
remote sensing  

Article

Augmenting Crop Detection for Precision Agriculture with
Deep Visual Transfer Learning—A Case Study of Bale Detection

Wei Zhao 1 , William Yamada 1, Tianxin Li 2, Matthew Digman 1 and Troy Runge 1,*

����������
�������

Citation: Zhao, W.; Yamada, W.; Li,

T.; Digman, M.; Runge, T. Augment-

ing Crop Detection for Precision Agri-

culture with Deep Visual Transfer Le-

arning—A Case Study of Bale Detec-

tion. Remote Sens. 2021, 13, 23.

https://dx.doi.org/10.3390/rs1301

0023

Received: 26 October 2020

Accepted: 21 December 2020

Published: 23 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Department of Biological System Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA;
wzhao97@wisc.edu (W.Z.); wyamada@wisc.edu (W.Y.); digman@wisc.edu (M.D.)

2 Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712, USA; tianxinli@utexas.edu
* Correspondence: trunge@wisc.edu; Tel.: +1-608-890-3143

Abstract: In recent years, precision agriculture has been researched to increase crop production with
less inputs, as a promising means to meet the growing demand of agriculture products. Computer
vision-based crop detection with unmanned aerial vehicle (UAV)-acquired images is a critical tool for
precision agriculture. However, object detection using deep learning algorithms rely on a significant
amount of manually prelabeled training datasets as ground truths. Field object detection, such as
bales, is especially difficult because of (1) long-period image acquisitions under different illumination
conditions and seasons; (2) limited existing prelabeled data; and (3) few pretrained models and
research as references. This work increases the bale detection accuracy based on limited data collection
and labeling, by building an innovative algorithms pipeline. First, an object detection model is trained
using 243 images captured with good illimitation conditions in fall from the crop lands. In addition,
domain adaptation (DA), a kind of transfer learning, is applied for synthesizing the training data
under diverse environmental conditions with automatic labels. Finally, the object detection model
is optimized with the synthesized datasets. The case study shows the proposed method improves
the bale detecting performance, including the recall, mean average precision (mAP), and F measure
(F1 score), from averages of 0.59, 0.7, and 0.7 (the object detection) to averages of 0.93, 0.94, and 0.89
(the object detection + DA), respectively. This approach could be easily scaled to many other crop
field objects and will significantly contribute to precision agriculture.

Keywords: domain adaptation; computer vision; illimitation change; adverse weather conditions;
generative adversarial network (GAN)

1. Introduction

According to the United Nations population estimates and projections, the growing
world population will be nearly 10 billion in 2050 [1]. By 2050, there will be an increase
in food demand of 59–98% [2]. To increase crop production while minimizing inputs, the
adoption of advanced computing technologies, including computer vision, machine learn-
ing, and big data analytics, have recently gained interests among researchers in the fields
of agriculture. Precision agriculture takes advantage of advanced computing technologies
to minimize the inputs required, to improve the crop quality, and to increase yields.

With the reduction of equipment costs, increase in computing power, and availability
of non-destructive food assessment methods, the efforts of many researchers and prac-
titioners to improve the crop quality and yields have focused on computer vision and
machining learning [3]. Computer vision helps with object detection and machine learning
allows for useful information to be extracted from the collected data, showing tremendous
advantages over the traditional methods applied in agriculture [4].

A number of research efforts has shown that the combination of computer vision
and machine learning techniques regarding the multiple periods of crop production and
harvesting are promising [5]. Computer vision in agriculture can be applied easily to
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analyze digital images collected from the field and to provide high-level understandable
information to the users [6]. For example, computer vision not only detects the weeds fast
and effortlessly, but also accurately applies treatment with the help of a ground robot [7].
In addition, computer vision can detect the diseases on crops and inform users for them to
take action [8,9].

Image Acquisitions: To collect the images as inputs for the computer vision, using
an unmanned aerial vehicle (UAV) is an efficient approach, which has been widely used
in precision agriculture as well as many other fields, such as path planning, design, and
wildlife rescuing [10,11]. A UAV combined with computer vision can also contribute to
remote sensing to help inform farmers about the geo-specific crop yield and identify crop
diseases [12,13]. Sometimes, decisions are required to be made off-board once the data
have been collected and processed by the UAV, based on the information provided by the
images processed from the computer vision technique [14,15]. For example, UAVs can be
used to detect a potential issue, and then obtain high-resolution images or inspect and
apply treatments correspondingly.

