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Abstract: Gross primary productivity is one of the most important indicators of ecosystem function,
which is related to water conditions and shown high interannual variation. Due to the time-lag effect,
not only the current water condition but also the previous water conditions (e.g., one year before)
impact the gross primary productivity (GPP). Revealing the impacts of current and previous years’
water status is currently a hot topic. In this study, we designed a series of water deficit scenarios based
on the meteorological dataset of the Climatic Research Unit (CRU) and then analysed the responses
of the remote sensing-based moderate resolution imaging spectroradiometer (MODIS) gross primary
productivity (GPP) in China, from which the role of water deficit in time periods was evaluated. The
results indicate that the impact of climate factors (i.e., water, temperature and radiation) on GPP has
a high spatial heterogeneity and that water-limited regions that are primarily distributed in North
and Northwestern China show a stronger water-GPP relationship than water-unlimited regions.
The water deficit that occurred in different periods had a variable impact on GPP. Specifically, GPP
was primarily controlled by the current year’s water conditions in the water-limited regions, with
the importance value of 52.8% (the percentage of Increased Mean Square Error, %IncMSE) and 3.8
(the mean decrease in node impurity, IncNodePurity), but at the same time, it was conditionally
affected by the water status in the previous year, with the importance value of 20.4% (%IncMSE) and
0.6 (IncNodePurity). The role of water in previous years is multifarious, which depends on the water
conditions of the current year. The results revealed by the scenarios indicate that the influence of
water conditions in the previous year was not statistically significant when the water conditions of
the current year were in a drought. In contrast, when the current year’s water conditions were normal
or wetter, the water conditions in the previous year (i.e., one-year time lag) were also important and
the increase of GPP significantly depended on the water condition (p < 0.05). The diverse roles of
water conditions in previous years on GPP and its non-ignorable time-lag effect revealed in this study
imply that not only the current year’s water condition but also its dynamic changes in previous years
should be considered when predicting changes in GPP caused by climate change.

Keywords: gross primary productivity; vegetation response; water deficit; time-lag effect; random
forest; China

1. Introduction

The frequency of extreme weather events such as drought, heatwaves and heavy
precipitation gradually increases under global climate change [1–4], which seriously af-
fects the composition, structure, function and biodiversity of terrestrial ecosystems [5–8].
Gross primary productivity (GPP), which is the total amount of organic matter produced
per unit time and unit area by green plants through photosynthesis using water and carbon
dioxide as raw materials [9], plays an important role in the carbon cycle of terrestrial
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ecosystems [10]. Water is indispensable in this process and is also the main component of
plant cells. Once water levels fall below a certain threshold, the resulting drought often
causes food shortages in agricultural systems [11,12] and affects the stock volume [13], leaf
area index [14] and biomass of forest ecosystems. It is also possible that water stress leads
to hydraulic failure and carbon hunger that reduces vegetative productivity and increases
the risk of forest fires [15], thus changing the carbon budget of terrestrial ecosystems [4,16].
Therefore, studying the response of GPP to water deficit is of great significance for under-
standing the carbon absorption process of terrestrial ecosystems and estimating ecosystem
productivity with a land surface carbon cycle model.

Previous studies have shown that abiotic factors (temperature, precipitation, etc.) and
biological factors (forest age, tree height, stock volume, etc.) have significant effects on the
ecosystem. Among these, abiotic factors are the determinants of ecosystem productivity on
a regional scale [17–20]. Vegetative growth (such as gross primary productivity) is mainly
restricted by abiotic factors such as temperature, water and radiation [21,22]. The restric-
tions of abiotic factors on vegetative productivity vary from region to region under the
influence of climate and the geographical environment [22–24]. The influence of water on
vegetative growth in different regions is controversial. In the Mediterranean region [21,22],
the Alps [25], the Southwestern United States [26,27] and other regions, water is the most
important climate factor limiting vegetative growth. The sensitivity of tree growth to water
is greater than to temperature and other climate factors. Water deficits caused by drought
can have serious negative impacts on crop yield, vegetative productivity and the formation
of tree volume [23]. However, vegetative growth is mainly restricted by solar radiation in
Western Europe, tropical rain forests and parts of Southern China [19,27–29]. For example,
Wang et al. (2017) [19] found that vegetative productivity in Southern China was more
sensitive to solar radiation than precipitation, and the decrease in forest primary productiv-
ity was mainly due to the reduction in solar radiation (82%) rather than the influence of
drought (18%). There is little significance to the study of drought in regions where water is
not limited, and it has been ignored in many studies. Therefore, it is necessary to consider
the spatial scale of differences in vegetation sensitivity to water when studying the effect
of drought.

