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Abstract: Instance segmentation is the state-of-the-art in object detection, and there are numerous
applications in remote sensing data where these algorithms can produce significant results. Never-
theless, one of the main problems is that most algorithms use Red, Green, and Blue (RGB) images,
whereas Satellite images often present more channels that can be crucial to improve performance.
Therefore, the present work brings three contributions: (a) conversion system from ground truth
polygon data into the Creating Common Object in Context (COCO) annotation format; (b) Detectron2
software source code adaptation and application on multi-channel imagery; and (c) large scene
image mosaicking. We applied the procedure in a Center Pivot Irrigation System (CPIS) dataset
with ground truth produced by the Brazilian National Water Agency (ANA) and Landsat-8 Opera-
tional Land Imager (OLI) imagery (7 channels with 30-m resolution). Center pivots are a modern
irrigation system technique with massive growth potential in Brazil and other world areas. The
round shapes with different textures, colors, and spectral behaviors make it appropriate to use Deep
Learning instance segmentation. We trained the model using 512 × 512-pixel sized patches using
seven different backbone structures (ResNet50- Feature Pyramid Network (FPN), Resnet50-DC5,
ResNet50-C4, Resnet101-FPN, Resnet101-DC5, ResNet101-FPN, and ResNeXt101-FPN). The model
evaluation used standard COCO metrics (Average Precision (AP), AP50, AP75, APsmall, APmedium,
and AR100). ResNeXt101-FPN had the best results, with a 3% advantage over the second-best model
(ResNet101-FPN). We also compared the ResNeXt101-FPN model in the seven-channel and RGB
imagery, where the multi-channel model had a 3% advantage, demonstrating great improvement
using a larger number of channels. This research is also the first with a mosaicking algorithm using
instance segmentation models, where we tested in a 1536 × 1536-pixel image using a non-max
suppression sorted by area method. The proposed methodology is innovative and suitable for many
other remote sensing problems and medical imagery that often present more channels.

Keywords: instance segmentation; multi-channel imagery; mask R-CNN; deep learning; COCO;
Landsat-8; center pivot

1. Introduction

In the last few years, Deep Learning (DL) became the most used method in com-
puter vision and object detection problems in remote sensing imagery [1–3]. DL enables
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pattern recognition in different data abstraction levels, varying from low-level informa-
tion (corners and edges), up to high-level information (full objects) [4]. This approach
achieves state-of-the-art results in different applications in remote sensing digital image
processing [5]: pan-sharpening [6–9]; image registration [10–13], change detection [14–17],
object detection [18–21], semantic segmentation [22–25], and time series analysis [26–29].
The classification algorithms applied in remote sensing imagery uses spatial, spectral,
and temporal information to extract characteristics from the targets, where a wide vari-
ety of targets show significant results: clouds [30–33], dust-related air pollutant [34–37]
land-cover/land-use [38–41], urban features [42–45], and ocean [46–49], among others.

The DL techniques regarding segmentation have two subdivisions: (i) semantic seg-
mentation (labels are class-aware); and (ii) instance segmentation (labels are instance-
aware). Semantic segmentation brings pixel-wise classification to the entire scene, with
pieces of information about the category, localization, and shape [50]. In addition, se-
mantic segmentation differs from image classification since it enables all object parts to
interact, by identifying and grouping pixels that are semantically together [51]. The deep
semantic understanding allows us to aggregate the different parts in the formation of a
whole, considering variations of colors, textures, and patterns. Several reviews on semantic
segmentation published recently, highlights the algorithms’ innovations, applications, and
taxonomy [51–55].

However, the semantic segmentation results do not distinguish different instances
within the same category, resulting in limitations in individually separating objects. There-
fore, this new problem is not only to determine the pixels of a specific class (semantic
segmentation) but also includes the discernment of different objects in the same category
by obtaining the exact number of a given object in the image (instance segmentation).
Therefore, instance segmentation consists of a new paradigm and evolution of semantic
segmentation by allowing a unique understanding of each object, counting the number of
objects, and analyzing objects in occlusion and contact conditions.

Instance segmentation algorithms have two main approaches [56]: (a) segmentation-
first strategy, where segmentations occur before classification, and (b) instance-first strategy,
parallel process of both segmentation and classification. In turn, the segmentation-first
strategy also has two approaches: (a) segment-based, first establishes segment candidates
and then performs their classification [57–59]; and (b) based on semantic segmentation
masks, trying to separate the pixels of the same classes in different instances [60–63].

The instance-first strategy methods have advantages for being more straightforward
and more flexible, allowing the algorithm to obtain the bounding boxes and the segmenta-
tion masks simultaneously. The main models proposed were Fully Convolutional Instance-
Aware Semantic Segmentation (FCIS) [64], Mask-Region-based Convolutional Neural
Network (Mask R-CNN) [56], Cascade Mask R-CNN [65,66], Mask Scoring R-CNN [67],
and High-Quality Instance Segmentation Network (HQ-ISNet) (based on Cascade Mask
R-CNN) [68].

Instance segmentation has applications in several areas of knowledge: medicine [69,70],
biology [71,72], livestock [73,74], agronomy [75,76], among others. However, remote sensing
application is still restricted, highlighting its use in the automatic detection of the following
targets: marine oil spill [77], building [78,79], vehicle [80], and ship [81].

