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Abstract: Currently, seafloor topography inversion based on satellite altimetry gravity data provides
the principal means to predict the global seafloor topography. Researchers often use sea surface geoid
height or gravity anomaly to predict sea depth in the space domain. In this paper, a comprehensive
discussion on seafloor topography inversion formulas in the space domain is presented using
sea surface geoid height, gravity anomaly and introduces an approach that uses vertical gravity
gradient. This would be the first study to estimate seafloor topography by vertical gravity gradient
in the space domain. Further, a nonlinear iterative least-square inversion process is discussed.
Using the search area for the Malaysia Airlines Flight MH370 as study site, we used the DTU17
gravity anomaly model and SIO V29.1 vertical gravity gradient to generate the seafloor topography.
The results of the proposed bathymetric models were analyzed and compared with the DTU18
and SIO V20.1 bathymetric models. The experimental results show that the gravity anomaly and
vertical gravity gradient in the study area are strongly correlated with the seafloor topography in the
20–200 km wavelength range. The optimal initial iteration values for seafloor topography variance
and correlation length are 0.6365 km2 and 10.5′, respectively. Shipborne measurements from SONAR
data were used as external checkpoints to evaluate the bathymetric models. The results show that
the RMS for BAT_VGG_ILS (inversion model constructed by vertical gravity gradient) is smaller
than for BAT_GA_ILS (inversion model constructed by gravity anomaly) and BAT_GA_VGG_ILS
(inversion model constructed by gravity anomaly and vertical gravity gradient). The relative accuracy
of the DTU18 bathymetry model was 9.27%, while the relative accuracy of the proposed seafloor
models was higher than 4%. Within the 200 m difference range, the proportion of checkpoints for
BAT_VGG_ILS was close to 95%, about 80% for BAT_GA_ILS and BAT_GA_VGG_ILS, and less than
50% for the DTU18. The results show that the nonlinear iterative least square method in the space
domain is feasible.

Keywords: satellite altimetry; seafloor topography; nonlinear; least square inversion; MH370

1. Introduction

As an essential process in ocean exploration, bathymetric surveys play a fundamen-
tal role in developing marine resources, protecting the marine ecological environment,
promoting marine science and technology, and safeguarding marine rights and interests.
Acquiring accurate seafloor topography (ST) data is indispensable to the marine industry
and is necessary for the protection, development, and management of oceans.

At present, bathymetric survey methods mainly include shipborne bathymetry, air-
borne lidar bathymetry (ALB), autonomous underwater vehicle (AUV), remotely operated
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vehicle (ROV), and bathymetry inversion using satellite altimetry gravity data. Ship-
borne bathymetry can yield highly accurate measurements but has several shortcomings,
such as low-measurement efficiency and unevenly distributed results. Smith pointed out
that deep-sea surveying and mapping would take more than 200 ship years and require
tremendous workforce and material resources [1]. ALB is mainly used to measure shallow
water environments with high measurement efficiency and only has limited capabilities
for deep-sea surveys and areas with serious beam propagation constraints. Altimetric
satellites can provide ocean observations uninterruptedly under all weather conditions,
providing real, complete, global, and precise sea surface data [2,3]. Global and regional
gravity fields over the world’s oceans derived from satellite altimetry are now an efficient
tool for modeling ST [4]. This technology has been used for deep-sea research, exploration,
and development. For example, GEBCO, supported by the Nippon Foundation-GEBCO
Seabed 2030 project [5], published the first global ST model (GEBCO_2019) with a grid
size of 15” in 2019. Scripps Institution of Oceanography (SIO), National Oceanic and
Atmospheric Administration (NOAA), National Geospatial-Intelligence Agency (NGA),
and other organizations released the global terrain model (SRTM15+ v2.0) with a grid size
of 15” in 2019 [6]. Most of the ST data in GEBCO_2019 and SRTM15+ v2.0 were acquired
using satellite altimetry gravity data.

Currently, ST inversion methods using satellite altimetry gravity data can be gen-
erally divided into space domain and spectral-domain approaches. ST inversion in the
frequency domain is mainly based on the relationship between the mass body and gravity
anomaly [7], such as regression analysis [8–13], admittance function method [14–16], simu-
lated annealing method [17,18]. The admittance function method and regression analysis
ignore the influence of nonlinear ST on the inversion results. Baudry et al. [19,20] and
Fan et al. [15] attempted to solve the problem of high-order ST inversion in the frequency
domain. First proposed by Calmant [21], the ST inversion method in the space domain can
productively solve the problem of high-order ST inversion by using the nonlinear iterative
least-square method. Calmant et al. used geoid height (GH) obtained from ERS-1, GEOSAT,
and TOPEX/POSEIDON to build a global ST model in the space domain [22]. Ramillien
and Wright used sea surface gravity anomaly (GA) to restore ST in the New Zealand region
(called RW99) in the space domain [23].

Other studies have proposed using an approximate estimation to describe the formula
in the space domain [21–23]. The inversion parameters are mostly replaced by empirical
values in the numerical analysis. For example, Ramillien and Wright set the inversion trun-
cation wavelength to 500 km, the correlation length of the Hirvonen covariance function
to 0.2◦, and the terrain variance to 100 m–2000 m [23]. For Calmant et al., the inversion
truncation wavelength was set to 500 km, the correlation length of the Hirvonen covariance
function to 20 km, and the terrain variance to 500 m [22]. The inaccuracy of input parame-
ters can seriously affect the quality of ST modeling and computational efficiency, which
should be studied further. However, while some studies have carried out ST inversion in
the space domain, none have used vertical gravity gradient (VGG) to predict bathymetry in
the space domain. Compared to gravity anomaly, gravity gradients can be more sensitive to
short bathymetric wavelengths [24,25], such as wavelengths ranging from 2 to 12 km [24].