The influence of water deficit on vegetation growth has a time-lag effect [7,13,30]
with lags of one to four years on a global scale [31,32]. For instance, some research that
used satellite-derived normalized difference vegetation index (NDVI) data found the
response of trees to water is related not only to the current water conditions but also to past
precipitation and temperature, which shows a clear time lag [33] and legacy effects [34,35].
The frequency, severity, duration and timing of water deficits have a profound influence
on vegetative growth [30,36]. Braswell et al. (1997) [37] investigated the interannual
lag of vegetation’s response to temperature and found differences in the time-lag effects
among different ecosystems. Vegetation growth may not primarily be driven by present
water conditions, but earlier water conditions may have the most impact on vegetation
growth [38]. There are significant differences in the effects of annual and interannual
changes in water deficits on vegetative productivity. Because vegetative productivity and
water deficits fluctuate greatly and are complicated by seasonal and monthly differences,
it is more typical to analyse the effects of interannual changes in water deficits. Vegetation
tends to be more sensitive to long-term drought than to short-term drought [39]. Short-term
drought can be understood as a drought in which the water conditions of the previous
years are normal, and the water conditions of the current year are in a drought; long-term
drought can be understood as a drought in which the water conditions of the previous
years and the current year are in a drought. These produce significant differences in the
effects of water conditions on vegetative growth [40,41]. Reichmann et al. (2013) [42] and
Gao et al. (2020) [43] found that there was a legacy effect in the transition from dry years to
wet years (or vice versa). There was a lower aboveground net primary production (ANPP)
than predicted if the precipitation of the previous year was lower than the precipitation
of the current year (or vice versa), suggesting that the combination of dry and wet in the
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previous year and current year is significant to the analysis of the time-lag effect of the
previous years’ water deficit.

Correlation analysis is used in many studies to determine the optimal time scale
using the maximum correlation coefficient between the vegetation index (e.g., normalized
difference vegetation index (NDVI), ring-width indices (RWIs) and aboveground net
primary production (ANPP)) and the drought index (e.g., standardized precipitation
evapotranspiration indices (SPEIs)) at present. In some regions, the time scale of vegetative
response to drought is more than 24 months [13,44], whereas other studies that used the
same method found that the cumulative lag in vegetative response to drought was five
months [45] or even less [38]. Compared with correlation analysis, natural experiments can
analyse selectively in detail according to the purpose of the study and can better reflect the
response of vegetative growth to drought [30].

Given that GPP is highly uncertain under the influence of drought that may happen
in a different time and understanding the role of the previous year’s drought is necessary
to accurately predict GPP, we aimed to accomplish the following three objectives in this
study: (1) identify the water-limited regions where the potential impact of drought should
be emphasized in China, (2) apply a machine learning algorithm (i.e., random forest) to
evaluate the importance of water conditions at different times on GPP, from which we
could quantify the relative importance of the water condition of previous years, and (3)
design a series of water deficit scenarios and, accordingly, build a series of regression
models to reveal the role of the previous year’s water conditions on GPP.

2. Materials and Methods
2.1. The Ecosystem Types and Climate Conditions of China

China is dominated by an Asian monsoon climate where the annual mean temperature
(T), photosynthetic active radiation (PAR) and precipitation are 7.82 ◦C (the standard
deviation is 7.98 ◦C), 60.15 mm/year (the standard deviation is 38.15 mm/year) and
85.36 W/m2 (the standard deviation is 15.71 W/m2), respectively (the detailed information
of climate data can be found in Section 2.2.2). Under the climate conditions, various
ecosystems are widely distributed in China (Figure 1). Additionally, drought is one of the
most damaging and disastrous hazards in China [46]. Thus, our research explored the
influences of water conditions on vegetation growth (i.e., GPP) and its response in China.
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Figure 1. The spatial distribution of ecosystem types in China. The data set of ecosystem types was
established by using the fast extraction method of full digital human-computer interaction from
Landsat TM digital image, which was obtained from Geographical information Monitoring Cloud
Platform (http://www.dsac.cn).

