Spatial Heterogeneity in Dead Sea Surface Temperature Associated with Inhomogeneity in Evaporation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Diurnal Cycle of Summer SST
3.2. Maps of Spatial Heterogeneity in SST
3.3. Diurnal Cycle of Summer LST
3.4. Diurnal Cycle of Winter SST
3.5. Diurnal Cycle of Winter LST
4. Discussion
4.1. Explanaition of Spatial Inhomogeneity in SST
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
LT, Hours | Surface Solar Radiation (W m−2) | Air Temperature (°C) | ||
---|---|---|---|---|
Summer | Winter | Summer | Winter | |
1 | 0 ± 0 | 0 ± 0 | 31.7 ± 1.0 | 18.1 ± 1.0 |
2 | 0 ± 0 | 0 ± 0 | 31.2 ± 0.9 | 17.8 ± 1.0 |
3 | 0 ± 0 | 0 ± 0 | 30.8 ± 0.9 | 17.5 ± 1.0 |
4 | 0 ± 0 | 0 ± 0 | 30.4 ± 0.9 | 17.2 ± 1.0 |
5 | 0 ± 0 | 0 ± 0 | 30.1 ± 0.9 | 17.0 ± 1.0 |
6 | 78 ± 30 | 0 ± 0 | 30.5 ± 0.9 | 16.7 ± 1.0 |
7 | 260 ± 45 | 25 ± 10 | 31.7 ± 0.9 | 16.7 ± 1.0 |
8 | 468 ± 45 | 152 ± 30 | 32.3 ± 0.9 | 17.9 ± 1.0 |
9 | 661 ± 50 | 306 ± 45 | 32.8 ± 0.9 | 19.0 ± 1.0 |
10 | 814 ± 50 | 425 ± 55 | 33.5 ± 0.9 | 19.9 ± 1.0 |
11 | 896 ± 50 | 502 ± 60 | 34.3 ± 0.9 | 20.6 ± 1.0 |
12 | 916 ± 60 | 522 ± 60 | 35.1 ± 0.9 | 21.2 ± 1.0 |
13 | 863 ± 60 | 477 ± 60 | 36.0 ± 0.9 | 21.7 ± 1.0 |
14 | 742 ± 60 | 381 ± 60 | 36.7 ± 1.0 | 22.0 ± 1.0 |
15 | 557 ± 60 | 239 ± 60 | 37.1 ± 1.0 | 22.1 ± 1.0 |
16 | 343 ± 60 | 103 ± 40 | 37.2 ± 1.0 | 21.9 ± 1.0 |
17 | 147 ± 60 | 0 ± 0 | 37.0 ± 1.0 | 21.0 ± 1.0 |
18 | 44 ± 15 | 0 ± 0 | 36.4 ± 1.0 | 20.3 ± 1.0 |
19 | 0 ± 0 | 0 ± 0 | 35.9 ± 1.0 | 19.8 ± 1.0 |
20 | 0 ± 0 | 0 ± 0 | 35.3 ± 1.0 | 19.5 ± 1.0 |
21 | 0 ± 0 | 0 ± 0 | 34.7 ± 1.0 | 19.3 ± 1.0 |
22 | 0 ± 0 | 0 ± 0 | 33.9 ± 1.0 | 19.0 ± 1.0 |
23 | 0 ± 0 | 0 ± 0 | 33.0 ± 1.0 | 18.7 ± 1.0 |
24 | 0 ± 0 | 0 ± 0 | 32.3 ± 1.0 | 18.4 ± 1.0 |
LT, Hours | Surface Temperature (°C) | ||||||
---|---|---|---|---|---|---|---|
TLw2 ± SD | TLw1 ± SD | Tw ± SD | Tm ± SD | Te ± SD | TLe1 ± SD | TLe2 ± SD | |
1 | 26.6 ± 0.6 | 31.3 ± 0.5 | 32.8 ± 0.5 | 32.9 ± 0.5 | 32.4 ± 0.5 | 29.6 ± 0.6 | 27.0 ± 0.6 |
2 | 26.4 ± 0.6 | 31.1 ± 0.5 | 32.7 ± 0.4 | 32.8 ± 0.4 | 32.1 ± 0.5 | 29.2 ± 0.6 | 26.8 ± 0.6 |
3 | 25.9 ± 0.6 | 30.7 ± 0.5 | 32.3 ± 0.4 | 32.4 ± 0.4 | 31.7 ± 0.5 | 28.7 ± 0.5 | 26.2 ± 0.6 |
4 | 25.3 ± 0.6 | 30.2 ± 0.5 | 32.0 ± 0.4 | 32.1 ± 0.4 | 31.3 ± 0.4 | 28.1 ± 0.5 | 25.6 ± 0.6 |