In this study, we evaluated the critical formulas in the space domain for ST inversion
using the sea surface GH, GA, and VGG and described the design and implementation of
ST inversion. We selected part of the Malaysia Airlines Flight MH370 search area as the
experimental site. The inversion band of VGG/GA was determined through frequency
domain coherence analysis [26]. The effective initial value of the iteration of the Hirvonen
covariance function was obtained by adopting the practical statistical formula of terrain
covariance [27]. We also used the GA and VGG as input data, along with sparse ship
bathymetric data, to estimate ST. We then compared our models’ performance with the
DTU18 (released by the Technical University of Denmark) and SIO V20.1 (released by
Scripps Institution of Oceanography) bathymetry models.
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2. Methods

The ST is mainly formed by (1) the cyclic process of continuous regeneration (at
the mid-ocean ridge) and continuous consumption of the oceanic plates; (2) the volcanic
activity within the oceanic plates; (3) the physical mechanism of cooling and contraction of
the oceanic plates; and, (4) the lithosphere deformation under the action of terrain load.

In Figure 1, the radius of the Earth is R, the height of the ST is b, the depth of the ocean
is h, and the reference depth of the ST is d. When only considering single-crust structure
and constant density of the crust and seawater, the disturbing potential (T) at point (P)
caused by the mass cylinder (M) is as follows [28]:

Tj(u, ϕp, λp)|u=R = G∆ρ
∫

v

1
l

dv (1)

where the subscript j represents the location of the mass cylinder (M); u is the geocentric
distance of the research point; ϕp and λp are the latitude and longitude of the research
point; G is the gravitational constant of the Earth; v is the volume of the mass cylinder; and
∆ρ is the difference between crust density and seawater density. The spatial distance (l)
between the integral element (Q) in the mass cylinder (M) and the research point (P) can be
expressed as

l =
√

r2 + u2 − 2ur cos(ψ)|u=R (2)

where r is the geocentric distance of flow point Q; and ψ is the angular distance between P
and Q. Assuming the bottom area of column M is ∆Ω, ∆Ω can be expressed as

∆Ω = r2∆λ∆ϕ cos ϕ (3)

where ∆ϕ and ∆λ are the spatial distance of the base area along the latitude and longitude;
and ϕ is the latitude at the center of the base area. Equation (1) can be expressed as

Tj(u, ϕ, λ)|u=R = G∆ρ∆Ω
∫ R2

R1

1
l

dr (4)

where R1 and R2 represent the lower and upper bounds of a cylinder (M). These lower and
upper bounds can be calculated using the expression:{

R1 = R− d
R2 = R1 + b = R− h
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Figure 2. Sketch map of regional terrain distribution. 

The GA at point P is the sum of the influence of all the terrain cylinders around point 
P, as shown in Figure 2. So the GA is expressed as [21,22]: 

2

1

2

3
1

( cos )( , , ) | (cos )
n R i i i

p p u R i R
i i

r R r
g u G dr

l
ψϕ λ ρ λ ϕ ϕ=

=

−
Δ = Δ Δ Δ    (7)

where i represents the ith column. The integral in Equation (7) can be expressed as 

Figure 1. Relationship between the mass body and gravity information.



Remote Sens. 2021, 13, 64 4 of 19

2.1. Gravity Anomaly Calculation

The gravity disturbance produced by a cylinder (M) at the research point (P) can be
obtained by calculating the radial direction derivative of the disturbing potential. Accord-
ing to Equation (4), the sea surface gravity disturbance at point P can then be expressed
as

∆gj(u, ϕp, λp)|u=R = −∂T
∂u
|u=R = G∆ρ(∆λ∆ϕ cos ϕ)

∫ R2

R1

r2(R− r cos ψ)

l3 dr (6)

At the sea surface, the gravity disturbance is close to the free-air gravity anomaly
(FAGA), supposing that the free-air reduction is already done if one assumes the stationary
sea surface to coincide with the geoid.

The GA at point P is the sum of the influence of all the terrain cylinders around point
P, as shown in Figure 2. So the GA is expressed as [21,22]:

∆g(u, ϕp, λp)|u=R = G∆ρ∆λ∆ϕ
n

∑
i=1

(cos ϕi

∫ R2

R1

ri
2(R− ri cos ψi)

li3
dr) (7)

where i represents the ith column. The integral in Equation (7) can be expressed as

ζ(ri) =
∫ ri

2(R− ri cos ψi)

li3
dr =


R2

R−ri
+ 2R ln(R− ri)− (R− ri); ψi = 0

−(r2
i +3R2) cos ψi+Rri(2+3 cos(2ψi))

li

− 1
2 R(1 + 3 cos(2ψi)) ln(r− R cos ψi + l); ψi 6= 0

(8)
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Equation (7) can then be expressed as

∆g(u, ϕp, λp)|u=R = G∆ρ∆λ∆ϕ
n

∑
i=1

(cos ϕi·ζ(ri)|R2
R1
) (9)

Equation (7) is the nonlinear function of ST (b). Since the difference between the flow
point topography (b) and the radial (r) is constant, it can also be considered that Equation
(7) is the function of the radial (r). Equation (7) can then be expressed as

∆g(u, ϕp, λp)|u=R =
n
∑

i=1
f (bi) =

n
∑

i=1
f (ri)

f (ri) = G∆ρ∆λ∆ϕ(cos ϕi
∫ R2

R1

ri
2(R−ri cos ψi)

li3 dr)
(10)
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where bi and ri are the ST and geocentric radius of the i-point, respectively; and f ( )
represents a nonlinear operator. The result of linearizing (expand at r0, this paper sets
r0 = R− d) Equation (10) is

f (ri) = f (r0) + f ′(r0)·(ri − r0) + o(ri − r0)
2 (11)

where o(r− r0)
2 means that when (ri − r0)→ 0 , (ri − r0)