http://www.dsac.cn


Remote Sens. 2021, 13, 58 4 of 15

2.2. Research Data and Processing
2.2.1. Remote Sensing Data

The scarcity and relatively short duration of field experiments (i.e., the carbon flux
data obtained by eddy-covariance flux towers (compiled in FLUXNET)) make it difficult
to obtain a full picture of how vegetation responds to climate [47,48], and MODIS-GPP
data with high temporal-spatial resolution is always calculated on remote sensing data.
Thus, in our research, to characterize the level of vegetative productivity, this study chose
MOD17A2H GPP for the period from 2001 to 2016; the product is a cumulative 8-day
composite of values with 500 m pixel size based on the radiation use efficiency concept
(http://search.earthdata.nasa.gov/). Before the analysis of remote sensing data, the orig-
inal 8-day GPP data were preprocessed by the MODIS Reprojection Tool (MRT), which
included image mosaic and projection transformation. After that, we calculated the annual
GPP based on these 8-day GPP products. To compare the relative changes in vegetation,
we detrended the GPP data by using a linear regression model to eliminate the external
factors such as the CO2 fertilizer effect and the influence of vegetation factors such as forest
age. Specifically, we fitted the original GPP data from 2001 to 2016 to get their linear trends
and then minus their trends to get GPP data without trends.

2.2.2. Meteorological Data

In this study, we used monthly meteorological data from the Climatic Research
Unit (CRU) at the University of East Anglia for the period from 1901 to 2016 (http:
//data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.01/), including temperature (Temp),
precipitation and potential evapotranspiration. The version of the dataset was TS 4.01,
and the spatial resolution was 0.5◦. Monthly photosynthetic active radiation (PAR) was
obtained from the Cloud and the Earth’s Radiant Energy System (CERES) at NASA’s
Langley Research Center at a 1◦ spatial resolution for the period from 2000 to 2019
(https://ceres.larc.nasa.gov/order_data.php). In this dataset, the total photosynthetic
active radiation (PAR) was computed from the sum of the surface diffusive and direct PAR
in the all-sky conditions [49].

To match these spatial datasets, all spatial data were converted into the WGS84
coordinate system with the spatial resolution uniformly adjusted to 500 m in ArcGIS 10.1
through the nearest neighbour algorithm. At the same time, we detrended the climate
factors of temperature, climate water deficit and photosynthetic active radiation by using a
linear regression model to eliminate the potential impacts of change trends and to focus
on the impacts of interannual variability. Specifically, we fitted the original climate data
from 2001 to 2016 to get their linear trends and then minus their trends to get climate data
without trends. The anomaly of climate water deficit (CWDanomaly), which represents the
difference between annual precipitation and annual potential evapotranspiration, was used
to reflect the status of water conditions. We first calculated the climate water deficit (CWD)
from 2001 to 2016 (Stephenson, 1998) and then defined 7 grades of water deficit (Table 1)
based on the standard deviations (SDs) of the anomalies of the CWD series.

Table 1. Seven grades of climate water deficit (CWDanomaly).

Water Conditions CWDanomaly

Severely wet CWDanomaly > 2 SD
Moderately wet 1.5 SD < CWDanomaly < 2 SD

Mildly wet SD < CWDanomaly < 1.5 SD
Normal −SD < CWDanomaly < SD

Mild drought −1.5 SD < CWDanomaly < −SD
Moderate drought −2 SD < CWDanomaly < −1.5 SD

Severe drought CWDanomaly < −2 SD

SD: the standard deviation of the CWD series.

http://search.earthdata.nasa.gov/
http://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.01/
http://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.01/
https://ceres.larc.nasa.gov/order_data.php
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The dataset of monthly soil moisture for the period from 2000 to 2015 was derived from
the Global Land Data Assimilation System (GLDAS) (http://ldas.gsfc.nasa.gov/gldas);
its spatial resolution was 0.25◦, and it included the soil moisture of four layers: 0–10 cm,
10–40 cm, 40–100 cm and 100–200 cm. We computed the annual mean soil moisture in
0–100 cm then resampled this data to 500 m for matching the climate water deficit data.

2.2.3. Identification of Water-Limited Regions

We used the partial correlation method to identify the regions of vegetation that
were mainly limited by different climate factors (i.e., Temp, CWD and PAR). Specifically,
we first calculated the partial correlation coefficient between the detrended meteorological
factors (Temp, CWD and PAR) and GPP at the grid scale, from which we could identify the
main limiting climate factors that are potentially related to GPP. Second, we determined
the regions that were mainly limited by different climate factors based on the maximum
positive partial correlation coefficients between GPP and different climate factors, which
reflects the highest positive sensitivity. As a result, the entire study region was divided
into two subregions that represented a water-limited region and a water-unlimited region.
In other words, water condition was the main impact factor on GPP in the water-limited
subregion, whereas temperature and radiation were the main impact factors on GPP in the
water-unlimited subregion.