5 | 25.0 ± 0.6 | 29.9 ± 0.5 | 31.7 ± 0.4 | 31.8 ± 0.4 | 30.9 ± 0.4 | 27.8 ± 0.5 | 25.3 ± 0.6 |
6 | 26.9 ± 0.6 | 30.8 ± 0.5 | 31.6 ± 0.4 | 31.6 ± 0.4 | 30.9 ± 0.4 | 28.3 ± 0.5 | 26.6 ± 0.6 |
7 | 31.4 ± 0.6 | 32.9 ± 0.5 | 31.9 ± 0.4 | 31.6 ± 0.4 | 31.3 ± 0.4 | 30.1 ± 0.5 | 29.7 ± 0.6 |
8 | 36.5 ± 0.6 | 35.4 ± 0.5 | 32.6 ± 0.4 | 31.9 ± 0.4 | 32.3 ± 0.4 | 33.0 ± 0.5 | 33.9 ± 0.6 |
9 | 40.8 ± 0.6 | 37.7 ± 0.5 | 33.2 ± 0.4 | 32.4 ± 0.4 | 33.6 ± 0.4 | 36.3 ± 0.5 | 38.3 ± 0.6 |
10 | 44.4 ± 0.6 | 39.7 ± 0.5 | 34.0 ± 0.4 | 32.9 ± 0.4 | 35.1 ± 0.4 | 40.0 ± 0.6 | 42.6 ± 0.7 |
11 | 47.0 ± 0.7 | 41.4 ± 0.6 | 34.7 ± 0.4 | 33.5 ± 0.4 | 36.6 ± 0.5 | 43.3 ± 0.6 | 46.3 ± 0.7 |
12 | 48.5 ± 0.8 | 42.5 ± 0.6 | 35.3 ± 0.4 | 34.0 ± 0.4 | 37.7 ± 0.5 | 45.8 ± 0.7 | 49.0 ± 0.7 |
13 | 49.0 ± 0.8 | 42.9 ± 0.5 | 35.4 ± 0.4 | 34.1 ± 0.4 | 38.1 ± 0.5 | 47.0 ± 0.6 | 50.0 ± 0.7 |
14 | 48.2 ± 0.8 | 42.3 ± 0.5 | 35.3 ± 0.4 | 34.0 ± 0.4 | 38.0 ± 0.5 | 46.9 ± 0.6 | 49.4 ± 0.7 |
15 | 46.0 ± 0.7 | 41.2 ± 0.5 | 35.1 ± 0.4 | 34.0 ± 0.4 | 37.5 ± 0.4 | 45.4 ± 0.6 | 47.2 ± 0.6 |
16 | 42.7 ± 0.6 | 39.6 ± 0.5 | 34.8 ± 0.4 | 33.8 ± 0.4 | 36.5 ± 0.4 | 42.5 ± 0.6 | 43.4 ± 0.6 |
17 | 38.5 ± 0.6 | 37.4 ± 0.5 | 34.4 ±0.4 | 33.8 ± 0.4 | 35.4 ± 0.4 | 39.0 ± 0.6 | 38.7 ± 0.6 |
18 | 34.8 ± 0.6 | 35.8 ± 0.5 | 34.2 ± 0.4 | 33.8 ± 0.4 | 34.6 ± 0.4 | 35.8 ± 0.6 | 34.7 ± 0.6 |
19 | 32.5 ± 0.6 | 34.6 ± 0.5 | 33.9 ± 0.4 | 33.6 ± 0.5 | 33.9 ± 0.4 | 33.9 ± 0.6 | 32.5 ± 0.6 |
20 | 31.1 ± 0.6 | 33.8 ± 0.5 | 33.6 ± 0.5 | 33.4 ± 0.5 | 33.5 ± 0.5 | 32.9 ± 0.6 | 31.2 ± 0.6 |
21 | 30.0 ± 0.6 | 33.2 ± 0.5 | 33.5 ± 0.5 | 33.4 ± 0.5 | 33.3 ± 0.5 | 32.2 ± 0.6 | 30.2 ± 0.6 |
22 | 29.0 ± 0.6 | 32.6 ± 0.5 | 33.4 ± 0.5 | 33.3 ± 0.5 | 33.1 ± 0.5 | 31.4 ± 0.6 | 29.3 ± 0.6 |
23 | 28.1 ± 0.6 | 32.2 ± 0.5 | 33.2 ± 0.5 | 33.2 ± 0.5 | 32.9 ± 0.5 | 30.8 ± 0.6 | 28.5 ± 0.6 |
24 | 27.3 ± 0.6 | 31.7 ± 0.5 | 33.1 ± 0.5 | 33.1 ± 0.5 | 32.7±0.5 | 30.2 ± 0.6 | 27.7 ± 0.6 |
LT, Hours | Surface Temperature (°C) | ||||||
---|---|---|---|---|---|---|---|
TLw2 ± SD | TLw1 ± SD | Tw ± SD | Tm ± SD | Te ± SD | TLe1 ± SD | TLe2 ± SD | |
1 | 10.5 ± 1.0 | 16.9 ± 0.6 | 21.0 ± 0.5 | 21.6 ± 0.5 | 19.6 ± 0.5 | 13.9 ± 0.9 | 10.6 ± 1.0 |
2 | 10.2 ± 1.0 | 16.8 ± 0.6 | 20.9 ± 0.5 | 21.5 ± 0.5 | 19.5 ± 0.5 | 13.5 ± 0.9 | 10.3 ± 1.0 |
3 | 9.9 ± 1.0 | 16.5 ± 0.6 | 20.8 ± 0.5 | 21.4 ± 0.5 | 19.4 ± 0.5 | 13.3 ± 0.9 | 9.9 ± 1.0 |