2 is infinitesimal. Equation (11)
is further treated as follows:

f (ri) = f ′(r0)ri + ( f (r0)− f ′(r0)r0) = ari ri + ξri (12)

Hence, the result of linearizing Equation (10) is

∆g(u, ϕp, λp)|u=R =
n

∑
i=1

(ai·bi) + ξp (13)

where ∆g(u, ϕp, λp)|u=R represents sea surface GA at research point; bi represents i-point
ST; and ξp is the difference between the nonlinear and linear calculation results of GA at
the research point. The linearization coefficient (ai) of the nonlinear operator in Equation
(10) can be calculated using the formula:

ai = f ′(ri) = G∆ρ∆λ∆ϕ(cos ϕi·
ri

2(R− ri cos ψi)

li3
) (14)

Equation (13) can then be transformed to the matrix form:

∆g(u, ϕp, λp)|u=R = (a1, a2, · · · , an)·(b1, b2, · · · , bn)
T + ξp (15)

2.2. Vertical Gravity Gradient Calculation

The VGG is derived from calculating the radial direction derivative of GA. According
to Equation (7), the VGG expression is as follows [29–31]:

∆gz(u, ϕp, λp)|u=R = −∂2T
∂u2 |u=R = G∆ρ∆λ∆ϕ

n

∑
i=1

(cos ϕi

∫ R2

R1

(−3ri
2(R− ri cos ψ)2

li5
+

r2
i

l3
i
)dr) (16)

Then,

ςz(ri) =
∫
(− 3r2

i (R−ri cos ψi)
2

l5
i

+
r2

i
l3
i
)dr =

(3R−4ri)R
(R−ri)

2 + 2 ln(R− r); ψ = 0

−R(11r2
i +3R2) cos ψi+ri(2r2

i +5R2+(4r2
i +6R2) cos(2ψi)−3rR cos(3ψi))

l3
i

− 1
2 (1 + 3 cos(2ψi)) ln(ri + l − R cos ψi); ψ 6= 0

(17)

Equation (16) can be expressed as

∆gz(u, ϕp, λp)|u=R = −∂2T
∂u2 |u=R = G∆ρ∆λ∆ϕ

n

∑
i=1

(cos ϕi·ςz(ri)|R2
R1
) (18)

Similar to GA calculation, the linearizing result of Equation (18) is

∆gz(u, ϕp, λp)|u=R =
n

∑
i=1

(azi·bi) + ξzp (19)
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where ξzp is the difference between the nonlinear and linear calculation results of VGG at
the research point. azi can be expressed as

azi = G∆ρ∆λ∆ϕ(cos ϕi·
−3ri

2(R− ri cos ψ)2

li5
+

r2
i

l3
i
) (20)

2.3. Geoid Height Calculation

According to Brun’s formula, the GH produced by the cylinder at the research point
is [28]

Nj(u, ϕp, λp)|u=R =
Tj(u, ϕp, λp)|u=R

γ
=

G∆ρ∆Ω
∫ R2

R1
1
l dr

γ
(21)

where γ is the mean gravity acceleration at the Earth’s surface. The GH at the research
point can be expressed as

N(u, ϕp, λp)|u=R =
G∆ρ∆λ∆ϕ

γ

n

∑
i=1

(cos ϕi

∫ R2

R1

ri
2

li
dr) (22)

where

ζN(ri) =
∫ ri

2

li
dr =

{
1
2 (R− ri)(3R + ri)− R2 ln(R− ri); ψi = 0
1
4 (2(ri + 3R cos ψi)li + R2(1 + 3 cos(2ψi)) ln(r− R cos ψi + li)); ψi 6= 0

(23)

Equation (22) can then be expressed as

N(u, ϕp, λp)|u=R =
G∆ρ∆λ∆ϕ

γ

n

∑
i=1

(cos ϕi·ζN(ri)|R2
R1
) (24)

Similar to GA and VGG calculation, the linearizing result of Equation (22) is

N(u, ϕp, λp)|u=R =
n

∑
i=1

(aNi·bi) + ξNp (25)

where ξNp is the difference between the nonlinear and linear calculation results of GH at
the research point. aNi can be expressed as

aNi = G∆ρ∆λ∆ϕ(cos ϕi·
ri

2

li
) (26)

2.4. Seafloor Topography Inversion

Assuming the initial observation value of ST at i-point is bi, the gravity observation
value at point P is τ (τ stands for GA or VGG or GH), and there are m gravity observations
in the study area, the error equation is expressed as



v1
v2
...

vn
vτ1

vτ2
...

vτm



=



1 0 · · · 0
0 1 · · · 0
...

... · · ·
...

0
aτ1

1
aτ2

1
...

aτm
1

0
aτ1

2
aτ2

2
...

aτm
2

· · ·
· · ·
· · ·
· · ·
· · ·

1
aτ1

n
aτ2

n
...

aτm
n



·


δb̂1
δb̂2

...
δb̂n

+



1 0 · · · 0
0 1 · · · 0
...

... · · ·
...

0
aτ1

1
aτ2

1
...

aτm
1

0
aτ1

2
aτ2

2
...

aτm
2

· · ·
· · ·
· · ·
· · ·
· · ·

1
aτ1

n
aτ2

n
...

aτm
n



·


b0

1
b0

2
...

b0
n

−



b1
b2
...

bn
τ1
τ2
...

τm



+



0
0
...
0
ξ1
ξ2
...