However, surpassing some challenges is necessary for a broad application of instance
segmentation in remote sensing (and multi-channel medical imagery). The instance seg-
mentation frameworks (e.g., Detectron2) use configurations and libraries with restricted
compatibility with Red, Green, and Blue (RGB) images, traditionally applied by the com-
puter vision community in tasks, such as fruit detection [82] and animal recognition [83],
among others. This is a data limitation for optical Earth observation sensors that are gener-
ally multispectral, where the available channels provide complementary information that
maximizes accuracy. In semantic segmentation, approaches to aggregate more information
considered: (a) the use of image fusion techniques, where the three bands used are data
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integration products [84]; (b) input layer adequation to support a larger amount of channels,
e.g., 14 channels [15] 12 channels [14], 7 channels [85], and 4 channels [86].

A necessary fit for satellite images comes from its large size, in contrast to traditional
CNN methods that receive fixed-size inputs and produce a unique classification for the
entire image. Therefore, a strategy widely used in the semantic segmentation of remote
sensing images is to subdivide it into patches with the same size as the training samples
from a sliding window with a step that allows establishing an overlap interval [87]. Image
mosaicking considers mathematical operations (usually averaging) in the overlapping areas
to avoid frame junction errors [88]. Albuquerque et al. (2020) evaluate the segmentation’s
accuracy, considering sliding windows with different overlapping strides. Research has
also been carried out to evaluate different sliding window sizes [14,18,89]. The frames’ fixed
size must consider a dimension that allows the general context to perform the classification
without a significant increase in computational complexity and CNN parameters. Thus,
balancing these two factors is crucial to ensure object detection and computational efficiency.
Instance segmentation, where each object in a category has also a unique identification,
requires different adjustments in the patch mosaic compared to the semantic segmentation
methods, since it is not possible to perform the simple use of an average between the
overlapping areas.

For instance segmentation, image labeling requires polygons that delimit each object
individually with its bounding box (coordinates) and pixel-wise segmentation mask. This
annotation format is more complex, laborious, and requires highly qualified specialists to
label more complex information correctly. Thus, a limitation for detecting remote sensing
targets is the lack of publicly available data sets suitable for instance segmentation. Many
publicly labeled data sets exist for photographic landscape images, such as LabelMe [90],
ImageNet [91], PASCAL [92], Cityscapes [93], Open Images [94], and Creating Common
Object in Context (COCO) [95]. In this context, the two most popular procedures for
annotating objects for computer vision data are COCO and Pascal Visual Object Classes
(VOC). Although we do not yet have a large-scale remote sensing image dataset with the
appropriate instance segmentation annotations, several databases with raster and vector
information can be adapted for this purpose. Therefore, a challenge is to develop a method
for converting vector data to the COCO annotation format (data format widely used by
instance segmentation and object detection community).

This research aims to perform instance segmentation on multi-channel remote sensing
imagery for Center Pivot Irrigation System (CPIS) detection. In this context, the research
has three secondary objectives that improve the use of instance segmentation in remote
sensing. The first is to develop a method for converting the remote sensing data with its
respective vector and raster data to the COCO data format containing the corresponding
JavaScript Object Notation (JSON) annotation file. The second is to adapt Detectron2
instance segmentation source code [96] to allow the multispectral data set (the seven surface
reflectance bands of Landsat 8 image). Finally, the third is to develop a novel mosaicking
method using the sliding window technique and a modified non-max suppression sorted
by area to classify large images.

Related Works on Center Pivot Detection

The mapping of CPIS from remote sensing imagery had little changes over time, using
predominantly a visual interpretation of circular features since the 70–80 s [97,98] until
recently [99–102], with a significant consumption of labor work and time. The different
colors, textures, and spectral information inside and between the center pivots make it chal-
lenging to obtain accurate classifications by traditional machine learning methods based
on pixel or vegetation indices. Consistent automatic detection of center pivots emerges
with methods based on deep learning [85,103,104]. Zhang et al. [103] were the precursors
in using CNNs for automatic identification of CPIS. The research used an RGB image and
did not perform segmentation, and it only identified the central point of each CPIS and
established an engagement quadrant with a predetermined size that did not necessarily
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coincide with the circumference of the central pivot. Subsequently, two articles report
the use of semantic segmentation for the detection of CPIS. Saraiva et al. [104] perform
the segmentation of the U-Net architecture of the images of the PlanetScope constellation
containing four channels (blue, green, red, and near-infrared). De Albuquerque et al. [85]
compare three CNN architectures (U-net, Deep ResUnet, and SharpMask) and use Landsat-
8 surface reflectance images composed of 7 bands in the rainy and dry period. In this
context, instance segmentation is still an unexplored method for this target, which is a
differential for the management of irrigated areas, as it establishes the quantity and size
of the central pivots, which are fundamental factors for forecasting the harvest and water
consumption.

2. Materials and Methods

The present research had the following methodological steps: (a) image data acqui-
sition from three different areas in the rainy and dry period; (b) clipping frames with
512 × 512 pixel dimensions (for the original image and ground truth) with their corre-
sponding annotations in COCO format; (d) data partition into training, development, and
test sets (train/dev/test split); (d) training Detectron2 with different backbones; (e) COCO
metrics evaluation; and (f) large image mosaicking (Figure 1).