4 | 9.7 ± 1.0 | 16.3 ± 0.6 | 20.7 ± 0.5 | 21.4 ± 0.5 | 19.3 ± 0.5 | 13.1 ± 0.9 | 9.7 ± 1.0 |
5 | 9.5 ± 1.0 | 16.2 ± 0.6 | 20.7 ± 0.5 | 21.4 ± 0.5 | 19.2 ± 0.5 | 12.8 ± 0.9 | 9.4 ± 1.0 |
6 | 9.3 ± 1.0 | 16.2 ± 0.6 | 20.6 ± 0.4 | 21.3 ± 0.5 | 19.0 ± 0.5 | 12.6 ± 0.9 | 9.2 ± 1.0 |
7 | 10.2 ± 1.0 | 16.6 ± 0.7 | 20.7 ± 0.4 | 21.2 ± 0.5 | 19.0 ± 0.5 | 12.8 ± 0.9 | 9.8 ± 1.0 |
8 | 13.7 ± 1.0 | 18.6 ± 0.7 | 21.1 ± 0.4 | 21.4 ± 0.5 | 19.6 ± 0.5 | 14.5 ± 1.0 | 12.3 ± 1.0 |
9 | 18.3 ± 1.0 | 20.9 ± 0.7 | 21.6 ± 0.4 | 21.6 ± 0.5 | 20.5 ± 0.5 | 17.2 ± 1.0 | 16.0 ± 1.0 |
10 | 22.3 ± 1.0 | 23.1 ± 0.7 | 22.1 ± 0.4 | 21.8 ± 0.5 | 21.5 ± 0.5 | 20.5 ± 1.0 | 20.0 ± 1.0 |
11 | 25.6 ± 1.0 | 24.8 ± 0.7 | 22.5 ± 0.4 | 22.0 ± 0.5 | 22.6 ± 0.5 | 23.6 ± 1.0 | 23.6 ± 1.0 |
12 | 27.7 ± 1.0 | 25.9 ± 0.7 | 22.8 ± 0.4 | 22.2 ± 0.5 | 23.6 ± 0.5 | 26.0 ± 1.0 | 26.1 ± 1.0 |
13 | 28.3 ± 1.0 | 26.2 ± 0.7 | 22.9 ± 0.4 | 22.4 ± 0.5 | 24.2 ± 0.5 | 27.4 ± 1.0 | 27.3 ± 1.0 |
14 | 27.4 ± 1.0 | 25.6 ± 0.7 | 22.9 ± 0.4 | 22.4 ± 0.5 | 24.3 ± 0.5 | 27.5 ± 1.0 | 27.1 ± 1.0 |
15 | 24.6 ± 1.0 | 24.2 ± 0.7 | 22.6 ± 0.4 | 22.4 ± 0.5 | 23.8 ± 0.5 | 25.9 ± 1.0 | 24.8 ± 1.0 |
16 | 20.3 ± 1.0 | 21.9 ± 0.7 | 22.1 ± 0.5 | 22.1 ± 0.5 | 22.6 ± 0.5 | 22.4 ± 1.0 | 20.5 ± 1.0 |
17 | 16.3 ± 1.0 | 19.9 ± 0.7 | 21.7 ± 0.5 | 21.9 ± 0.5 | 21.4 ± 0.5 | 18.9 ± 1.0 | 16.3 ± 1.0 |
18 | 14.5 ± 1.0 | 19.0 ± 0.7 | 21.5 ± 0.5 | 21.9 ± 0.5 | 20.9 ± 0.5 | 17.2 ± 0.9 | 14.4 ± 1.0 |
19 | 13.4 ± 1.0 | 18.4 ± 0.6 | 21.4 ± 0.5 | 21.8 ± 0.5 | 20.6 ± 0.5 | 16.4 ± 0.9 | 13.5 ± 1.0 |
20 | 12.7 ± 1.0 | 18.0 ± 0.6 | 21.3 ± 0.5 | 21.8 ± 0.5 | 20.4 ± 0.5 | 15.9 ± 0.9 | 12.9 ± 1.0 |
21 | 12.1 ± 1.0 | 17.8 ± 0.6 | 21.2 ± 0.5 | 21.8 ± 0.5 | 20.2 ± 0.5 | 15.3 ± 0.9 | 12.2 ± 1.0 |
22 | 11.7 ± 1.0 | 17.6 ± 0.6 | 21.2 ± 0.5 | 21.7 ± 0.5 | 20.0 ± 0.5 | 14.9 ± 0.9 | 11.7 ± 1.0 |
23 | 11.2 ± 1.0 | 17.4 ± 0.6 | 21.1 ± 0.5 | 21.6 ± 0.5 | 19.8 ± 0.5 | 14.5 ± 0.9 | 11.4 ± 1.0 |
24 | 10.7 ± 1.0 | 17.1 ± 0.6 | 21.0 ± 0.5 | 21.6 ± 0.5 | 19.8 ± 0.5 | 14.2 ± 0.9 | 11.0 ± 1.0 |
References
- Kishcha, P.; Pinker, R.T.; Gertman, I.; Starobinets, B.; Alpert, P. Observations of positive sea surface temperature trends in the steadily shrinking Dead Sea. Nat. Hazards Earth Syst. Sci. 2018, 18, 3007–3018. [Google Scholar] [CrossRef] [Green Version]