To eliminate the spatial heterogeneity of GPP and focus on revealing the relative
changes caused mainly by the various degrees of water stress, we first standardized the de-
trended GPP (GPPn) and the corresponding climate factors (Equation (1)) to avoid negative
values in the denominator of Equation (2) and then calculated the normalized difference
in GPP in drought year i (∆GPPi). The calculation of ∆GPPi is based on the compari-
son of GPPn in drought year i (GPPn,i) and the corresponding three consecutive normal
years when non-drought stress occurred (GPPn,i−1, GPPn,i−2 and GPPn,i−3) (Equation (2)).
This method takes the mean value of GPP in a normal year without water stress for three
consecutive years as the reference at the pixel scale to compare with the change in GPP
value under different drought intensities.

Xn =
X − Xmin

Xmax − Xmin
(1)

where X is the value of detrended GPP or meteorological data in a certain pixel, and Xmin
and Xmax are the corresponding minimum value and the maximum value.

∆GPPi =
GPPn,i − (GPPn,i−1 + GPPn,i−2 + GPPn,i−3)/3

(GPPn,i−1 + GPPn,i−2 + GPPn,i−3)/3
(2)

where GPPn,i is the standardized GPP value (GPPn) in drought year i, and GPPn,i−1,
GPPn,i−2 and GPPn,i−3 are the corresponding GPPn values in i − 1, i − 2 and i − 3 nor-
mal years.

2.3. Constructing the Relationship between Climatic Water Deficit and Soil Moisture

To further understand the mechanism of climatic water deficit (CWD) impacts on veg-
etation GPP, our research determined the relationship between CWD and soil water. First,
we extracted all of the grids’ value of the annual mean soil moisture and the annual mean
CWD in the water-limited region. Then, we conducted the linear regression relationship
between CWD and soil moisture.

http://ldas.gsfc.nasa.gov/gldas
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2.4. Evaluation of Variable Importance

As the impact of water condition on vegetation exhibits a time-lag effect [31], it is
quite important to evaluate the influence of the degree of water deficit at different times
(i.e., in the previous or current year). In this study, we took the water-limited region
revealed in Section 2.2.3 as the study region and used a machine learning algorithm to
further assess the influence of the degree of water deficit in the previous years and current
year on GPP. Through the evaluation of importance, we explored the potential impact
of early water deficit on GPP. The random forest method was currently widely used in
related research, which was considered as a good method to evaluate the importance of
variables [50,51]. Thus, the machine learning algorithm (i.e., random forest) was applied in
this study. One algorithm has been tested in this machine learning scheme. The random
forest model combines the base principles of bagging with random feature selection to
add additional diversity to the decision tree models, which means it can improve model
performance with meta-learning using an ensemble-based method [52]. The random forest
model can calculate the influence of each variable based on the existing data through
modelling, that is, the importance. We used the function of randomForest and importance
in the package of randomForest in R software in the modelling [53]. During the evaluation
of variable importance, we selected all pixels in the water-sensitive region and partitioned
them into different groups based on the combinations of water deficit conditions over four
years (i.e., the current year and previous three years) (Table S1). For different groups of
the water deficit condition, the mean GPP was calculated and regarded as a training set
to assess the importance of variables, including the water conditions in the current year
(Current), the first previous year (1st), the second previous year (2nd) and the third previous
year (3rd). The calculated importance value represents the ability of water conditions in
different years to predict GPP and therefore to quantify the degree of influence of water
conditions in the previous years and current year. In calculating the importance of the
variables, we used the metric of the percentage of Increased Mean Square Error (%IncMSE)
and the mean decrease in node impurity (IncNodePurity). The larger the value, the more
important the variable.