Figure 1. Methodological flowchart of deep instance segmentation of center pivots.

2.1. Dataset and Study Areas

Despite the interest in satellite imagery, few open datasets use multichannel imagery
for instance segmentation tasks. The existing datasets are either RGB or for different
tasks, such as semantic segmentation or object detection [105–107]. Some open challenges,
such as SpaceNet [108] (which provides polygons), could use the same methodology used
in this paper to experiment instance segmentation algorithms. Nevertheless, we used
the CPIS database developed by Albuquerque et al. [85] based on the survey of center
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pivots in Brazilian territory by the National Water Agency (ANA) in 2014 [100], since it
presents high relevance to agricultural studies. The elaboration of the ANA dataset used
visual interpretation on a computer screen. Albuquerque et al. (2020) corrected the data
considering the periods of drought and rain for 2015 and 2016 in three regions of Central
Brazil. We used surface reflectance images from the Landsat-8 Operational Land Imager
(OLI) sensor, containing seven bands and 30-m resolution, for the three regions of Central
Brazil. The images correspond to the period of drought and rain.

The study areas locate in the Cerrado biome, presenting a high expansion of center-
pivot irrigation due to flat land favorable to mechanization and the dry season between
May and September [109]. The three study sites consist of areas around the Federal District,
Mato Grosso, and Western Bahia regions, totaling 3731 (more than six thousand considering
both seasons) center pivots (Figure 2). The region surrounding the Federal District has the
largest number of center pivots in Brazil, not only driven by the proximity of the country’s
capital but also conflicts over water use [110,111]. In the last decades, the Western Bahia
region has presented an advanced agribusiness growth with the expansion of irrigated areas
and water conflicts [112–114]. Finally, the state of Mato Grosso has favorable environmental
factors for agriculture presenting a 175% growth in CPIS in the period 2010–2017 [99].

Figure 2. Location map of the study areas: (A) Western Bahia; (B) Mato Grosso; and (C) surrounding
the Federal District.

2.2. COCO Annotation Format

Semantic segmentation algorithms need only a ground truth mask where each element
has a class, e.g., pivots (1) and non-pivots (0). Meanwhile, instance segmentation has
additional complications in the labeling and annotation format, requiring that each element
in a sample image in the training process needs a unique value. For example, an instance
segmentation mask with ten center pivots needs different values for each pivot, contrasting
with semantic segmentation masks, where all pivots have the same value.

Most of the instance segmentation algorithms follow the COCO annotation format.
Thus, we developed a methodology to generate and convert training samples (composed
of Landsat images and polygon labels) in the COCO annotation format. This procedure
does not aim to replace labeling software, i.e., LabelMe, but to give an alternative for cases
in which there is polygon data from the targets, which is common in the remote sensing
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community. The conversion procedure uses two programs: (a) program developed in this
research to extract the samples in frames with a predetermined size and compatible input
data with the next program, and (b) Cocosynth repository (https://github.com/akTwelve/
cocosynth) [115] with some adaptations that convert the data to the COCO annotation
format (Figure 3).

The first program developed in the C++ language considers the following input data:
remote sensing image with the respective number of bands, labeled image, vector point of
the frame’s centroid, and the parameters height and width of each frame. The labeled image
is elaborated by converting vector polygons to raster, where each center pivot acquires a
distinct integer value from 1 to N, where N is the number of center pivots in the entire scene.
The program modifies the labeled image to be compatible with the Cocosynth program that
uses different colors for each instance. Thus, the program modifies the polygon identifiers
to RGB system values, using an algorithm, like the numerical base conversion (decimal to
base-256). The RGB numerical system has 16,777,216 (256 × 256 × 256) color possibilities.
The algorithm consists in performing two consecutive divisions by 256. First, the integer
number is divided by 256, and the Red color value (R) is the remainder. Consequently,
the integer part of the division result is divided by 256 again, where the Green color value
(G) is the remainder, and the Blue color value (B) is the integer part of the second division
(Equations (1)–(3)). The polygon values start at one instead of zero since the (0,0,0) is the
background color. The first integer with value 1 representation is (1,0,0), while the integer
16,777,216 representation is (255,255,255). The color conversion within the image is from
left to right and top to bottom direction. Figure 4 shows the processing steps from the
polygons to the RGB image. Nevertheless, the program changes the labeled image type
(“.tiff” file with integer numbers ranging from 1 to the number of instances) to a more
straightforward data conversion (“.PNG” file with the RGB channels). The proposed C++
program creates a JSON file with each frame information (original image and label data),
such as the color, category, and super category of each object.

R =

{
value, i f value < 256

remaider
(

value
256

)
, i f value ≥ 256

, (1)

G =


0, i f value < 256(

int
(
(value)

256

))
, i f 256 ≤ value < 65, 536

remaider
((

int
(

value
256

))
/256

)
, i f value ≥ 65, 536

, (2)

B =

{
0, i f value < 65, 536

int
(

value
65,536

)
, i f value ≥ 65, 536

. (3)

The next step to create the COCO annotation file was to adapt the Cocosynth code
(coco_json_utils.py) [115] to allow the management of multi-channel remote sensing images
in “.tiff” or “.tif” format. This code uses the JSON-file created by our C++ program with
color, category, and super-category and creates a new JSON file in the COCO annotation
format, which is ready to train.