ξm



(27)
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Equation (27) can be written as

v = A·δ
^
b− (L−A·b0 − ξ) (28)

where v is the error matrix; A is the coefficient matrix; δ
^
b is the terrain adjustment values;

b0 is the terrain initial value matrix; L is ST observation values and gravity values; and,
ξ is the nonlinear and linear difference vector of the terrain calculation. Adopting the least
square adjustment method, the result of ST adjustment is δ

^
b =

(
ATPLA

)−1·(ATPLl)

l = (L−A·b0 − ξ)
(29)

where PL is the weight matrix of observations. The final result of the terrain adjustment is

^
b = b0 + δ

^
b (30)

The terrain covariance matrix and the observation covariance matrix can be expressed
as follows: {

Cb̂b̂ =
(
ATPLA

)−1

CLL = ACb̂b̂AT (31)

Introducing the Newton iteration method, when the error of the observation value is
taken into account, the iteration result of Equation (30) is

bn(r) = b0(r) + Cbb′A
T
n(AnCbb′A

T
n + Ess′)

−1·{L(s)−Anb0(r)− f (bn−1(r)) + Anbn−1(r)} (32)

where r and s are the estimated location and measurement data; bn(r) and bn−1(r) are
the vector at the n iteration and n−1 iteration; b0(r) is the initial value vector of ST; and L(s)
is a vector of the ST and sea surface gravity data. Matrix Ess′ accounts for the uncertainties
of the measurement data, while the covariance matrix Cbb′ accounts for uncertainties in the
ST. If the measurement is regarded as independent of each other, the measurement error
matrix is given by

Ess′ = σ2
s ·I (33)

where I is the unit matrix; and σ2
s is the variance of the measurement. The standard

deviation (SD) of satellite altimetry GA is generally about 2–5 mGal [24,32]. The root
mean square (RMS) of shipborne gravity is approximately 1–3 mGal after considering
crossover adjustments [33,34]. Considering the measurement error, navigation conditions,
and the high-frequency noise, the SD of acoustic bathymetry results is usually 300 m [23].
We modeled the uncertainty associated with a priori solution through the Hirvonen func-
tion [21–23]:

Cbb′ =
C0

1 + (ψ(r,r′)
ψ0

)
2 (34)

where C0 is a priori uncertainty between topographic heights; and ψ(r, r′) is the spherical
distance between the locations r and r’. Ramillien and Wright set 300–2000 m for the
parameter [23], while Calmant et al. set 500 m for the parameter. For the topography
correlation length (ψ0) [22], Calmant et al., set the value to 0.25◦ and 20 km [21,22]. To make
Equation (32) converge rapidly, the terrain covariance of each iteration can be adjusted and
optimized according to the covariance propagation law:

C
′
bb′ = Cbb′A

T
n(AnCbb′A

T
n + Ess′)

−1
AnCbb′ (35)

Based on the above discussion, the flow chart of ST inversion by a nonlinear iterative
least square method in the space domain is drawn, as shown in Figure 3.
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Figure 3. Flow chart of the seafloor topography inversion process by the nonlinear iterative least-
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3. Results
3.1. Data Preparation and Pre-Processing

A 2◦ × 2◦(33◦ S ∼ 35◦ S, 101◦ E ∼ 103◦ E) area of the MH370 suspected crash site
was chosen as the research area for this case study. The data sources are as follows: (1)
Satellite altimetry GA and VGG were obtained from the DTU17 model [3] and from SIO
V29.1. The satellite altimetry-deduced GA and VGG had 1′ × 1′ spatial resolution, shown
in Figure 4a,b. (2) Shipborne measurements (SM) from SONAR data used in the research
are published by the Australian government (http://www.ga.gov.au/about/projects/
marine/mh370-data-release). A total of 7556 SM data (about four-fifths of the total data)
were randomly selected as control points to compensate for non-inversion waveband ST.
The remaining one-fifth of the SM points were used as external checkpoints to evaluate
the ST model. The distribution of control points and checkpoints in the study area is
shown in Figure 4c, where the blue and red dots represent control points and checkpoints,
respectively. The statistical analysis of the gravity and SM data are summarized in Table 1.
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Table 1. Statistical results of gravity data and shipborne data in the study area.

Data Type Max Min Mean SD

GA (mGal) 103.50 −167.80 −27.98 43.30
VGG (Eotvos) 231.41 −132.22 −1.46 38.51

SM (m) −6971.99 −1339.06 −4702.02 783.46

The average sea depth is 4702.02 m (SD = 783.46 m), while the minimum sea depth is
6971.99 m. These values suggest that the study area’s terrain fluctuates sharply and that
improper search equipment selection may result in large losses (some search equipment
have to be near the seabed during detection). The mean GA is 28 mGal (SD = 43 mGal),
while the mean VGG is−1.5 Eotvos (SD = 38 Eotvos). The discrete control points are placed
into a 1′× 1′ sea depth grid using the Generic Mapping Tools (GMT). Using the gridded
VGG/GA results, and ST as input data, the coherence in waveband information between
the input data was obtained through coherence analysis technology [25]. The results are
shown in Figure 5, where the red points show the GA and ST wavelength consistency,
while the blue points present the VGG and ST wavelength consistency. Fourth-degree
polynomial regression was then used to obtain the fitting relation between wavelength and
coherence for the two sets.
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Figure 5. Coherence between the VGG/GA and seafloor topography (ST).

The coherence results in Figure 5 show that VGG has a stronger coherence with the ST
in the high-frequency segment, as compared with the GA. Since the signal-to-noise ratio
of the input data is 1:1 when the coherence is at 0.5, we think that the result of coherence
is significant when the value is above 0.5. Based on coherence analysis (Figure 5), strong
correlation (where coherence is greater than 0.5) between GA/ST wavebands ranges from
20 to 230 km, while for VGG/ST, the range is between 20 and 200 km. Thus, the range
20–200 km was chosen for the ST inversion band. The band-pass filter was used to filter
the VGG/GA input data, and the final results of the gravity data at the inversion band are
shown in Table 2 and Figure 6.

