a certain range had less variability than
that estimated by TVDI. For example, for measured SWC in the range of 15%–25%, the
TVDI was between 0.23 and 0.77, while TTVDI ranged from 0.14 to 0.29.

Figure 9. Comparison of TVDI and TTVDI values in estimating surface SWC as a function of soil sand and clay contents.

SWC has strong temporal and spatial variability. Research has shown that the applica-
tion of traditional remote sensing is greatly restricted in the typical agricultural field [27,92].
UAS remote sensing has the advantage of flexibility in acquisition time and resolution,
which makes it possible to dynamically monitor SWC at the field scale. The ultimate
goal of this new model was to accurately estimate field-level SWC by incorporating soil
texture. The derived SWC using the TTVDI had a greater range than the measured SWC,
indicating that the soil samples could not represent the whole area with different levels
of SWC of the entire field. The extremes of wet (near the playa lake area) and dry areas
were not sampled. In addition, soil texture involved in the TTVDI computation for the
whole field was interpolated, which could cause errors. Direct inclusion of soil texture
information for all pixels would improve the accuracy and efficiency of the TTVDI for
SWC estimation. Studies have shown the feasibility of using remote sensing imagery to
derive soil texture [93–95]. Further research is needed to develop algorithms to derive
soil texture from UAS images and integrate that into the TTVDI model. This study was
conducted in the early growing season without high ground cover at a dryland field. The
model is expected to perform similarly in irrigated fields as the estimation of surface SWC
does not depend on dryland or irrigated conditions. However, further research is needed
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to evaluate the performance of the model under irrigated conditions. In addition, data
collection covering the growing season is necessary to assess the applicability of the model
under various plant cover conditions.

5. Conclusions

We proposed a new model, the TTVDI, to retrieve surface SWC by incorporating soil
texture and Ts and the NDVI derived from high-resolution UAS imagery. The algorithm
was based on the relationship between theoretical upper and lower limits of SWC and soil
particle sizes. Compared with the TVDI, the R2 of the TTVDI prediction and in situ mea-
surement increased by 14.5% and 14.9%, while the RMSE decreased by 46.1% and 10.8% for
the 2019 and 2020 surveys, respectively. The test results show the integration of soil texture
data and high spatial resolution images has strong potential in retrieving SWC. However,
the relationship established between soil texture and SWC limits in a specific study field,
rather than the reference to the empirical model, may further improve the accuracy of
the TTVDI model. In the future, incorporating digital soil mapping technology and soil
texture spectral characteristics into the model can improve the applicability and accuracy
of the model at different scales. At larger scales, the TTVDI model can be constructed
to incorporate soil texture information available in soil databases, such as the SSURGO
Database, to improve SWC estimation. Further studies are needed to assess the feasibility
of incorporating soil databases in the TTVDI for SWC estimation at regional scales.
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