Figure 3. Flowchart to obtain samples for training and Creating Common Object in Context (COCO) annotation format.

https://github.com/akTwelve/cocosynth
https://github.com/akTwelve/cocosynth
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Figure 4. Diagram showing the conversion of data from shapefile to Red, Green, and Blue (RGB) image.

2.3. Data Split

In the scientific literature, there is not a predetermined optimal train/validation/test
split. We used 228 images for training and 50 images for test and validation (approximately
70/15/15). The Landsat-8 training images had a 512 × 512-pixel dimension, resulting
in 512 × 512 × 7 input shape. The choice of window size considered a larger image
size to minimize the edge effects and computational capacity. Table 1 lists the number of
instances used in each process. Despite the number of images is not extensive, there is a
high concentration of instances, which is the most important number to train the algorithm.
In addition, we applied data augmentation considering brightness, contrast and resizing
in the training data. This kind of procedure avoids overfitting, and enhances the model
ability to learn new features.

Table 1. Image split.

Number of Images Number of Instances

Train 228 4762
Validation 50 650

Test 50 850

2.4. Mask R-CNN

One of the most powerful instance segmentation frameworks is the Mask R-CNN [116],
introduced by the Facebook Artificial Intelligence Research (FAIR), which combines object
detection and semantic segmentation, an evolution of the RCNN [117], Fast RCNN [118],
and Faster RCNN [119] methods. This framework operates in two stages: (a) generation of
region proposals; and (b) classification of each generated proposals.

We used the Detectron2 [96], a software powered by the Pytorch framework, con-
taining many backbone structures and a faster training process (Figure 5). The original
code (https://github.com/facebookresearch/detectron2) uses libraries restricted to RGB
in more traditional formats, such as PNG and JPEG formats, whereas satellite images
present more channels in the TIFF format. Thus, we implemented changes to read and
train multi-channel images in the TIFF format.

2.4.1. Backbone Structure

The input image passes through a convolutional network, also called the backbone
structure (Figure 6). The backbone may vary according to the desired tradeoff between
performance, training speed, and limitations due to computational power.

The Mask-RCNN architecture consists of a bottom-up and top-down pathway. The
bottom-up section is responsible for the convolutions and generation of the feature maps,
and the most used structure is the ResNets [120] or ResNeXts [121] with five convolutional
modules (C1, C2, C3, C4, and C5). The strides between each module doubles, this means

https://github.com/facebookresearch/detectron2
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the image dimensions halves. Each convolutional module composition includes many
layers that may vary depending on the configurations chosen on the depth of the ResNet.
The more layers, the longer it takes to train, but the accuracy tends to be higher, especially
in complex object detection. In the present research, we used ResNet50, ResNet101, and
ResNeXt101. ResNeXts often present better results when compared to the ResNet since
it uses multiple parallel convolutions. Figure 7 shows a simplified structure, where the
number of those convolutional blocks in the ResNeXt is the cardinality. Xie et al. [121]
tested different cardinality values (1, 2, 4, 8, and 32), showing the best results using 32
(the one used in this research). The input and output dimensions (256d) from the ResNet
and ResNeXt are the same, demonstrating similar levels of complexity, varying on the
convolutional structures.

Figure 5. Mask Region-based Convolutional Neural Network (R-CNN) architecture.

Figure 6. Backbone showing the combination of a ResNet/ResNeXt architecture (red dotted line)
with the Feature Pyramid Network (FPN) (green dotted line) and the predictions (blue dotted line).
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Figure 7. ResNet and ResNeXt configuration (modified from Xie et al. [121]).

The top-down section is a feature extractor with four modules (M5, M4, M3, and M2),
where the spatial dimensions double from one module to the other. The higher module
(M5) has higher semantic information and smaller spatial dimensions, where the lower
modules have a higher spatial dimension and less semantic value. The module stops at
M2 instead of M1 because the spatial resolution gets too big, slowing the training process
significantly. This top-down structure is often a Feature Pyramid Network (FPN) [122] or
a variation. In this present research, we used three different Feature extractors: (a) FPN;
(b) Dilated C5; and (c) C4. The Dilated C5 (DC5) multiplies the C5 module by a constant
value, altering the dimensionality, where the C4 corresponds to a structure ending in the
C4 convolutional module instead of C5.

The bottom-up and top-bottom pathways link through lateral connections, ensuring
spatial cohesion from a module to another. In addition, each module in the feature extractor
gives a prediction (P5, P4, P3, P2), that will be used in the Region Proposal Networks. The
greater the number of convolutional layers, the more complex information the algorithm
tends to learn, but also rises the risk of overfitting, and applying dilation on the convolu-
tional modules may increase performance on different sized objects. Thus, testing different
structures is essential to obtain optimal results. We compared seven different backbone
structures (ResNet50-FPN, ResNet50-DC5, Resnet50-C4, ResNet101-FPN, ResNet101-DC5,
ResNet101-C4, and ResNeXt101-FPN).

2.4.2. Region Proposal Network and Region of Interest (ROI) Align

The backbone output (P2, P3, P4, P5) are feature maps used in the Region Proposal
Network (RPN) to generate anchor boxes. Each region with high probability generates
9 anchor boxes with different ratios (1:1, 2:1, 1:2) and scales (0.5, 1, 2). The Region of
Interest (ROI) pass through ROI align (Figure 8), a bilinear interpolation quantization-free
o preserves spatial information (He et al., 2016). These fixed dimension ROIs enter three
parallel processes: (a) class of the object and its respective probability; (b) bounding box;
and (c) segmentation mask.