Table 2. Statistical results of gravity data at inversion band.

Data Type Max Min Mean SD

GA (mGal) 128.90 −119.06 4.64 × 10−9 38.86
VGG (Eotvos) 170.59 −114.58 4.33 × 10−9 34.42

In Figure 6, a negative belt can be seen running through the seafloor along the SE-NW
direction, and two positive zones are shown in the northwest portion. These observations
may suggest that the study area has two topographic uplifts in the northwest and a trench
running along the SE–NW direction.
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the inversion band.

3.2. Seafloor Topography Covariance Initial Value Determination

To achieve fast convergence using an iterative least square method in the ST inversion,
having more accurate initial input values and the covariance matrix is crucial. In this study,
we used the empirical formula of ST covariance [27] to obtain the statistical value of ST
covariance based on band-pass filtering gridding ST.

For two-dimensional process, the covariance function is [27]

(Cbb′)l1,l2 =
1

N1 − l1
1

N2 − l2

N1/2−l1−1

∑
n1=−N1/2

N2/2−l2−1

∑
n2=−N2/2

(bn1,n2 ·b′n1+l1,n2+l2); l1 = 0, · · · , N1 − 1, l2 = 0, · · · , N2 − 1 (36)

where l1 and l2 are distances in latitude and longitude; N1 and N2 are total length in
latitude and longitude. According to Equation (36), we can obtain covariance statistics for
different distances. The Hirvonen function parameters can then be derived according to
the results of covariance statistics using the least square method.

The band-pass filtering gridding ST is the dataset used for computing covariance statis-
tics. To fully obtain the effective statistical information of the band-pass filtering gridding
ST, 30 grids were left in the longitude and latitude directions, respectively, such that the
maximum distance of the statistical is 90′. The final covariance statistical results are shown
in Figure 7, where the blue box indicates statistical results greater than zero, while the black
box indicates negative covariance statistical results. Covariance is a non-negative number,
and a negative covariance is an invalid statistical value. The results show a covariance
statistical value of 0.6365 km2(C0) when the ST distance is zero, and correlation length
(CL) of 10.5′ when the covariance value is equal to C0/2. Using the C0 and CL as input
parameters, the fitting results by the Hirnoven covariance function [21,22] are shown in the
red curve in Figure 7. When the statistical covariance results are compared with the fitting
results, the comparative analysis shows the values are in good agreement. So it is more
appropriate to use the Hirnoven covariance function to obtain the ST covariance matrix in
the study area.
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3.3. Seafloor Topography Model Inversion

Taking a priori parameters (C0, CL) and ST distance matrix as input data (Figure 8a),
the inversion band ST covariance initial matrix is constructed by the Hirvonen covariance
function and is shown in Figure 8b.
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A reasonable integration radius needs to be set to calculate the VGG/GA using the ter-
rain prism integration method. Based on the recommendations of previous studies [20,21],
we selected 30′ as the integration radius. The actual input range of the sea surface VGG/GA
data in the inversion process was (33.5◦ S ∼ 34.5◦ S, 101.5◦ E ∼ 102.5◦ E). Due to the
influence of the edge effect, the effective range of the final ST model was reduced by 30′

compared to the initial input range, i.e., 1◦ × 1◦(33.5◦ S ∼ 34.5◦ S, 101.5◦ E ∼ 102.5◦ E).
To implement the inversion method smoothly, the variance of the input data (i.e., SM,
GA, and VGG) must be obtained. For the accuracy evaluation of the SM data, using the
third-class survey accuracy in the S-44 (fourth) hydrographic survey standards, when the
average depth of the study area is 4702.02 m, the SM accuracy (mean square deviation)
is 108.15 m. Given the satellite altimetry GA accuracy of about 2–5 mGal [24,35], the GA
accuracy was set to 3 mGal. The accuracy of the VGG derived from the altimetry datasets
was not reported. Thus, based on previous research, the accuracy of VGG was set to
15 Eotvos.

We applied the least square method to invert the ST model using the satellite altimetry
gravity as input data. We continuously tuned and optimized the ST covariance and initial
ST values to iteratively calculate the ST. The accuracy of the ST model was evaluated
against the prepared external check data. As shown in Figure 9a, the RMS value of the
ST model retrieved by GA changed with the number of inversion iterations. Using the
same inversion strategy, the iterative inversion results derived by VGG and integrating the
VGG and GA are shown in Figure 9b,c. As shown in Figure 9, the RMS of the inversion ST
model tends to converge with the increase in inversion iterations. After seven iterations to
restore the ST model, the ST covariance value was 0.6069 km2 using VGG/GA singularly
or combining VGG and GA.
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As shown in Figure 9, the result of ST inversion by the nonlinear iterative least square
method became stable after two iterations. This suggests that when accurate initial values
are used, two iterations are enough to inverse the ST model, consistent with the findings
by Calmant et al. [22] and Ramillien and Wright [23]. The accuracy of the ST model using
VGG was also found to be much higher than the GA inversion (comparing Figure 9a,b).
However, when both VGG and GA are used as input data for ST inversion, the final
checking accuracy of the ST model is less than the result of only using either VGG or GA.
This result could be affected by the inversion method’s mechanism, which would require
further analysis.

