Compact Matrix-Exponential-Based FDTD with Second-Order PML and Direct Z-Transform for Modeling Complex Subsurface Sensing and Imaging Problems
Abstract
:1. Introduction
2. ME-Based DZT-SO-PML Formulations
3. Results and Discussion
3.1. 3D Airborne Transient Electromagnetic Problems
3.2. DZT-ME-SO-PML-Based FDTD Applied to the Reverse-Time Migration Method
4. Conclusions
- The proposed DZT-ME-SO-PML scheme could not only attenuate the strong propagating wave, but also absorb the evanescent wave and reduce late-time reflection, for 3D subsurface sensing.
- The DZT-ME-SO-PML-based FDTD can be applied to the RTM method so that the distribution information of hard rocks in the soil can be predicted in advance, in order to prevent the drill bit damage from affecting the soil-drilling task of the Chang’E-5.
- For the ATEM problems, we could achieve the secondary-field data from the receiver, analyze the distribution of scattering field, and finally predict the location of objects.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayhan, S.; Pauli, M.; Scherr, S.; Göttel, B.; Bhutani, A.; Thomas, S.; Jaeschke, T.; Panel, J.M.; Vivier, F.; Eymard, L.; et al. Millimeter-Wave Radar Sensor for Snow Height Measurements. IEEE Trans. Geosci. Remote Sens. 2017, 55, 854–861. [Google Scholar] [CrossRef]
- Wehling, J.H. Multifunction millimeter-wave systems for armored vehicle application. IEEE Trans. Microw. Theory Tech. 2005, 53, 1021–1025. [Google Scholar] [CrossRef]
- Freundorfer, A.P.; Iizuka, K. A study on the scattering of radio waves from buried spherical targets using the step frequency radar. IEEE Trans. Geosci. Remote Sens. 1993, 31, 1253–1255. [Google Scholar] [CrossRef]
- Moallem, M.; Sarabandi, K. Polarimetric Study of MMW Imaging Radars for Indoor Navigation and Mapping. IEEE Trans. Antennas Propagat. 2014, 62, 500–504. [Google Scholar] [CrossRef]
- Nelson, L.M.; Levine, J. Understanding limitations of GPS carrier phase frequency transfer on a transatlantic baseline. In Proceedings of the 2001 IEEE International Frequency Control Symposium and PDA Exhibition, Seattle, WA, USA, 8 June 2001; pp. 205–210. [Google Scholar]
- Kemp, M.A.; Franzi, M.; Haase, A.; Jongewaard, E.; Whittaker, M.T.; Kirkpatrick, M.; Sparr, R. A high Q piezoelectric resonator as a portable VLF transmitter. Nat. Commun. 2019, 10, 1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, T.J.; Chew, W.C. Accurate analysis of wire structures from very-low frequency to microwave frequency. IEEE Trans. Antennas Propagat. 2002, 50, 301–307. [Google Scholar]
- Yee, K. Numerical solution of initial boundary value problems involving maxwell equations in isotropic media. IEEE Trans. Antennas Propagat. 1966, AP-14, 302–307. [Google Scholar]
- Elsherbeni, A.Z.; Demir, V. The Finite-Difference Time-Domain Method for Electromagnetics with Matlab Simulations, 2nd ed.; SciTECH Publishing: Norwood, NJ, USA, 2015; pp. 1–27. [Google Scholar]
- Bérenger, J.P. A perfectly matched layer for the absorption of electromagnetic waves. J. Computat. Phys. 1994, 114, 185–200. [Google Scholar] [CrossRef]
- Roden, J.A.; Gedney, S.D. Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media. Microw. Opt. Technol. Lett. 2000, 27, 334–339. [Google Scholar] [CrossRef]
- Ramadan, O. Auxiliary differential equation formulation: An efficient implementation of the perfectly matched layer. IEEE Microw. Wirel. Compon. Lett. 2003, 13, 69–71. [Google Scholar] [CrossRef]
- Li, J.; Dai, J. An efficient implementation of the stretched coordinate perfectly matched layer. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 322–324. [Google Scholar] [CrossRef]
- Sullivan, D.M. Frequency-dependent FDTD methods using Z transforms. IEEE Trans. Antennas Propag. 1992, 40, 1223–1230. [Google Scholar] [CrossRef]
- Ramadan, O.; Oztoprak, A.Y. Z-transform implementation of the perfectly matched layer for truncating FDTD domains. IEEE Microw. Wirel. Compon. Lett. 2003, 13, 402–404. [Google Scholar] [CrossRef]
- Kuzuoglu, M.; Mittra, R. Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. IEEE Microw. Guided Wave Lett. 1996, 6, 447–449. [Google Scholar] [CrossRef]
- Berenger, J.P. Evanescent waves in PML’s: Origin of the numerical reflection in wave-structure interaction problems. IEEE Trans. Antennas Propag. 1999, 47, 1497–1503. [Google Scholar] [CrossRef]
- Berenger, J.P. Numerical reflection from FDTD-PMLs: A comparison of the split PML with the unsplit and CFS PMLs. IEEE Trans. Antennas Propag. 2002, 50, 258–265. [Google Scholar] [CrossRef]
- Feng, N.; Yue, Y.; Zhu, C.; Liu, Q.H.; Wan, L. Efficient Z-Transform Implementation of the D-B CFS-PML for Truncating Multi-term Dispersive FDTD Domains. Appl. Comput. Electrom. 2014, 29, 190–196. [Google Scholar]