2.4.3. Loss Functions

The total loss of the training process is the addition of mask loss, class loss, and box
regression (Equation (4)). The segmentation mask is a binary classification that involves a
single classifier per class (one versus all strategy). Therefore, each ROI will only consider
one object at a time. Thus, the loss function is a simple log loss [118], in which the result is
the average from all results (Equation (5)). The classification loss is also the same formula.

There are two ways to obtain the bounding box, considering the four coordinate
values: (a) using “x” the centroid in the x-axis; “y” the centroid in the y-axis; (h) the height
of the box; and “w” the width of the box boxes [123]; and (b) using: “x1” the minimum
x value; “x2” the maximum x value; “y1” the minimum y value; and “y2” the maximum
y value. The Detectron2 algorithm uses the second method, and its loss regression function
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uses L1 loss (Equation (6)). Figure 9 shows the process after a loss reduction from the first
to the second iteration. The computed loss is lower in the second iteration because the
differences are smaller between ground truth (black dotted line) and the prediction (red
line).

L = Lmask + Lcls + LBBox , (4)

Lmask and Lcls =
N

∑
i=1

yi ∗ log(p(yi)) + (1− yi) ∗ log(1− p(yi)) , (5)

L1 Loss =
N

∑
i=1
|ytrue − ypredicted| . (6)

Figure 8. Region of Interest (ROI) align method (modified from He et al. 2016).

2.4.4. Hyperparameter Configuration

Another critical step in training a neural network is the hyperparameter configuration.
Thus, we trained from scratch (unfreezing all layers) seven models using all seven channels
and the best model using only the RGB channels (Landsat-8 bands 2, 3, and 4). We used:
(a) Adam optimizer with a learning rate of 0.001 divided by ten after 1000 iterations
and momentum of 0.9; (b) 256 ROIs per image; (c) 30,000 iterations, keeping track of
the validation loss to an optimal converging point and avoid overfitting; (d) five anchor
boxes sizes of 16, 32, 64, 128, 256; (e) 1000 warm-up iterations (where learning rate slowly
increases to avoid errors) with a 0.001 factor; and (f) 1 image per batch. In addition, we
used Nvidia GeForce RTX 2080 TI GPU with 11 GB memory.

Figure 9. Bounding Box, where the red line represents the ground truth, and the dotted black line is
the predicted bounding box.

Data normalization (z-score method) was necessary since each channel has different
ranges of values and can bring bad results during the training process, such as disappear-
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ance gradients [124] (Equation (7)). Furthermore, normalization allows us to accelerate the
training process.

x′ =
x− average(x)

std(x)
. (7)

2.5. Accuracy Analysis

Accuracy analysis is crucial in Deep Learning tasks to evaluate how well the trained
model behaves in new data, which is a powerful insight to understand applicability in the
real world. The confusion matrix shows each class’s frequencies, being extremely useful to
evaluate the supervised models of Machine Learning/Deep Learning. Figure 10 shows the
confusion matrix, where True Positives (TP) and True Negatives (TN) represent elements
correctly identified in their corresponding classes. In contrast, False Positives (FP) and
False Negatives (FN) represent misclassified elements.

Figure 10. Confusion matrix.

The two-primary metrics for evaluating instance segmentation models are precision
(Equation (8)) and recall (Equation (9)). Precision is the number of correctly identified
positive instances (TP) divided by the total number of predictions (TP + FP), and recall
is the number of correctly identified positive instances divided by the total number of
positive instances (TP + FN).

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
. (9)

Precision and recall bring rich insights to data, but, when dealing with deep learning
algorithms, the results are often probabilities, and another crucial information is the
threshold cutoff point. The threshold considers the Intersection over Union (IoU) of the
bounding boxes (Figure 11). A low IoU will be more permissive when considering possible
targets, and a large IoU will be more restricted. The optimal point may vary depending on
each problem.

Figure 11. Intersection over Union (IoU) visual representation.
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The instance segmentation model’s evaluation used the standard COCO metrics,
including (a) Average Precision (AP); (b) AP50; (c) AP75; (d) APsmall; (e) APmedium; and
(f) APlarge, (g) Average Recall with 100 maximum detections (AR100) [95]. These are the
most commonly used metrics in instance segmentation tasks, proving to be satisfactory
to evaluate and compare different models in object detection and segmentation (mask
quality) performance, including the original Mask RCNN research [56] You Only Look At
Coefficients (YOLACT) [125], YOLACT++ [126], mask scoring RCNN [67], and cascade
RCNN [66], among other works using applications of these methods.