2.5. The Grades of Water Deficit Conditions

To better quantify the potential impacts of water deficit in the current and previous
years, we set three water deficit grades (drought, normal and wet) in the current year
and then combined them with the timing of water deficit to obtain the different scenarios,
which contained information on both water condition and the timing of water condition
(Table 2). To explore the relationships between GPP and water conditions in the previous
and current years, we set up linear regression models (i.e., y = ax + b) between the GPP
in the current year and the water conditions in the current year, first previous year, sec-
ond previous year and third previous year, respectively. The three water deficit grades
included drought (CWDanomaly < −1.5SD), normal (−1.5SD < CWDanomaly < 1.5SD) and
wet (CWDanomaly > 1.5SD). The relationship between GPP and water deficit intensity in
the previous and current years was established by setting the water conditions in the other
years to be normal (−SD < CWDanomaly < SD) (Table 2). Our scenario included a total of
147 water deficit condition combinations. We excluded 14 combinations in which a sample
of pixels was empty and/or too small. As a result, there were 133 combinations of effective
water deficit (Table S1).
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Table 2. Water deficit scenarios based on the current and three previous years’ water conditions.

Water Conditions in Different Years

3rd 2nd 1st Current

3rd Seven water
deficit scenarios Normal Normal Seven water

deficit scenarios

2nd Normal Seven water
deficit scenarios Normal Seven water

deficit scenarios

1st Normal Normal Seven water
deficit scenarios

Seven water
deficit scenarios

Current Normal Normal Normal Seven water
deficit scenarios

Current represents the water condition in the same year as the GPP value (i.e., the ith year), 1st repre-
sents the first previous year (i.e., the (i − 1)th year), 2nd represents the second previous year (i.e., the
(i − 2)th year), and 3rd represents the third previous year (i.e., the (i − 3)th year).

3. Results
3.1. Identification of Regions Sensitive to Climate Factors

The sensitivity of GPP to different climate factors has high spatial heterogeneity
(Figure 2a). In general, the water-limited region is primarily distributed in Northwestern
China and North China. The temperature-limited region, however, is mainly distributed in
Western China (e.g., Qinghai Province) and Eastern China. The radiation-limited region
is mainly distributed in Southwestern China and Central China. The sensitivity analysis
illustrated that GPP was responsive to drought in the water-limited region, and this was
therefore a suitable region to further analyse the relationship between water and GPP.
For the water-limited region, the results (Figure 2b) indicate that GPP decreased by 42.2%
and 72.0% in the mild drought years (−1.5SD < CWDanomaly < −SD) and in the severe
drought years (CWDanomaly < −2SD), respectively, compared with the normal years (−SD
< CWDanomaly < SD).

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 16 

 

 

 
Figure 2. Distribution of main climatic factor-limited regions and the corresponding responses of GPP to drought inten-
sity. (a) Spatial distribution of different limited regions for climatic factors. PCC is the abbreviation for the partial corre-
lation coefficient. (b) Drought responses of different climate-limited regions. Blue, red and green colours represent tem-
perature (Temp), climatic water deficit (CWD) and photosynthetic active radiation (PAR), respectively. The vertical co-
ordinate indicates the percent change in the GPP of vegetation that encountered drought relative to the mean productiv-
ity of three consecutive normal years. 

3.2. Comparison of Climatic Water Deficit and Soil Moisture 
The climatic water deficit (CWD) we used in the study was obtained by subtracting 

potential evapotranspiration from precipitation. The indicator CWD is biologically 
meaningful and can be used to characterize site conditions as sensed by plants [54]. 
Given that soil moisture is another commonly used indicator of water conditions that 
represents the water held in the soil within reach of the plant roots [55], we compared 
CWD with soil moisture. 

Through the comparison, we found that CWD was well consistent with soil mois-
ture (Figure 3), which suggests that CWD could reflect the soil water well in our study 
region. 

 
Figure 3. The relationship between the annual average CWD and the annual average soil moisture during 2001 and 2015. 
The colour of dots represents the number of these spatial pixels, and R is the correlation coefficient. 
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(a) Spatial distribution of different limited regions for climatic factors. PCC is the abbreviation for the partial correlation
coefficient. (b) Drought responses of different climate-limited regions. Blue, red and green colours represent temperature
(Temp), climatic water deficit (CWD) and photosynthetic active radiation (PAR), respectively. The vertical coordinate
indicates the percent change in the GPP of vegetation that encountered drought relative to the mean productivity of three
consecutive normal years.
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3.2. Comparison of Climatic Water Deficit and Soil Moisture

The climatic water deficit (CWD) we used in the study was obtained by subtract-
ing potential evapotranspiration from precipitation. The indicator CWD is biologically
meaningful and can be used to characterize site conditions as sensed by plants [54]. Given
that soil moisture is another commonly used indicator of water conditions that represents
the water held in the soil within reach of the plant roots [55], we compared CWD with
soil moisture.