Bale detection challenges: When it comes to object detection, associated methods are
commonly sensitive to the illumination and object and background domain change. A
non-robust model can easily fail if it was not taking into account the variation in light
conditions [16,17]. Because of the diversity of illumination situations, seasons, and weather
conditions, object detection in the outdoor environment is more complicated than in the
indoor environment, since humans can manipulate a consistent environment, as is shown
in Table 1.

To emphasize, the illumination and hue change are the most significant factors impact-
ing the bale detection model performance. Illumination variation, including the change in
light conditions, with/without shadow covering, plays a significant role in object detection
in the context of outdoor practices. Patrício and Rieder [18] suggested that consistent light
conditions between the source domain and target domain will decrease the difficulties of
shaping accurate classification models built on the deep learning architecture. A similar
conclusion has been drawn by Hornberg [19], in that adequate lighting in the environment
can increase the reliability of the performance of the models based on the collected images.

Hue change due to the season transition and variation in light conditions is another key
factor to be considered in precision agriculture. During the growing season of vineyards,
when the light is not strong enough, Baweja et al. [20] added extra light when collecting
images by using a strobe lighting mounted on a ground robot image-capturing machine to
compensate for the hue variation, to build a reliable deep learning model.

Since the deep learning-based object detection model always needs a large number of
images labeled as the ground truths before training a supervised object detection model,
the accuracy and thus detecting performance is impacted by the quality of the labeled data.
One approach to improve the quality of the labeled data is to include balanced data, by
including various images from the target domains, listed in Table 1. However, if we want
to guarantee the quality, i.e., for each condition, the total number of images required to be
manually labeled could be large and take significant resources to complete.

To reduce the task of labeling the objects manually, style transferring methods have
been developed. To minimize the discrepancy between the source domain and target
domain regarding the domain distribution, we propose a model by combining the con-
volutional neural network (CNN)-based YOLOv3 model and domain adaption (DA), a
representative method in transfer learning. Domain adaption works very well where
the tasks are similar, except for the domain distribution between the source domain and
target domain [21]. In methodology section, we illustrate the proposed biomass detection
model on the basis of CNN and DA. Since it has the strengths of accuracy and speed for
object detection, YOLOv3 was selected to build the CNN model [22]. To realize the DA,
an unpaired translation method, cycle generative adversarial networks (CycleGAN), was
used to tackle the image difference due to the illumination, hue, and clarity discrepancy.
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Table 1. Object detection challenges in complex unconstrained outdoor environments.

Environment
Diversity Conditions Example Agriculture Information Technical Challenges for

Bale Detection

Illumination
Diversity

(Target Domain 1)

Lighting
condition
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and in a snow
environment is also
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continuously feeding
livestock.

Restoration-based
algorithms may mislead
or overfit the object
compared to the original
one. The snow weather
reduces the features of the
objects in the images.

The present study sought to test the proposed method by collecting data from the
field by a UAV equipped with RGB cameras, including 243 images captured with good
illumination conditions in the fall and 150 images in other conditions, with the baled
biomass also collected. Manually labeling each baled biomass from these conditional
images is essential to train the YOLOv3 model. In addition, we also needed to manually
label the images collected from other conditions to test the accuracy of the prediction given
by the model and provide validation of the method.

In addition to use our proposed model, we also apply the traditional background
subtraction algorithm developed by Li et al. [23], using the same data. The results show that
our method gained the best F scores, indicating that it performs well when dealing with
the discrepancy of domain distribution due to the different outdoor environments. Part of
the images was manually labeled, while the rest of the images with different illumination
contexts share the same labels by implementing CycleGAN for domain transferring. The
processed images were used as inputs for the proposed YOLOv3 model to perform bale
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detection. The goal was to show that our proposed model, a combination of computer
vision and domain adaption, could improve the accuracy and efficiency of bale detection.

The key contributions of this work are listed in the following three points:

i. For bale detection under illumination conditions, a YOLOv3 model was built. The
associate training dataset will be released under conditions with the current work
to fill the voids in the bale training dataset, with labels as the ground truths.

ii. We constructed an innovative object detection approach (algorithms pipeline),
including YOLOv3 and domain adaptation (DA). Additionally, this approach im-
proves the capability of bale detection.

iii. We augmented the labeled training data with more scenarios using domain adapta-
tion. Combined with our manually labeled data, we are able to provide a valuable
training dataset of over 1000 bale images, which is publicly available after this
publication.