- Ziv, B.; Saaroni, H.; Pargament, R.; Harpaz, T.; Alpert, P. Trends in rainfall regime over Israel, 1975–2010, and their relationship to large-scale variability. Reg. Environ. Chang. 2013, 14, 1751–1764. [Google Scholar] [CrossRef]
- Oren, A.; Shilo, M. Population dynamics of Dunaliella parva in the Dead Sea1. Limnol. Oceanogr. 1982, 27, 201–211. [Google Scholar] [CrossRef]
- Kishcha, P.; Starobinets, B.; Pinker, R.T.; Kunin, P.; Alpert, P. Spatial Non-Uniformity of Surface Temperature of the Dead Sea and Adjacent Land Areas. Remote Sens. 2019, 12, 107. [Google Scholar] [CrossRef] [Green Version]
- Kottmeier, C.; Agnon, A.; Al-Halbouni, D.; Alpert, P.; Corsmeier, U.; Dahm, T.; Eshel, A.; Geyer, S.; Haas, M.; Holohan, E.P.; et al. New perspectives on interdisciplinary earth science at the Dead Sea: The DESERVE project. Sci. Total Environ. 2016, 544, 1045–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafir, H.; Alpert, P. Regional and local climatic effects on the Dead-Sea evaporation. Clim. Chang. 2010, 105, 455–468. [Google Scholar] [CrossRef]
- Shafir, H.; Jin, F.J.; Lati, Y.; Cohen, M.; Alpert, P. Wind Channeling by the Dead-Sea Wadis. Open Atmos. Sci. J. 2008, 2, 139–152. [Google Scholar] [CrossRef]
- Hecht, A.; Gertman, I. Dead Sea meteorological climate. In Book Fungal Life in the Dead Sea; Nevo, E., Oren, A., Wasser, S.P., Eds.; A.R.G. Ganter: Ruggell, Lichtenstein, 2003; pp. 68–114. [Google Scholar]
- Bitan, A. The wind regime in the north-west section of the Dead-Sea. Arch. Meteorol. Geophys. Bioklimatol. Ser. B 1974, 22, 313–335. [Google Scholar] [CrossRef]
- Bitan, A. The influence of the special shape of the dead-sea and its environment on the local wind system. Arch. Meteorol. Geophys. Bioklimatol. Ser. B 1976, 24, 283–301. [Google Scholar] [CrossRef]
- Lensky, N.G.; Lensky, I.M.; Peretz, A.; Gertman, I.; Tanny, J.; Assouline, S. Diurnal Course of Evaporation from the Dead Sea in Summer: A Distinct Double Peak Induced by Solar Radiation and Night Sea Breeze. Water Resour. Res. 2018, 54, 150–160. [Google Scholar] [CrossRef]
- Metzger, J.; Nied, M.; Corsmeier, U.; Kleffmann, J.; Kottmeier, C. Dead Sea evaporation by eddy covariance measurements vs. aerodynamic, energy budget, Priestley–Taylor, and Penman estimates. Hydrol. Earth Syst. Sci. 2018, 22, 1135–1155. [Google Scholar] [CrossRef] [Green Version]