The ST model constructed by GA and VGG is named BAT_GA_ILS (Figure 10a) and
BAT_VGG_ILS (Figure 10b), respectively, and the ST model recovered by the combined
GA and VGG is named BAT_GA_VGG_ILS (Figure 10c). The red box in Figure 10 shows
the effective area of ST inversion. Since there is no gravity data input in the area outside
the red box, we believe that directly using this part as ST inversion results would not be
suitable. The ST results in this area are closely related to the initial ST. Figure 10 shows a
noticeable NW-SE trench in the study area and distinct topographic uplifts on both sides of
the trench in the northwest direction, similar to the sea surface gravity data.
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Compared with the ST inversion methods in the frequency domain, the nonlinear
iterative least-square inversion method has the following characteristics: (1) The sea
surface gravity data does not need grid processing, and the discrete data also meets the
inversion requirement; (2) Multiple gravity data, such as GH, GA, and VGG. can be
directly used in modeling; and (3) The influence of ST’s nonlinear term is considered.
For (1) and (2), the least square collocation (LSC) can also be performed, but calculating
the cross-covariance between seafloor topography and gravity data would be difficult.
Unfortunately, the nonlinear iterative least-square ST inversion method involves large-scale
matrix calculation in the space domain. The increase in the number of modeling inputs,
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modeling range, and integral terrain radius would significantly expand the corresponding
matrix dimension, increase computational complexity, and reduce efficiency.

In this study, we tested the processing efficiency of the nonlinear iterative least-square
inversion method using a personal computer with Intel (R) Core (TM) i7-7700hq CPU @
2.81GHz, 8 GB RAM, 64-bit operating system. It took nearly seven hours to complete seven
ST inversion iterations using GA/VGG alone and about 21.45 h to achieve seven inversion
iterations using integrated GA and VGG. Based on these results, in terms of computational
efficiency, regression analysis would be preferable in deriving a global ST model [12,13].

4. Discussion

DTU18 bathymetry model (hereinafter referred to as DTU18) and SIO V20.1 bathymetry
model (hereinafter referred to as SIO V20.1) can be derived by combining satellite altimetry
and multibeam data. In this study, we evaluated and compared the DTU18 and SIO V20.1,
and the results are shown in Figure 11a,b.
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The ST models generated by the different approaches (Figures 10 and 11) were assessed
and compared. In general, we found that BAT_GA_ ILS, BAT_VGG_ ILS, and BAT_GA_VGG_
ILS are in close agreement with the DTU18 and SIO V20.1 and can reflect the topographic
and geomorphological characteristics of the study area. We also found that BAT_GA_ILS,
BAT_VGG_ILS, BAT_GA_VGG_ILS, and SIO V20.1 provided better terrain characterization of
the study area than the DTU18. For example, DTU18 is smoother than other ST models in
the red box range, having a comparatively weaker ability to present terrain details. In the
highlighted portion of the image, three distinct topographic uplifts can be seen in the
southwest, recognizable topographic uplifts in the southeast, and noticeable topographic
changes in the northern seamount area four images (i.e., BAT_GA_ILS, BAT_VGG_ILS,
BAT_GA_VGG_ILS, and SIO V20.1).

In comparison, DTU18 has smooth terrain, and no topographic details, such as to-
pographic uplifts, can be seen in the same locations. This suggests that satellite altime-
try gravity data and nonlinear iterative least square method can be used in generating
the ST model. Using SIO V20.1 as reference, the topographic features of BAT_GA_ILS,
BAT_VGG_ILS, and BAT_ GA_VGG_ ILS are largely similar with SIO V20.1. However,
careful inspection of the images shows that BAT_VGG_ILS is better than BAT_GA_ILS
and BAT_GA_VGG_ILS. BAT_GA_ILS and BAT_GA_VGG_ILS show the terrain to be
relatively smooth. For example, in the seamount area (101.9◦ E, 33.2◦ S), BAT_VGG_ILS
shows more prominent terrain details, while BAT_GA_ILS and BAT_GA_VGG_ILS show
smoother textures. In the upper part of the red box, BAT_GA_ILS and BAT_GA_VGG_ILS
show smooth features at the terrain change, while BAT_VGG_ILS separates the terrain
features more distinctly. BAT_VGG_ILS contains more abundant high-frequency terrain
information than BAT_GA_ILS and BAT_GA_VGG_ILS. VGG contains higher frequencies
than GA from coherence analysis between the VGG/GA and ST.

The statistical results of the five ST models in the effective inversion area (within the
highlighted region) are shown in Table 3.
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Table 3. Statistical results of ST models (unit: m).

ST Model Max Min Mean Median SD

BAT_GA_ILS −7087.54 −1181.34 −4750.35 −4731.71 1002.40
BAT_VGG_ILS −6932.85 −1508.22 −4853.85 −4807.57 905.33

BAT_GA_VGG_ILS −7092.84 −1173.36 −4750.37 −4733.73 1005.73
DTU18 −6729.75 −1480.00 −4539.33 −4510.63 978.95

SIO V20.1 −6831.39 −1402.62 −4814.20 −4792.52 883.54

According to the statistical results of the ST models, the maximum sea depth is about
7000 m, and the average sea depth ranges from 4500 m to 4800 m. The study area’s topog-
raphy fluctuates considerably, and the SD of ST models is about 900 m. The complex topog-
raphy brings particular challenges for the MH370 debris search. SM data in the effective
inversion area (a total of 605 checkpoints) was used as the external check reference to eval-
uate the accuracy of each ST model. In the original 2◦ × 2◦(33◦ S ∼ 35◦ S, 101◦ E ∼ 103◦ E)
area, there were 1889 points, while in the final statistical 1◦ × 1◦(33.5◦ S ∼ 34.5◦ S,
101.5◦ E ∼ 102.5◦ E) region, the number of checkpoints was 695. Sea depth values of
the ST model were interpolated using the bilinear interpolation method, and the difference
between interpolated and actual sea depth values at checkpoints was calculated. The statis-
tical results of the validation assessment are summarized in Table 4. The relative accuracy
(RA) is defined as the ratio of RMS to the absolute value of the average sea depth in the
study area.