2. Related Work
2.1. Computer Vision in Precision Agriculture

A number of research studies have investigated the application of computer vision in
different key steps in agriculture, including observing crop growing, detecting diseases,
and facilitating crop harvest [24].

Crop Growth Monitoring: Computer vision techniques have been used to collect the
nutritional status of plants. Romualdo et al. [25] conducted research on maize plants to
realize the diagnosis of the nitrogen nutritional status by implementing the computer vision
technique at different development stages. Compared to the traditional method that relies
on human observations, the computer vision technique improves the detection efficiency
and accuracy. Pérez-Zavala et al. [26] proposed a computer vision approach to detect the
grape bunches in vineyard scenes relying on the shape, texture descriptors, and bunch
separation strategy to realize automatic monitoring of grapevine growth. Chandel et al. [27]
applied deep learning models to monitor the water condition of crops and identified the
water stress with over 90% accuracy. Parra et al. [28] compared various edge detection
filters for weed recognition in lawns and identified that the sharping filters provided the
best results with low computing requirements.

Disease Detection: Computer vision techniques also help with disease detection in
agriculture. Oberti et al. [29] implemented computer vision to detect powdery mildew on
grapevine leaves and the accuracy has been improved significantly by adjusting the view
angles from 40 to 60 degrees, hence improving the overall quality of the plants. Pourreza
et al. [30] explored the application of a computer vision technique to detect Huanglongbing
disease on trees infected by a citrus psyllid. To analyze the performance of our model,
laboratory and field experiments were taken and the results showed that the new method
improve the target disease detection accuracy from 95.5% to 98.5%. Instead of identifying
a single disease, the computer vision technique also contributes to the classification of
multiple diseases of crops. Maharlooei et al. [31] applied image processing technology on
detecting and counting soybean aphids to achieve the identification and enumeration of
mites with lower costs and a high accuracy in strong light conditions. Toseef and Khan [32]
used a fuzzy inference system to generate an intelligent mobile application to help rural
farmers diagnose diseases that commonly occur on wheat and cotton crops with a 99%
accuracy, reducing the loss of farmers due to crop diseases and dramatically improving
the crop yields. Rustia et al. [33] applied an image and environmental sensor network
to automatically detect greenhouse insect pests and achieved a 93% average temporal
accuracy in terms of counting insect pests.

Crop harvest: Crop harvest is another aspect that benefits from the computer vision
techniques. Barnea et al. [34] developed crop harvesting robots by using a color-agnostic
shape-based 3D fruit detection technique on a registered image and depth to address
the localization issue in precision agriculture, due to shape variations and occlusions.
Lehnert et al. [35] designed an approach based on effective vision algorithms for harvesting
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sweet pepper and protecting the cropping system, demonstrated to be successful by the
experiments of harvesting sweet peppers from modified and unmodified crops.

Dealing with the biomass after crop harvesting is essential. Biomass collection can
provide economic benefits and, in certain cases, may also benefit future crops [36]. Biomass
from crop fields are usually baled to a compact form before collection and transportation.
In addition, stacking the bales to utilize the efficient bale-hauling equipment is desired.
Other benefits of putting bales into stacks include efficiently clearing the crop field for
the next grow cycle; avoiding bales, as they can be a hindrance that adversely affect the
mechanical crop management operations; and shortening the time costs between harvest
and planting.

2.2. Transfer Learning and Domain Adaptation

Transfer learning is a popular machine learning technique that aims to help with
repetitive tasks by using the existing developed model. When it comes to situations where
labeled data are only available in a source domain, domain adaption (DA), a common
technique in transfer learning, as shown in Figure 1, can be applied. A little distribution
change or domain shift, due to illumination, pose, and image quality, between the source
and target domains can lead to a degraded performance of the machine learning models.
Domain adaption (DA) provides an opportunity to mimic the human vision system that
allows to perform new tasks in a target domain by using the labeled data from more
relevant source domains. A number of research studies have recently addressed the issue
of domain shift.
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To implement CNN techniques, a large images dataset with manually labeled targets
is required, which is expensive and challenging [37]. By synthesizing images through
use of the DA techniques, one can reduce the images needed to be collected from the
field and solve the problem when the labeled data cannot be acquired from the target
domain [38]. Various research has been conducted and has achieved promising results.
Ganin et al. [39] used unlabeled images from the target domains based on labeled images
from the source domains for a deep learning architecture, based on a few standard layers
and an additional gradient reversal layer. Othman et al. [40] designed a domain adaption
network to overcome the issues of a domain shift in classification scenarios where the
labeled images from the source domain and unlabeled ones from the target have completely
different geographical features. Overall, when it comes to the problems of domain shift
between the source and target domains, the DA technique can not only reduce the costs of
data preparation, but also improve image recognition [41,42].
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3. Methodology