- Duguay-Tetzlaff, A.; Bento, V.A.; Göttsche, F.-M.; Stöckli, R.; Martins, J.P.A.; Trigo, I.; Olesen, F.-S.; Bojanowski, J.S.; Dacamara, C.C.; Kunz, H. Meteosat Land Surface Temperature Climate Data Record: Achievable Accuracy and Potential Uncertainties. Remote Sens. 2015, 7, 13139–13156. [Google Scholar] [CrossRef] [Green Version]
- Duguay-Tetzlaff, A.; Stöckli, R.; Bojanowski, J.; Hollmann, R.; Fuchs, P.; Werscheck, M. CM SAF Land SUrface Temperature dataset from METeosat First and Second Generation—Edition 1 (SUMET Ed. 1); Satellite Application Facility on Climate Monitoring, DWD: Germany, 2017; Available online: https://doi.org/10.5676/EUM_SAF_CM/LST_METEOSAT/V001 (accessed on 22 December 2020).
- Nehorai, R.; Lensky, I.M.; Lensky, N.G.; Shiff, S. Remote sensing of the Dead Sea surface temperature. J. Geophys. Res.-Ocean 2009, 114, 05021. [Google Scholar] [CrossRef]
- Kunin, P.; Alpert, P.; Rostkier-Edelstein, D. Investigation of sea-breeze/foehn in the Dead Sea valley employing high reso-lution WRF and observations. Atmos. Res. 2019, 229, 240–254. [Google Scholar] [CrossRef]
- IMS—Israel Meteorological Service. Measurements of 2-m Air Temperature and Pyranometer Measurements of Surface Solar Radiation at Two Meteorological Stations Located in the Vicinity of the Dead Sea: Sdom and Ein Gedi Spa. Available online: https://ims.data.gov.il/ims/7 (accessed on 22 December 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kishcha, P.; Starobinets, B. Spatial Heterogeneity in Dead Sea Surface Temperature Associated with Inhomogeneity in Evaporation. Remote Sens. 2021, 13, 93. https://doi.org/10.3390/rs13010093
Kishcha P, Starobinets B. Spatial Heterogeneity in Dead Sea Surface Temperature Associated with Inhomogeneity in Evaporation. Remote Sensing. 2021; 13(1):93. https://doi.org/10.3390/rs13010093
Chicago/Turabian StyleKishcha, Pavel, and Boris Starobinets. 2021. "Spatial Heterogeneity in Dead Sea Surface Temperature Associated with Inhomogeneity in Evaporation" Remote Sensing 13, no. 1: 93. https://doi.org/10.3390/rs13010093
APA StyleKishcha, P., & Starobinets, B. (2021). Spatial Heterogeneity in Dead Sea Surface Temperature Associated with Inhomogeneity in Evaporation. Remote Sensing, 13(1), 93. https://doi.org/10.3390/rs13010093