Table 4. Statistical checking results (unit: m).

ST Model Max Min Mean Median SD RMS CC RA (%)

BAT_GA_ILS 447.43 −589.43 −53.92 −25.20 169.47 177.70 0.9863 3.72
BAT_VGG_ILS 330.31 −246.38 44.72 47.70 86.57 97.37 0.9949 2.04

BAT_GA_VGG_ILS 442.27 −590.89 −53.92 −24.20 172.41 180.51 0.9860 3.78
DTU18 749.07 −1233.87−271.24 −203.50 349.86 442.45 0.9239 9.27

SIO V20.1 175.01 −182.81 −1.05 −1.35 51.13 51.10 0.9982 1.07
Note: CC denotes the correlation coefficient.

The correlation coefficients for BAT_GA_ILS, BAT_VGG_ILS, and BAT_GA_VGG_ILS
are all above 0.98, which is similar to the correlation coefficient for SIO V20.1 and higher
than for DTU18. The checking accuracy (RMS) for the SIO V20.1 is 51.10 m, which is
the highest among the ST models. The checking accuracy for BAT_VGG_ILS is much
higher than for BAT_GA_ILS and BAT_GA_VGG_ILS, while the checking accuracy for
BAT_GA_VGG_ILS is slightly lower than for BAT_GA_ILS.

The two gravity models used in the paper were derived from satellite altimetry data
GA and VGG. The data sources for the two gravity models are almost the same, so we
believe that the two models are not completely independent. The fusion of satellite altimetry
GA and VGG did not yield excellent results since (1) they do not contain the same frequency
content, and (2) high-frequency information is somehow suppressed (a larger SD value is
shown). However, the results of the study are still largely meaningful. Given gravity data
from different sources (e.g., shipborne, airborne, gravity satellite, etc.), nonlinear iterative
least square method can be used to estimate ST by combining multiple gravity data. In
this study, we explored the feasibility of combining GA and VGG to model ST in the space
domain. No previous study has used the VGG and GA together to predict bathymetry in
the space domain.

The checking accuracy for BAT_GA_ILS, BAT_VGG_ILS, and BAT_GA_VGG_ILS
are 2.49 times, 4.54 times, and 2.45 times the value of the DTU18 model. The RA for the
five ST models is smaller than 10% in the study area, and that of our inversion models is
smaller than 4%. The RMS of BAT_VGG_ILS, which was constructed using VGG, is smaller
than 100 m. The RA is close to 2%, while the RC of SIO V20.1 is close to 1%. Analyzing
and comparing the values of the ST model, the mean and median values for SIO V20.1
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are within 2 m, while the absolute mean values for BAT_GA_ILS and BAT_GA_VGG_ILS
are about 25 m. The absolute mean value for BAT_VGG_ILS is about 45 m, while for
DTU18 is about 270 m. These values indicate systematic and other types of error present in
BAT_GA_ILS, BAT_VGG_ILS, BAT_GA_VGG_ILS, and DTU18. These errors may have
been handled in the modeling process for SIO V20.1. For example, to reduce (or eliminate)
noise and downward continuation factors, high-frequency information has been filtered in
advance [12]. Moreover, systematic error in the ST model has been corrected through the
SM data (SIO V20.1 was constrained almost by MH370 bathymetric surveys), and the error
of input modeling data has been strictly processed.

Figure 12 presents the ratio of the checkpoints within a specific range to the total
number of checkpoints. Based on the figure, the performance of SIO V20.1 is better than the
other four models. In the 200 m range, the ratio of checkpoints for BAT_VGG_ILS is close
to 95%; about 80% for BAT_GA_ILS and BAT_GA_VGG_ILS, and less than 50% for DTU18.
While the curves in BAT_GA_ILS and BAT_GA_VGG_ILS roughly coincide, BAT_GA_ILS
performed slightly better than BAT_GA_VGG_ILS.
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The statistical analysis of the relative error for the five ST models is summarized in
Table 5. The relative error is defined as the ratio of the ST model checking difference to the
SM data at the checkpoint. The results show that the SD of relative error is smallest for SIO
V20.1 and largest for DTU18, while the values for BAT_GA_ILS and BAT_GA_VGG_ILS
are similar. The maximum relative errors in BAT_GA_ILS, BAT_VGG_ILS, BAT_GA_ILS,
and BAT_GA_VGG_ILS are less than 20%. In contrast, the value for DTU18 is close to 40%,
which suggests that our ST models are better than the DTU18 model for the given study
area. To analyze the performance of the ST model in different sea depths, the proportion of
relative error under different sea depth conditions is shown in Figure 13.

Table 5. Relative error statistics (%).