Bale detection method pipeline summary: Figure 2 shows the completed structure
of the bale detection method, from image acquisition to creating the model, and then to
augment the model proposed in this work. We divided this pipeline into three steps, as
follows: Step 1 trains a primary object detection model with YOLOv3, only based on the
manually labeled initial condition images. Step 2 demonstrates the method how we use
the manually labeled ground truth images to generate more ground truth images with
automatic labels. Then, in Step 3, we augment the object detection model in Step 1 with the
mixed labeled ground truth images as the training data.
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Step 1: Primary object detection
A YOLOv3 model was trained for primary bale detection using 243 images captured

with good illumination conditions in the fall. We define these labeled images as the source
domain. CNN-based object detection methods, such as Faster R-CNN, YOLO, and Mask
R-CNN, gained popularity among researchers and have been proved to be efficient [43–45].
YOLOv3 was released by Redmon and Farhadi in 2018, extended from the previous YOLO
versions [46]. In this paper, YOLOv3 is implemented in the baled detection process, taking
advantages of its accuracy and fast speed on object detection. Instead of using multiple
networks for analysis, YOLOv3, indicated by its name You Only Look Once, passes the
input image once to a convolutional neural network, lowering the costs and improving the
performance significantly. In addition, the network splits the input into multiple regions
and works on each one with the bounding boxes and their classification probabilities. By
focusing on the global context of the image, YOLOv3 decreases the possibility of making a
location classification error.

To implement YOLOv3, we used PyTorch to train the model and to make inferences,
based on Darknet-53 (an architecture that consists of 53 convolutional neural networks).
The initial weights between the layers were provided by the Darknet-53 backbone [46].
YOLOv3 relies on a deeper architecture to extract features; the backbone here is “Darknet-
53” with 53 convolutional layers. Leaky ReLU activation as well as normalization were
added to every layer. Instead of using any form of pooling, often contributing to a loss of
low-level features, we applied a stride of 2 in convolutional layers to reduce the size of the
samples of the feature maps. Stride refers to the factor between the applications of the filter
to the input image. An image of size 416 × 416, for instance, can be down-sampled to 13 ×
13 by a stride of 32. The shape of the input images is (m, 416, 416, 3). The output consists
of bounding boxes, representing the recognized classes. Each bounding box is defined by
6 numbers (pc, bx, by, bh, bw, c). With augmenting cc (class) to an 80 dimensions vector, 85
numbers are used to describe every single bounding box, as shown in Figure 3.
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Similar to the object detectors, features learned by the convolutional layers are filtered
to predict the detection, such as the coordinates of the bounding boxes and the class label.
YOLO v3 is based on a 1-to-1 convolution to predict, so the prediction map has the same
size as the input. Each cell in the prediction map represents a fixed number of bounding
boxes, as shown in Figure 4.
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Step 2: Augmenting the training data with domain adaptation
Domain adaptation, as a kind of transfer learning, is designed for augmenting the

training data scenarios with automatic labels. As shown in the lower left in Figure 2,
more than two conditional images are listed as Target Domain 1, 2, etc. Traditionally, all
the targeting objects in the images need to be manually labeled. However, our proposed
method, combining YOLOv3 with DA, decreases the laborious manual identification work
but also ensure the performance of the model by applying style transferring. This method
is created by referring to other state-of-the-art research that uses a similar structured
approach; e.g., Song et al. [47] proposed an advanced subspace alignment algorithm
combining convolutional neural networks, in order to classify remote sensing images, with
domain adaptation on a theoretical level. Another fundamental work [48] proposes an
approach with a pipeline of algorithms, including FasterR-CNN, DA, and H-divergence
theory. While this research validates their application in cityscapes and other public
datasets, it is without a practical-use scenario. Khodabandeh et al. [49] inserts noise during
pre-processing of the training datasets and DA, which makes the object detection model
be resilient to random noise. However, since the idea of object detection with DA is still
under development, most related researches are based on a few public datasets with limited
practical implementation scenarios, especially in the agriculture domain. There is no similar
approach or concept related to bale detection. The following approach breaks the ice for
augmenting the bale detection ability, taking advantage of state-of-the-art algorithms.
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We only labeled the inputs from the images with one condition and then we collected
more images with diverse illuminations, hues, and styles under different environments.
Then we built a domain transferring model to convert the images of the initial condition to
new images of the other conditions. Instead of manually labeling all the inputs required
by the model, only part of the images was manually processed and the rest of the inputs
shared the same label automatically because of the style transfer. In this way, a more robust
YOLOv3 model that performs accurately on augmented styles of images could be achieved.