Through the comparison, we found that CWD was well consistent with soil moisture
(Figure 3), which suggests that CWD could reflect the soil water well in our study region.
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3.3. Importance Evaluation of Drought in Different Time

We used random forest (rf) to evaluate the impact of water conditions in the previous
years and current year on GPP (Figure 4). Specifically, the largest effect of water conditions
on GPP was observed in the current year. Random forest highlighted the importance of
water conditions in the current year, and the importance value was determined as 52.8%
(%IncMSE) and 3.8 (IncNodePurity). However, the variability in importance suggests that
water conditions in the previous years, particularly the first year, also have an important
effect on GPP, with the importance value of about 20.4% (%IncMSE) and 0.6 (IncNodePu-
rity). The results of the model simulation reveal that although the water conditions in the
current year were the most important for vegetative growth, the water conditions in the
previous years also need to be considered.



Remote Sens. 2021, 13, 58 9 of 15

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 16 

 

 

3.3. Importance Evaluation of Drought in Different Time 
We used random forest (rf) to evaluate the impact of water conditions in the previ-

ous years and current year on GPP (Figure 4). Specifically, the largest effect of water 
conditions on GPP was observed in the current year. Random forest highlighted the 
importance of water conditions in the current year, and the importance value was de-
termined as 52.8% (%IncMSE) and 3.8 (IncNodePurity). However, the variability in im-
portance suggests that water conditions in the previous years, particularly the first year, 
also have an important effect on GPP, with the importance value of about 20.4% 
(%IncMSE) and 0.6 (IncNodePurity). The results of the model simulation reveal that alt-
hough the water conditions in the current year were the most important for vegetative 
growth, the water conditions in the previous years also need to be considered. 

 
Figure 4. Importance analysis of water conditions in the previous years and the current year using 
a random forest model: (a) %IncMSE (the percentage of Increased Mean Square Error) and (b) 
IncNodePurity (the mean decrease in node impurity). 3rd, 2nd, 1st and Current represent the wa-
ter conditions in the third previous year, the second previous year, the first previous year and the 
current year, respectively. 

3.4. Time-Lag Effect of Water Deficit 
Based on the knowledge revealed by the machine learning algorithms in Section 

3.3, we further developed the linear regression models between GPP and water deficit 
conditions in the previous years and current year for the different water deficit scenari-
os. The results indicate that the water conditions of the current year were positively cor-
related with GPP (Figure 5), i.e., the better the water conditions, the higher the GPP. 
When the water conditions in the current year were in a drought condition (CWDanomaly < 
−1.5SD), the water deficit conditions in the previous years had no significant effect on 
the GPP (Figure 5a,d). However, when the water conditions in the current year were 
normal (−1.5SD < CWDanomaly < 1.5SD) or wet (CWDanomaly > 1.5SD), the role of water con-
ditions in the previous year positively impacted the GPP (p < 0.05; Figure 5b,c,e,f). The 
water conditions in the second previous year and third previous year, however, were 
not significant (p > 0.05). The improvement in water conditions in the current year high-
lights the influence of water conditions in the first previous year on GPP. The effect of 
water deficit on GPP lagged by approximately one year. This study also found that the 
GPP was relatively low when the water conditions were in a drought. In contrast, the 
GPP was relatively high when the water conditions were wet, which suggests that the 
influence of water conditions in the current year on the GPP was much greater than the 
effect of water conditions in the previous years, which is consistent with the simulation 
results of the models in Section 3.3. 

Figure 4. Importance analysis of water conditions in the previous years and the current year using
a random forest model: (a) %IncMSE (the percentage of Increased Mean Square Error) and (b)
IncNodePurity (the mean decrease in node impurity). 3rd, 2nd, 1st and Current represent the water
conditions in the third previous year, the second previous year, the first previous year and the current
year, respectively.