The average precision (AP) uses the mean value from 10 IoU thresholds, starting at
0.5 up to 0.95 with 0.05 steps (0.50: 0.05: 0.95). The closer the AP is to 1, the better the
model. AP50 represents the calculation under the IoU threshold of 0.50, whereas AP75 is a
stricter metric and represents the calculation under the IoU threshold of 0.75. In addition,
the metrics consider the average precision in different target sizes, having three categories
(a) small (area < 322 pixels), (b) medium (322 pixels < area < 962 pixels); and (c) large
(area > 962 pixels). The present research does not have objects larger than 962 pixels; thus,
we will only consider APsmall and APmedium. Another important metric is the Average
Recall (AR), where the averaged IoU thresholds are the same from the AP (0.50: 0.05: 0.95).
Furthermore, the AR considers the maximum number of detections (Max Dets). Since the
maximum number of detections in a single 512 × 512-pixel frame in our dataset is 96, we
will only consider the AR with a maximum detection of 100 objects (AR100). Other options
analyzed in the COCO dataset is considering 1 and 10 detections, which would not bring
much value to the observations.

2.6. Scene Mosaicking

Remote sensing images are larger than the image size used for training and validation
due to computational limitations. For example, the center pivot survey covers a wide
area, not restricted to just a single frame. Therefore, the classification of a complete
scene requires a mosaic reconstruction of sub-images with training image size. For this
reason, we used the sliding window technique that runs through the image with a specific
dimension (height × width) and a stride value in the horizontal and vertical directions.
When the stride is smaller than the window size, it creates an overlap between consecutive
frames. Semantic and instance segmentation errors occur predominantly at the frame
edges, corrected, or minimized with overlapping images [85,87].

The sliding window with a stride dimension corresponding to half-frame length
shows three patterns (Figure 12): (a) base arrangement (initial position at x = 0 and y = 0)
(Figure 12A); (b) horizontal displacement arrangement (initial position at x = half-frame
length and y = 0) (Figure 12B); and (c) vertical displacement arrangement (initial position
at x = 0 and y = half-frame length) (Figure 12C).

In this configuration, window overlays guarantee three classifications for the same
object (disregarding an edge with half-window length). Incomplete classifications at the
window edges (red and orange boxes) should be eliminated (Figure 13A), remaining in
these places only the boxes (marked in green) from the two other arrangements (horizontal
or vertical) (Figure 13B). We restricted the valid boxes to the central zone of the vertical
and horizontal displacement arrangements where edge errors concentrate on the base
arrangements, optimizing and eliminating information redundancy. Figure 13 shows the
green boxes as the appropriate result of the conjunction of the base (Figure 13A) and
horizontal and vertical configurations (Figure 13B).

The bounding box position of a given sliding window is repositioned to a coordinate
system that considers the entire image. Consequently, data processing is windowed, but
storage considers the size of the original image. Besides, each object’s description uses
a binary mask with the total dimension of the image (filled with zeros). Therefore, each
new element store uses a new dimension of the array with shape (Number of instances,
width, height). We store four types of information in a NumPy array: (1) bounding box
coordinates (N, x1, x2, x3, x4); (2) class labels for each bounding box (N, classification); (3)
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prediction for each bounding box (N, predictions); and (4) prediction masks for each frame
(N, image height, image width).

Figure 12. Visual representation of (A) base arrangement, (B) horizontal displacement arrangement,
(C) vertical displacement arrangement, and (D) the combination of (A), (B), and (C).

To exclude excessive bounding boxes, we apply a modified no-maximum suppression
algorithm that uses the box size and the overlapping area index. The method calculates the
bounding box area by its coordinate pairs in the upper left corner (x1, y1) and lower right
corner (x2, y2) (Equation (10)), sort by size, and select the largest. The elimination of the
boxes is from the smallest to the most extensive areas to avoid possible errors.

Box Area = (x2− x1) ∗ (y2− y1). (10)

Figure 13. Theoretical representation of objects in the frame edges, with partial classifications from
the base classifier (A) and complete classifications from the horizontal and vertical arrangements (B).

To ensure that we are eliminating overlapping boxes, we use a ratio that is the total
overlap area divided by the box area (Equation (11)), considering the Overlap Box Width
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(OBW) and Overlap Box Height (OBH) (Equations (12) and (13)) (Figure 14). The coordinate
values increase from top to bottom and from left to right. We consider an overlap of 0.3 to
exclude excessive boxes (keeping the box with the largest area).

Overlapping Ratio =
OBW ∗OBH

Box Area
, (11)

OBW = max(B1(x1); B2(x1))−min(B1(x2); B2(x2)) , (12)

OBH = max(B1(y1); B2(y1))−min(B1(y2); B2(y2)). (13)

Figure 14. Demonstration of the bounding box coordinates.

Figure 15 shows three boxes for the same object. The red and orange boxes are at the
edges of two consecutive frames, classifying only parts of the object, while the green box
classifies the entire object. The ordering by area (Figure 15A) guarantees the elimination of
smaller frames (partial target). In the present case, the procedure becomes more appropriate
than the ranking by score (Figure 15B), which selects the highest confidence score, since it
is not always the box that maps the entire object.

Figure 15. Demonstration of sorting by area (A) and a possible scenario of sorting by score (B).

3. Results
3.1. Ground Truth COCO Transformation

Figure 16 shows an example of a 512 × 512-pixel frame before and after running the
program that converts the polygon identifiers to the RGB system and creates the JSON
format file with the annotation information. This procedure allows an easy transformation
to the COCO annotation system used in the training phase.
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Figure 16. Representation of new ground truth annotated data.