The DA technique is applied to shape the translation mapping from the source domain
(S) in the initial environment to the target domain T in the other environments, and vice
versa, as shown in Figure 5. The images from two different domains were not related in
any way. CycleGAN [50] was implemented to transfer the styles between the two domains
to synthesize the target domain images from the source domain (S).
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Two GANs were used for applying the CycleGAN in the style transfer. Each one
includes one generator and one adversarial discriminator. The generator, Gen(S,T), in the
first GAN translates images from the source domain (S) to the target domain (T), while
the adversarial discriminator DT outputs the likelihood that the images taken from the
target domain (T) are real images. Similarly, the generator Gen(S,T), in the other GAN,
translates images from the target domain (T) to the source domain (S), and its adversarial
discriminator DS outputs the likelihood that the images taken from the source-domain (S)
is real images from the source domain (S). IS and It represents images from domain (S)
and (T), respectively. Given iS ∈ IS and it ∈ It, it represents images in domain (S) and (T),
respectively.

T̂ represents the domains of the images synthesized in Figure 2. It represents the
domain of the diverse seasons and illuminations of the synthetic images generated from
the real initial environment images, while Ŝ denotes the initial synthetic images generated
from the real other environment images. By applying Gen(S,T), images iS ∈ IS is transferred
to synthetic images in T̂, while the corresponding adversarial discriminator improves the
model by encouraging the translated image hardly distinguishable from the domain (T).
Ideally, when the translated image from the source domain (S) to the target domain (T)
is translated back from the target domain (T) to the source domain (S), we should get
identical images. However, learning models are not perfect, and two different images will
be obtained. The difference between the two images is measured by the cycle consistency
loss, as defined below:

LsCycle

(
Gen(S,T), Gen(T,S), DS, DT , S, T

)
= λLsCycle

(
Gen(S,T), Gen(T,S), S, T

)
+

LsGAN

(
Gen(T,S), DS, T, S

)
+

LsGAN

(
Gen(S,T), DT , S, T

) (1)
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In Equation (1), λ is the balance weight, LsCycle measures the cycle consistency loss,
and LsGAN represents the loss function of the adversarial training. The cycle consistency
loss used in the GAN training penalize Ls1 in the cycle architecture, defined as

LsCycle

(
Gen(S,T), Gen(T,S), S, T

)
= EiT∼IT

[
‖Gen(T,S)

(
Gen(S,T)(iS)

)
− iS‖

1

]
+

EiT∼IT

[
‖Gen(S,T)

(
Gen(T,S)(iT)

)
− iT‖

1

] (2)

Equation (3) defines the loss in adversarial training:

LsCycle

(
Gen(S,T), Gen(T,S), S, T

)
= EiT∼IT [log(DT(iT))] + EiT∼IT

[
log
(

1− Gen(S,T)(iS)
)]

(3)

To train these generators and discriminators, we need to solve

Gen(S,T)
∗

Gen(T,S)
∗ = argminGen(S,T),Gen(T,S)

maxDS ,DT LsCycleGAN

(
Gen(S,T), Gen(T,S), DS, DT , S, T

)
(4)

Gradient descent is first applied to Equation (4), followed by backpropagation to allow
the generator Gen(S,T) to complete the style transfer between the real initial-style images
and synthetic other-style images, without changing the spatial relationship between the
biomass in the images.

Step 3: Optimize the YOLOv3 model with the extended datasets from Step 2.
There are two optional methods we can apply to optimize the performance of the

model. One is retraining the model, and the other one is fine-tuning. Retraining a model
using extended data with a proper preprocessing is a straightforward and robust way,
however it takes longer than fine-tuning.