3.4. Time-Lag Effect of Water Deficit

Based on the knowledge revealed by the machine learning algorithms in Section 3.3, we
further developed the linear regression models between GPP and water deficit conditions
in the previous years and current year for the different water deficit scenarios. The results
indicate that the water conditions of the current year were positively correlated with GPP
(Figure 5), i.e., the better the water conditions, the higher the GPP. When the water conditions
in the current year were in a drought condition (CWDanomaly < −1.5SD), the water deficit
conditions in the previous years had no significant effect on the GPP (Figure 5a,d). However,
when the water conditions in the current year were normal (−1.5SD < CWDanomaly < 1.5SD)
or wet (CWDanomaly > 1.5SD), the role of water conditions in the previous year positively
impacted the GPP (p < 0.05; Figure 5b,c,e,f). The water conditions in the second previous
year and third previous year, however, were not significant (p > 0.05). The improvement in
water conditions in the current year highlights the influence of water conditions in the first
previous year on GPP. The effect of water deficit on GPP lagged by approximately one year.
This study also found that the GPP was relatively low when the water conditions were in
a drought. In contrast, the GPP was relatively high when the water conditions were wet,
which suggests that the influence of water conditions in the current year on the GPP was
much greater than the effect of water conditions in the previous years, which is consistent
with the simulation results of the models in Section 3.3.

The advantage of combining the random forest method and linear regression method
is obvious. The random forest could quantify the relative importance of different years’
water stress, while the linear regression models that are based on a series of water deficit
scenarios could identify the causes of higher or lower importance. Specifically, the random
forest revealed that the current year’s water condition has the highest importance (52.8%
(%IncMSE) and 3.8 (IncNodePurity)), which is consistent with results revealed by linear
regression models as they found that impact of the current year’s water condition on
GPP is stable and unconditional which does not depend on the previous years’ water
condition. For the role of previous year’s water condition, however, the random forest
found that it is also important but with relatively lower importance (20.4% (%IncMSE)
and 0.6 (IncNodePurity)). The reason revealed by linear regression models is that the
water influence of the previous year depends on the water deficit condition of the current
year. These results are valuable as they imply that we need to consider two years’ water
conditions to better predict the interannual variation of GPP.
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Figure 5. Statistical relationships between GPP in the current year and water conditions in the previous years and their
dependence on the current year’s water conditions. The water conditions in the current year are (a) drought (CWDanomaly

< −1.5SD) (Current_drought in the figure), (b) normal (−1.5SD < CWDanomaly < 1.5SD) (Current_normal in the figure) and
(c) wet (CWDanomaly > 1.5SD) (Current_moist in the figure). Purple (cross), red (round), dark green (triangle) and light
green (square) colours represent different water conditions in the current year, the first previous year, the second previous
year and the third previous year, respectively. The vertical coordinate represents the mean of standardized GPP. A solid line
shows that the impact of water deficit in the previous years or current year on the vegetation productivity is significant
(p < 0.05). A dashed line shows that the impact of water deficit in the previous years or current year on the vegetation
productivity is not significant (p > 0.05). The second row (d–f) corresponds to the Pearson correlation coefficient between
the gross primary productivity of vegetation (current year) and the water conditions in the previous years and current year,
respectively. * indicates a significance level of 0.05, and *** indicates a significance level of 0.001.
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4. Discussion
4.1. Factors Impacting Vegetative Productivity

The factors that restrict vegetative growth in different regions should exhibit spatial
heterogeneity. In this study, we conducted basic sensitivity analysis using the statistical
method of partial correlation analysis to reveal the different climate limited regions and
then analysed the difference in the response of vegetative productivity to drought intensity
in order to explore the time-lag effect of water conditions. We found that the GPP in the
water-unlimited region (i.e., the temperature-limited region and radiation-limited region)
was less affected by drought intensity, which is similar to the results of previous studies that
have found that drought-induced forest deaths tend to occur in water-limited areas [56,57].
Due to the differences among plant functional groups and geographical environments,
the sensitivity of global vegetation to climate factors is variable [22]. Most studies have
analysed the coupling effect of drought and other extreme weather events [58] and ignored
the effect of other climate factors except water when analysing the effect of drought on
tree growth; the sensitivity of vegetation to water in the study area is rarely considered.
The spatial distribution pattern of vegetation sensitivity to various climate factors and the
difference in response to drought intensity shows the importance of regions sensitive to
climate factors.

4.2. The Time-Lag Effect of Water Conditions on GPP

Revealing the impact of water stress on GPP is quite important under the background
of global climate change. However, due to the time-lag effect [7,13,30,38], the cumulative
effect [36] and the legacy effect [42,43], the influence of water stress on vegetation growth
is very complicated as the frequency, severity, duration and timing of water deficits have a
profound influence on vegetative growth [30]. In this study, we applied a random forest
method to quantify the relative importance of current and previous years’ water stress.
Furthermore, we revealed the role of the previous year’s water stress on GPP, especially
the importance of the combination of previous and current years’ water conditions.