3.2. Evaluation of COCO Metrics

Tables 2 and 3 list the COCO metrics, for instance segmentation. ResneXt101 presented
the best results, followed by Resnet101-FPN. The backbone structures from 50 to 101 depth
in the Resnet architecture show significant differences in almost 10% average precision. The
ResneXt101 has similar results to ResNet101 when analyzing the Average Precision (AP)
with the IoU threshold at 0.5. However, the difference is significant at IoU 0.75, with nearly
2% improvement compared to the second-best model (Resnet101-FPN). Medium-sized
CPIS detection is also greater than smaller ones.

Another crucial analysis is the performance comparison using multi-channel imagery
considering seven channels with the traditional RGB images (Landsat-8 bands 2, 3, 4). Thus,
we applied the best model (ResNext101-FPN) using the same train/dev/test images but
considering only the RGB channels. Results show a strong tendency of accuracy advantages
using more channel information, demonstrating that the usage of multi-channel imagery,
especially to remote sensing data, where the tradeoff between accuracy and processing
speed in most cases tilts toward accuracy.

Table 2. Metrics precision (7 channels).

Backbone Type AP AP50 AP75 APsmall APmedium AR100

Resnet50-FPN
Mask 70.567 86.095 81.150 56.214 77.494 75.2
Box 69.142 86.425 82.452 57.154 78.110 74.7

Resnet50-DC5
Mask 65.28 81.722 79.185 43.874 75.344 72.3
Box 63.017 82.435 80.746 48.541 72.554 70.4

Resnet50-C4
Mask 67.835 82.334 82.294 50.233 78.400 73.1
Box 65.561 83.390 81.162 49.392 74.963 70.9

Resnet101-FPN
Mask 75.213 90.915 87.601 64.564 83.047 80.6
Box 74.415 91.618 87.806 64.715 80.978 80.1

Renset101-DC5
Mask 74.408 90.542 86.151 62.163 82.615 78.8
Box 73.624 90.343 86.390 62.421 81.037 78.6

Resnet101-C4
Mask 74.776 90.765 86.611 62.665 83.370 79.0
Box 73.814 90.473 86.868 62.846 81.161 78.9

ResneXt101-FPN
Mask 77.970 93.758 90.620 67.585 84.776 82.3
Box 77.433 93.651 90.459 68.545 82.933 82.1

Table 3. Mask precision (RGB).

Backbone Type AP AP50 AP75 APsmall APmedium AR100

ResneXt101-FPN
Mask 74.776 92.417 87.605 64.619 81.781 78.8
Box 74.562 92.928 88.506 65.947 80.394 78.4

3.3. Image Mosaicking

The process of creating the bounding boxes and segmentation co-occur. Nevertheless,
to give a better visual understanding, Figure 17a shows the results from the base classifier
(stating at x = 0 and y = 0 with 512-pixel step), which outputs a classification to all objects.
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Figure 17b shows the classification of the horizonal classifier (starting at x = 256 and y = 0
with 512-pixel step), considering only center pivots that start before the center of the
image (x < 256) and ends after the center of the image (x > 256). Figure 17c shows the
deleted boxes in the non-max suppression sorted by area algorithm, evidencing the correct
elimination from the partial classification in Figure 17a. Finally, Figure 17d shows the final
classification from this small example, where only the correct boxes remain, and there is
only one classification per object, demonstrating the effectiveness of the algorithm.

Figure 17. (A) Represents a full classification, (B) represents the horizontal edge classification,
considering only elements in the middle, (C) represents the deleted boxes, and (D) represents the
final classification.

The same procedure applied to an entire applying the non-max suppression sorted by
area result in the classified image (Figure 18). Other information we can extract immediately
is the number of objects and the average size of a center pivot in the referred region. This
kind of information is vital to public managers and farmers to understand its plantation
and surroundings.
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Figure 18. This figure shows 1536 × 1536 classified image using the proposed mosaicking method, and three zoomed areas:
(A), (B) and (C).

4. Discussion

This research presents the results of state-of-the-art instance segmentation (Mask-
RCNN) in satellite images with an innovative approach that uses large and multi-channel
images. Instance segmentation brings more information than semantic segmentation,
enabling a greater understanding of the scenes. The box boundaries and mask predictions
better visualize different instances and enable useful insights, such as object coordinates,
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number of instances, average object size, total area occupied, and powerful to remote
sensing tasks.

There are currently no works using Mask-RCNN algorithms in multichannel imagery.
Previous works on object detection using multi-channel imagery use segmentation-first
strategy (object-based Convolutional Neural Networks) [86,127,128]. The limitation of
the segmentation-first strategy is that objects receive the same semantic information for
all instances. In contrast, the Mask-RCNN makes a clear distinction between objects and
gives per-object information, showing promising results even when objects overlap [72].
Therefore, the instance segmentation in the remote sensing data predominantly uses the
Mask-RCNN/Faster-RCNN architecture [129–132]. However, the instance segmentation
in remote sensing has been limited to RGB channels or even one channel of the Sentinel-1
image. In this way, for the best of our knowledge, the present research was the first to
use Mask-RCNN with remote sensing multi-channel, demonstrating that this information
increases performance and target detection.