A commonly used manner to transfer the trained model to the new dataset is fine-
tuning, which is more efficient when the size of the new dataset is small. Fine-tuning
trained models can not only reduce the probability of overfitting, but also provides better
generalization if the original dataset and new dataset share similar domains. In this
research, we applied both methods, keeping the better results of the two.

4. Experiment Design and Data Association
4.1. Experiment Equipment

The input data, the baled housing biomass, were collected from the fields by a drone
from the Arlington Research Station (Arlington, WI, USA). The drone, equipped with a
1-inch Exmor R CMOS sensor and a gimbal stabilizer that handles the lateral and verti-
cal vibration, allowed us to collect images from different heights, as shown in Figure 5.
Through each campaign, the locations of the baled biomass were identified by a Global
Navigation Satellite System (GNSS) and their corresponding centers were surveyed by
a Carlson Surveyor 2. These two additional systems are for validation of the location
accuracy and as a contribution to the public database for future research.

4.2. Bales Data Collection and Description

All the images collected of the bale biomass in the fields were taken with one drone
model. Images from two different heights, 200 ft and 400 ft, were captured through seven
campaigns to provide different resolutions to test our model performance. The size of
the collected images was 5472 × 3648 pixels, corresponding to a 20-megapixel resolution,
as shown in Figure 6. In addition, we created a second dataset by rescaling the collected
images to 1080 × 720 with a 3:2 ratio, simulating a camera with a less than 1-megapixel
resolution. The image numbers specifications used in the experiments are shown in Table
2, as “Initial condition”. There were a total of 300 images used for the training, validation,
and testing. All these images were collected in the fall under good illumination conditions,
without shadows. We also collected 128 real images under the other conditions as ground
truths for both training the CycleGAN model and testing the performance. We used
independent training, validation, and testing datasets when we conducted this research.
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We tested the various cases without using their original images anywhere in the training
or validation. More images under the other conditions were generated by the CycleGAN
model.
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Figure 6. Zenmuse-X4S camera-equipped DJI-Inspire-2 unmanned aerial vehicle (UAV).

Table 2. Experimental data collection distributed under different environmental conditions (note: there are images cross
counted in different conditions).

Environment Condition Training Validation Testing

Initial condition Good illumination, fall, w/o shadow 243 27 30

Diverse illumination
(Target Domain 1)

w/Lighting condition change 160 20 20

w/Shadow 158 20 20

Seasonal change
(Target Domain 2)

Hue change (summer) 185 19 19

Hue change (early winter) 187 12 12

Adverse weather conditions
(Target Domain 3)

w/Haze 159 20 20

w/Snow covered 150 19 19

Figure 7 provides an example of the images used in the model. The baled biomass
and streets in all the collected images were annotated in both the MS COCO and YOLO
data formats by using the Computer Vision Annotation Tools (CVATS) LabelImg and
LabelMe [51,52].
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Figure 7. Example of the drone-collected images under good lighting conditions in the fall (the initial condition).

5. Result and Discussion
5.1. Primary Bale Detection with YOLOv3 Corresponding to Step 1

The YOLOv3 detector trained with only initial condition images in Step 1 was applied
to detect bales in the real images. Although the training process does not include images
under extended conditions, we still include these images in the testing results for compari-
son with the optimized detection model. The testing results, in terms of precision, recall,
mAP, and F1 score for each scenario, are presented in Table 3. The high value of precision
indicates a low incidence of false positives, meaning that the algorithm did not detect a
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bale where there was not any. On the other hand, the low recall means the algorithm fails
to see some of the bales inside the image.

The prediction performance on the initial condition images achieved high values (0.92)
of precision, recall, mAP, and F1 score. However, these four indices vary in the negative
way for the extended conditions. The precision values for all conditions, except shadow,
are over 0.85. As is shown in Figure 8b, the bales usually failed to be detected inside or
partially covered by the shadow. The other three indices (recall, mAP, and F1 score) are all
lower than expected for the extended conditions (average values are less than 0.59, 0.7, and
0.7 respectively). The F1 score is the harmonic average between precision and recall. Since
the last one was low, the F1 score also got low. The mean average precision (mAP) was low
and it varies through the different simulated scenarios. However, mAP was high in the
haze condition since all the images with haze condition are collected with minor haze or
fog, which may cause a significant blur on the background instead of bales. The general
results are as expected, since there are few image samples in the extended conditions in the
training datasets.