In this study, the relationship between GPP and water deficit intensity in previous
years and the current year was established by setting suitable scenarios. Through the
relationships identified in the different scenarios, we revealed some rules governing the
influence of water conditions in the previous years and the current year on GPP. The results
showed that the water conditions of the current year had the greatest impact on GPP.
Gao et al. (2018) [30] also found that the water deficit conditions of the current hydrolog-
ical year had a greater impact on trees than the conditions of the previous hydrological
year. The deficit or surplus of water supply in the current year will directly affect the
physiological processes of the plant. Plants typically adjust the physiological function of
their water conduction system to adapt to water stress [7,59,60]. Water stress limits the
photosynthetic rate of plants, thereby reducing vegetative productivity. The aggravation
of water stress may also damage the biochemical processes related to respiration and
photosynthetic carbon storage, directly forcing plants to engage in adaptive strategies such
as defoliation and strengthening of the root distribution [61]. Sufficient water allows an
adequate level of photosynthesis for plants and promotes the enhancement of vegetative
productivity when water conditions are wet.

Our study also showed that the water conditions in previous years, particularly in
the first previous year, are also important for GPP, which shows a clear time-lag effect of
water conditions on vegetation and is similar to other studies [13,38,62,63]. The reason may
be that water in the previous year tended to permeate through the soil and became soil
water which would definitely influence the ecosystem [55]. Luo et al. (2018) [13] found
that forests of different stock volume levels were affected differently by the water in the
previous years, presumably because of their varying ability to absorb underground water.
Therefore, the water conditions in previous years could be better for predicting vegetation
GPP and its interannual variation.
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Although plants can adapt to water stress through self-regulation, growth is still af-
fected to some extent when plants are subjected to severe water stress. In other words, water
stress will have a time-lag effect on vegetative growth after severe drought events [7,41].
We found that the water conditions in the first previous year had a significant impact on
GPP when the water conditions in the current year were normal or wetter (i.e., one-year
time lag). Tei et al. (2017) [64] found a one-year time lag in the response of tree growth
to the climate in the circumboreal region, which probably reflected an adaptation of trees
to environments with more severe water stress by carrying over fixed carbon from one
year to following years [65]. Wet conditions in two consecutive years can often accel-
erate the growth of vegetation [66]. However, once a strong drought occurs, there is a
strong legacy effect from the first previous year due to the sensitivity of the vegetation to
drought [31,36,67]. This shows the resilience of vegetation. However, because the resilience
is weak, although the water conditions have improved after the drought, it is difficult for
the vegetation to return to the state before the drought. At this point, the water conditions
of the previous year control a significant fraction of the GPP in the current year [40,42].

In contrast, the water conditions in the first previous year did not have a significant
impact on GPP when the water condition in the current year was in a drought. The impact
of the drought in the current year will be greater than the water conditions in the previous
year because of the greater sensitivity to drought than wet conditions [67]. Therefore, there
is no significant impact of water conditions in the first previous year.

Changes in the temporal pattern of water deficits due to climate change, which are
predicted to have great volatility in the 21st century, may have a prolonged impact on the
growth of vegetation [68]. The temporal pattern of water deficits is commonly ignored in
the assessment of different scenarios of climate change. In this study, we quantitatively
assessed the time-lag effect of the water conditions in the previous years and the current
year on GPP by considering suitable scenarios. Investigating consecutive interannual
changes in water deficit will help us to more deeply understand the mechanism by which
drought impacts vegetative productivity and improve the ability of process-based models
to predict the carbon storage of terrestrial ecosystems under future climate change.

5. Conclusions

Gross primary productivity (GPP) is related to water conditions and shows high
interannual variation. Due to the effect of time lags, not only the current water conditions
but also the previous water conditions impact the GPP. In this study, we designed a series
of water deficit scenarios under which the role of water deficit during different years was
evaluated. We found that the water deficit during different periods had different impacts
on GPP. The role of the current year’s water on GPP is clear and deterministic. However,
the role of water in previous years is multifarious and depends on the water conditions
of the current year. The diverse effects of water conditions during previous years on GPP
and the time-lag effect revealed in this study imply that not only the current year’s water
conditions but also its dynamic changes during previous years should be considered when
predicting changes in GPP caused by climate change.
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