Considering the instance segmentation in RGB images, researches with Mask-RCNN
obtained relevant accuracy. Su et al. [130] applied ResNet50-FPN and ResNet101-FPN
backbones in a Mask-RCNN and a proposed new method changing the pooling technique
in NWPU Very High Resolution (VHR)-10 dataset, which contains mostly RGB imagery
and a few pan-sharpened color infrared images. The authors evaluated the COCO metrics
(AP, AP50, and AP75). The best model had results (64.8 AP, 93.8 AP50, and 73.2 AP75 mask
results and 61.2 AP, 94 AP50, and 72.1 AP75 detection results) similar to our (77.970 AP,
93.758 AP50, 90.620 AP75 mask results and 77.433 AP, 93.651 AP50, and 90.459 AP75 detection
results), demonstrating that instance segmentation models in remote sensing imagery
targets present high accuracy. Zhao et al. [133] applied a boundary regularization for
building extraction using the Mask-RCNN algorithm and ResNet101-FPN as the backbone
structure. The authors used the COCO annotations format and compared the proposed
method with the traditional Mask-RCNN models using the F1 score metrics. The Mask-
RCNN outperformed their algorithm. Yekeen et al. [77] applied Mask-RCNN in oil spill
detection using Keras and Tensorflow and ResNet101-FPN backbone in Synthetic-Aperture
Radar (SAR) imagery. The authors analyzed precision, recall, specificity, f1, IoU, and overall
accuracy, showing promising results. Despite the good results, the usage of the Detectron2
algorithm (which contains more backbone structures) would increase performance using
the ResNeXt101 architecture.

In this research, the instance segmentation of large images used a mosaic of overlap-
ping frames from sliding windows with non-maximum suppression by area index. The
current approach is essential for remote sensing images that predominantly have more
significant dimensions. The large image reconstruction from the sliding window mosaic
is widely used in the literature for semantic segmentation [85] propose a sliding window
technique for semantic segmentation to minimize border effects. To show these metrics,
they monitored the Area Under the Receiver Operating Characteristic (ROC) curve to
measure the increasing performance, demonstrating a powerful tool for semantic segmen-
tation scene mosaicking. Similarly, Yi et al. [87] applied scene reconstruction in a semantic
segmentation algorithm for building extraction training with 256 × 256 pixel patches and
mosaicking with a sliding window with a 64-pixel stride to minimize errors. Nevertheless,
these solutions are not applicable to object detection, where each instance has a bounding
box and different values. Martins et al. [86] applied a segmentation-first strategy algorithm
in multi-channel National Agriculture Imagery Progam (NAIP) imagery (four channels) to
classify large scenes. They used different patch sizes in the convolutional neural networks
training process to better predict different sized data. In our work, the Mask-RCNN algo-
rithm uses different anchor boxes that do this job very efficiently, especially when using
deep backbone structures, such as ResNeXt101-FPN. In addition, the instance-first strategy,
where each object has a unique mask segmentation, gives better results when there are
overlapping objects, which is very common in object detection.
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5. Conclusions

Instance level recognition, which requires individual objects’ limits, allows a more
thorough understanding of the image content with high potential for remote sensing. In-
stance segmentation is exceptionally suitable for different applications essential to counting
different objects and estimating its areas individually. This research used the Detectron2
algorithm, the current state-of-the-art in instance segmentation, and still with little ex-
ploration in satellite images. The present research innovates in the following aspects: (a)
development of a method to convert vector polygons from the interpretation of remote
sensing images to the COCO format with its JSON file; (b) adaptation of the Detectron2
algorithm for multi-channel processing, and (c) proposition of a method for processing
large images considering sliding windows and mosaic reconstruction by non-maximum
suppression. The novel approach, in instance segmentation using the sliding window
technique, gives a more substantial analysis since it is possible to gather information in
large images.

This study applied the developed methodology for CPIS detection, which is a vital
aspect of the support system of agricultural management and water resources. The detec-
tion of CPIS is a challenging task due to the different and complex crop patterns. Previous
surveys have applied manual methods, and, only recently, semantic segmentation methods
have been used for automatic detection. However, the semantic reserve has limitations
for the individual detection of areas, especially as areas are in contact or overlap. We
compared seven backbone structures in the Mask-RCNN model (Resnet50-FPN, Resnet50-
DC5, Resnet50-C4, Resnet101-FPN, Renset101-DC5, Resnet101-C4, ResneXt101-FPN). In
the ResNet50 and ResNet101, the FPN feature extractor outperformed C4 and Dilated C5.
In addition, the detection of medium objects is significantly better, with an APmedium
nearly 20% higher than the APsmall. The ResNeXt101-FPN is considerably better than the
other models with an AP 3% higher than Resnet101-FPN (the second-best model).

Furthermore, a critical conclusion is also the difference between training with RGB
and multi-channel imagery. Thus, we compared the best model (ResNeXt101-FPN) training
with the same samples but considering only the RGB bands (2, 3, and 4). Results show that
using multi-channel imagery improves the accuracy metrics for nearly 3%, evidencing an
excellent tendency to other researchers to use multi-channel imagery to improve accuracy.

The proposed methodology improves remote sensing images and applies to studies
previously carried out with semantic segmentation. Future work may include creating
new backbone structures and small arrangements to allow the instance segmentation for
multiclass problems. Besides, the present method applies in other science fields, which
use larger images or a more significant number of channels, such as biomedical images.
In addition, an extensive database of CPIS data can be developed for model training to
provide better results in transfer learning.
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