Table 3. YOLOv3 model (trained in Step 1) performance for detecting bales in different conditions
without being trained with synthetic images.

Data Images 1 Precision Recall mAP@0.5 F1

All conditions 148 0.859 0.599 0.780 0.746
Initial condition 30 0.929 0.993 0.987 0.960

Illumination 20 0.881 0.587 0.848 0.735
Shadow 20 0.675 0.456 0.622 0.621

Hue change (summer) 19 0. 917 0.644 0.853 0.783
Hue change (early winter) 19 0.929 0.605 0.751 0.852

Haze 20 0.910 0.871 0.975 0.931
Snow 19 0.874 0.456 0.584 0.621

1 We used real images for testing.
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Some examples of the tested bale images under multiple environmental conditions
using the model trained in Step 1 are shown in Figure 8. These typical results under
different conditions display the same trend with Table 3. There are some undetected bales
and low confidence scores listed in Figure 8.

5.2. Augmenting the Training Data with CycleGAN Corresponding to Step 2

During Step 2, we built a CycleGAN model to convert the real images to synthetic/fake
images, as shown in Figure 9a. In the figure, real_A and real_B are real images, fake_B is
the synthetic/fake image from real_A, and rec_A stands for the reconstructed image A
based on fake_B. The second row has the same idea as the first one. With this CycleGAN
model, 1200 synthetic images were generated and will be used as the extended training
dataset in Step 3.
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Figure 9. Description of the CycleGAN model: (a) examples of the real images, fake images, and reconstructed images; (b,c)
loss tracking during training of the CycleGAN model, during repeated training.

Identity loss is the index when measuring the discrepancy due to translating one
style of image to another style image, regulating the generator to generate images with
high fidelity translated from the real samples in the target domain. No extra change is
needed for the images that are almost distinguishable from the target domain. Generally, a
greater identity loss value will be applied for unknown content. Figure 9b,c are the loss
values during different and repeated training processes. These two tables show a slight
reduction in some losses, especially cycle_A in the green color, as expected. So, the six
loss values and four loss values are all partial references for the training status, but not
the decision of a successful training process. Based on the purpose of these loss values,
we do not expect a growing loss. A stable trend of loss with a flat plot or decreasing
plot is expected. More information about the model parameters and logic can be found
in Zhu et al. [45]. Figure 10 shows some examples of the augmented bale images with
multiple environmental conditions.
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5.3. Optimized YOLOv3 Model with Extended Datasets Corresponding to Step 3

The optimized YOLOv3 detector, trained with both the real images and synthetic
images in Step 3, was applied to the same testing datasets. Table 4 shows the testing
results, which will be compared with the performance of the primary YOLOv3 model in
Step 1. YOLOv3 in Steps 1 and 3 have a similar performance for bale image detection
under the initial condition, as shown in the line “Initial condition” in Tables 3 and 4.
The generic testing results, in terms of precision, recall, mAP@0.5, and F1 score, for each
scenario, are presented in Table 4. In most cases, the recall, mAP, and F1 score are obviously
improved from average (0.59, 0.7, and 0.7) to average (0.93, 0.94, and 0.89), respectively.
All the significantly increased values are marked in green. The increment in the recall
indicates that most of the bales that cannot be detected in Step 1 are detected in Step 3.
Meanwhile, the precision value keeps a similar level with occasional reduction because of
the occasional increased false positives and true positives. This result is strong evidence
that using synthetic images from transfer learning is a reasonable approach to enhance the
detection capability with images under new conditions.

Table 4. YOLOv3 model (trained in Step 3) performance for detecting bales in different conditions
after being trained with the synthetic images from Step 2.

Data 1 Images 2 Precision Recall mAP@0.5 F1

All conditions 148 0.869 0.927 0.941 0.892
Initial condition 30 0.913 0.980 0.990 0.945

Illumination 20 0.847 0.926 0.959 0.885
Shadow 20 0.847 0.933 0.854 0.888

Hue change (summer) 19 0.836 0.933 0.954 0.882
Hue change (early winter) 19 0.905 0.893 0.969 0.831

Haze 20 0.831 0.867 0.895 0.848
Snow 19 0.926 0.878 0.941 0.901

1 All the significantly increased values are marked in green; 2 We used real images for testing.

The same examples of the tested bale images under multiple environmental conditions
using the model trained in Step 3 are shown in Figure 11. These typical results under
different conditions show the improvement compared to Figure 8.
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(c) summer with haze; (d) winter with snow cover; (e) summer with good illumination conditions.