ST Model |Max| |Min| Mean SD

BAT_GA_ILS 19.82 0.01 1.47 4.14
BAT_VGG_ILS 15.61 0.01 −1.00 2.24

BAT_GA_VGG_ILS 19.97 0.01 1.48 4.21
DTU18 39.86 0.00 5.84 8.31

SIO V20.1 6.84 0.00 −0.01 1.23

To analyze the performance of the ST model at different sea depths, Figure 13 shows
the proportion of relative error under different sea depth conditions. The findings suggest
that with the increase in sea depth, the relative errors of the five ST models are decreasing
and converging. The relative errors for BAT_GA_ILS, BAT_VGG_ILS, BAT_GA_VGG_ILS,
and SIO V20.1 fluctuate near the zero value, while DTU18 has noticeable systematic
errors. The relative error variation for BAT_GA_VGG_ILS is very similar to BAT_GA_ILS.
Comparing Figure 13b with Figure 13a,c, the relative error of BAT_VGG_ILS is mainly
concentrated around the zero value, indicating an inversion advantage for VGG. This is an
interesting finding which may need further investigation in future research.
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To further analyze the effectiveness of the ST model in different seabed topographic
configurations, the spatial distribution of the relative error for each model was generated
and is presented in Figure 14. Large relative errors appear mainly in areas near the sea
mountain where the terrain fluctuates sharply, while small relative errors can be found over
generally flat terrain. Possible explanations for such findings are as follows: (1) The actual
terrain density may change due to the influence of the sedimentary layer, which could have
affected the calculation results; (2) The seafloor geology changes considerably over highly
rugged terrain, which can easily cause isostasy and anomalies in the sea surface gravity
data (i.e., terrain signal); and (3) For areas with steep and undulating terrain, the inherent
attenuation of the gravity field signal does not provide reliable results.
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DTU18 had significantly more areas with large relative error than the other four
ST models, while SIO V20.1 had the least. Furthermore, areas with high relative error
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were considerably greater in BAT_GA_ILS and BAT_GA_VGG_ILS than in BAT_VGG_ILS.
These findings suggest that SIO V20.1 performs comparatively better compared to any
other model. One possible reason is that the SIO V20.1 bathymetric model was constructed
using data from the MH370 bathymetric surveys, including checkpoint data. Moreover,
SIO V20.1 was constrained by the SM data after model construction [12,13], while the other
models were not. Smith et al. published a paper suggesting [13]

Their method was improved by adding a constrain-propagation step: grid cells
constrained by data were set to the median of data values in the cell, and then
a finite-difference interpolation routine was used to perturb neighboring esti-
mated values toward the constrained values. Thus, in well-surveyed areas, the
accuracy and resolution depended only on the grid spacing and the quality of
the constraints.

Table 6 shows the statistical analysis when our models are compared with SIO V20.1.
The SD for BAT_GA_ILS–SIO V20.1 and for BAT_GA_VGG_ILS–SIO V20.1 is about 200
m. When large variations are ignored, the systematic deviations for BAT_GA_ILS–SIO
V20.1 and BAT_GA_VGG_ILS–SIO V20.1 go down to about 30 m. For BAT_VGG_ILS–SIO
V20.1, the SD is about 120 m, and the maximum difference is about 690 m. This means that
BAT_VGG_ILS is closer to SIO V20.1.

Table 6. ST model difference statistics (Unit: m).

Model Comparison |Max| |Min| Mean Median SD RMS

BAT_GA_ILS- SIO
V20.1 911.27 0.01 63.85 28.31 198.48 208.47

BAT_VGG_ILS- SIO
V20.1 689.38 0.03 −39.65 −47.93 120.34 126.69

BAT_GA_VGG_ILS-
SIO V20.1 905.97 0.14 63.83 29.53 200.85 210.72

The statistical summary of differences within the different ranges is shown in Figure 15.
Assuming that the strict regulation of the normal distribution is ignored, the normal
distribution of the histogram is analyzed, and the difference distribution curve is generated
for each model (shown in red line). The results show that most of the disparities are kept
within 200 m. For BAT_GA_ILS and BAT_GA_VGG_ILS, 86% of the deviations with SIO
V20.1 are within 300 m. For BAT_VGG_ILS, 90% of the difference with SIO V20.1 is less
than 200 m.
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two iterations in the study area. This is true whether the sea surface GA/VGG is used 
alone, or whether GA and VGG are used together. Therefore, we suggest that the number 
of iterations in ST inversion should be set to 2 when considering calculation efficiency. 
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5. Conclusions

This paper thoroughly discussed the processes and rigorous analytical formulas in
the space domain for ST inversion using sea surface GH, GA, and VGG. We used the
Malaysia Airlines Flight MH370 Search Area as the study site to test the effectiveness of
the proposed algorithm. Considering the VGG/GA in the study area as external input,
ST models were constructed through nonlinear iterative least-square method in the space
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domain. The inversion results were then compared with DTU18 and SIO V20.1. Based on
the results, the following conclusions were made:

(1) Taking the 20–200 km inversion waveband ST as input data, the terrain covariance
was calculated using the empirical formula for terrain covariance. The statistical results
show that the terrain variance is 0.6365 km2 when the distance is zero, and the correlation
length is 10.5′.

(2) ST inversion using nonlinear iterative least square method tends to converge after
two iterations in the study area. This is true whether the sea surface GA/VGG is used
alone, or whether GA and VGG are used together. Therefore, we suggest that the number
of iterations in ST inversion should be set to 2 when considering calculation efficiency.

(3) The checking accuracy of the ST model using sea surface VGG was highest, which is
about twice the checking accuracy using sea surface GA or using combined GA and VGG
data. The checking accuracy of the ST model generated using combined GA and VGG was
not much higher than the accuracy of the model generated using only GA.

(4) The relative accuracy of the ST model constructed in this study was higher than 4%,
while the relative accuracy of DTU18 was 9.27%. Within the 200 m range, the percentage
of checkpoints for BAT_VGG_ILS was close to 95%, about 80% for BAT_GA_ILS and
BAT_GA_VGG_ILS, and less than 50% for DTU18.

Note that while the use of nonlinear iterative least square method to build the ST model
can effectively alleviate the effects of high order ST, the solution process involves large-scale
matrix inversion and other problems. The calculation efficiency is lower compared with the
ST frequency domain inversion method, which can seriously affect the processing time for
ST modeling. For future endeavors, we plan to introduce parallel calculations and explore
more optimal algorithms to improve the ST modeling efficiency in the space domain.
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