5.4. Comparison and Advantages

To better understand the detection improvement on images under different environ-
mental conditions, we plotted the F1 value between Step 1 and Step 3 under each condition
separately, as shown in Figure 12. It was discovered, clearly, that under most conditions,
the performance increases a lot, except for the initial condition, hue change (early winter),
and haze; this is because the optimization curve generally slows down after the accuracy is
over 80% when improving the object detection performance. What we aim for is improving
the detection accuracy of the conditions with a lower accuracy (less than 80%). So, in
our case, we expect to see a big jump for conditions such as illumination, shadow, hue
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change (summer), and snow, which all have a less than 75% accuracy. The following results
analysis shows that we not only kept the original high performance but also increased the
performance of some conditions that originally had a low accuracy.
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Figure 12. F1 score comparison between Step 1 (primary YOLOv3 model) and Step 3 (optimized
YOLOv3 + DA model) under each condition and mixed conditions.

Firstly, the initial condition already has a high accuracy of over 93% with either
model. Similarly, the hue change (early winter) condition also keeps a relevantly high
performance around 90% before and after our approach. This method maintains the high
accuracy score with a slight change during the enhancement of the training dataset volume
and the false-negative samples. Meanwhile, the haze images enlarge the base number
when calculating the F1 score. Although the haze condition accuracy is high, we can still
make improvements by collecting more better-quality images season by season. However,
this would be a long period and would entail continuous collecting work for our lab,
which is not the core contribution of this algorithm research. Secondly, for conditions
like, illumination, shadow, hue change (summer), and snow, our method significantly
ameliorates the detection accuracy by around 15%, 26%, 10%, and 28%, respectively. Since
it includes more images to train the model, the performance of the detection accuracy in the
initial condition is slightly compromised, while its performance for other environmental
conditions were improved significantly, in that the minimal F1 measure is at least above
80%. Adding more images from various conditions means more diverse bale types are
considered. This may increase the false positives and false negatives, resulting in the
slightly degraded measure of precision, recall, and F1. This phenomenon is common in the
object-detection, deep-learning practice. Generally, this YOLOv3 + DA model proves its
advantages in augmenting the detection ability with at least 80% accuracy for all conditions.

Moreover, we estimated the time cost of manually labeling bales in all images, as
shown in Table 5. Step 1 only needs image labeling under the initial condition, for around
90 h. After that, we have two options to augment the bale detection model. One is to label
every new image under all extended conditions with 260 extra hours of work, the other
one is to train a CycleGAN model without extra labeling other than the first 90 h. Since
the general F1 score, precision, recall, and mAP from the proposed approach are all over
0.9, this is sufficient for this specific task. Thus, the proposed method provides additional
advantages of time and labor saving.
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Table 5. Manual labeling cost for bale detection with different approaches.

Train Approach Time Cost (Hours)

w/Initial condition images 90
w/Domain adaption images 90

w/Labeled all conditions images 1 350
1 “Labeled all conditions images” means manually labeling real images under all conditions and then training a
model with these labeled data.

6. Conclusions

A YOLOv3 bale detection model combined with the domain adaptation approach
is proposed in this paper, augmenting the ability for crop/bale detection in three sea-
sons, different illumination conditions, and diverse weather conditions. This method is
advantageous as it needs limited manual-labeling tasks. In this work, only the images
captured under the initial condition needed to be manually labeled as the source-domain
data. Then the domain adaptation approach, CycleGAN models, were trained to transfer
the source-domain images to the target domain (images under other conditions) with
the same labeled annotation file. We have effectively augmented the training datasets
under extended conditions but without extra manual-labeling tasks. After these two steps,
we trained the YOLOv3 model again with augmented training datasets. The optimized
YOLOv3 model shows a significant improvement in general detecting performance. This
approach decreases the labor and time cost by way of improving the crop quality and yields.
It also shows strong scalability to many other crops and will significantly reduce the cost of
precision agriculture. Future work should include collecting more real images under more
specific conditions, generating more synthetic images associated with these conditions,
and combining the activate learning method with the CycleGAN model, making the whole
pipeline of the algorithm more robust and easier to use.
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