- Gedney, S.D.; Zhao, B. An Auxiliary Differential Equation Formulation for the Complex-Frequency Shifted PML. IEEE Trans. Antennas Propagat. 2010, 58, 838–847. [Google Scholar] [CrossRef]
- Giannopoulos, A. An improved new implementation of complex frequency shifted PML for the FDTD method. IEEE Trans. Antennas Propag. 2008, 56, 2995–3000. [Google Scholar] [CrossRef]
- Correia, D.; Jin, J.M. Performance of regular PML, CFS-PML, and second-order PML for waveguide problems. Microw. Opt. Technol. Lett. 2006, 48, 2121–2126. [Google Scholar] [CrossRef]
- Correia, D.; Jin, J.M. On the development of a higher-order PML. IEEE Trans. Antennas Propag. 2005, 53, 4157–4163. [Google Scholar] [CrossRef]
- Giannopoulos, A. Unsplit implementation of higher order PMLs. IEEE Trans. Antennas Propag. 2012, 60, 1479–1485. [Google Scholar] [CrossRef]
- Feng, N.; Li, J.; Zhao, X. Efficient FDTD implementation of the higher-order PML using DSP techniques for arbitrary media. IEEE Trans. Antennas Propag. 2013, 61, 2623–2629. [Google Scholar] [CrossRef]
- Feng, N.; Li, J. Efficient DSP-higher-order PML formulations for the metal plate buried in dispersive soil half-space. IEEE Trans. Electromagn. Compact. 2012, 54, 1178–1181. [Google Scholar] [CrossRef]
- Feng, N.; Li, J. Novel and efficient FDTD implementation of higher-order perfectly matched layer based on ADE method. J. Computat. Phys. 2013, 232, 318–326. [Google Scholar] [CrossRef]
- Feng, N.; Yue, Y.; Zhu, C.; Wan, L.; Liu, Q.H. Second-order PML: Optimal choice of nth-order PML for truncating FDTD domains. J. Computat. Phys. 2015, 285, 71–83. [Google Scholar] [CrossRef]
- Feng, N.; Yue, Y.; Liu, Q.H. Direct Z-transform Implementation of the CFS-PML based on Memory- minimized method 2015. IEEE Trans. Microw. Theory Tech. 2015, 63, 877–882. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, J.; Cui, T.J. An Alternative PML Implementation for Arbitrary Media. IEEE Trans. Antennas Propag. 2019, 67, 612–615. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Feng, N.; Zhuang, M.; Feng, X.; Fang, G.; Liu, Q.H. A 3-D High-Order Reverse-Time Migration Method for High-Resolution Subsurface Imaging with a Multistation Ultra-Wideband Radar System. IEEE J.-STARS 2019, 12, 744–751. [Google Scholar] [CrossRef]
- Fa, W.; Zhu, M.H.; Liu, T.; Plescia, J.B. Regolith stratigraphy at the Chang’e-3 landing site as seen by lunar penetrating radar. Geophys. Res. Lett. 2015, 42, 10179–10187. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Y.; Blewett, D.T.; Cloutis, E.A.; Zheng, Y.; Chen, J. Submicroscopic metallic iron in lunar soils estimated from the in situ spectra of the Chang’e-3 mission. Geophys. Res. Lett. 2017, 44, 3485–3492. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Y.; Zhang, G.; Liu, B.; Ren, X.; Xu, R.; Li, C. An Empirical Model to Estimate Abundance of Nanophase Metallic Iron (npFe0) in Lunar Soils. Remote Sens. 2020, 12, 1047. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Ling, Z.; Zhang, J.; Chen, J.; Cao, H.; Liu, C.; Qiao, L.; Fu, X.; He, Z.; Xu, R.; et al. Photometric Normalization of Chang’e-4 Visible and Near-Infrared Imaging Spectrometer Datasets: A Combined Study of In-Situ and Laboratory Spectral Measurements. Remote Sens. 2020, 12, 3211. [Google Scholar] [CrossRef]
No. | Position (m) | No. | Position (m) | No. | Position (m) | No. | Position (m) |
---|---|---|---|---|---|---|---|
1 | (−0.80, 0.00, 0.95) | 4 | (−0.44, 0.00, 0.95) | 7 | (−0.08, 0.00, 0.95) | 10 | (0.76, 0.00, 0.95) |
2 | (−0.68, 0.00, 0.95) | 5 | (−0.32, 0.00, 0.95) | 8 | (0.52, 0.00, 0.95) | 11 | (0.52, 0.12, 0.95) |
3 | (−0.56, 0.00, 0.95) | 6 | (−0.20, 0.00, 0.95) | 9 | (0.64, 0.00, 0.95) | 12 | (−0.02, 0.18, 1.13) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, N.; Zhang, Y.; Wang, G.P.; Zeng, Q.; Joines, W.T. Compact Matrix-Exponential-Based FDTD with Second-Order PML and Direct Z-Transform for Modeling Complex Subsurface Sensing and Imaging Problems. Remote Sens. 2021, 13, 94. https://doi.org/10.3390/rs13010094
Feng N, Zhang Y, Wang GP, Zeng Q, Joines WT. Compact Matrix-Exponential-Based FDTD with Second-Order PML and Direct Z-Transform for Modeling Complex Subsurface Sensing and Imaging Problems. Remote Sensing. 2021; 13(1):94. https://doi.org/10.3390/rs13010094
Chicago/Turabian StyleFeng, Naixing, Yuxian Zhang, Guo Ping Wang, Qingsheng Zeng, and William T. Joines. 2021. "Compact Matrix-Exponential-Based FDTD with Second-Order PML and Direct Z-Transform for Modeling Complex Subsurface Sensing and Imaging Problems" Remote Sensing 13, no. 1: 94. https://doi.org/10.3390/rs13010094
APA StyleFeng, N., Zhang, Y., Wang, G. P., Zeng, Q., & Joines, W. T. (2021). Compact Matrix-Exponential-Based FDTD with Second-Order PML and Direct Z-Transform for Modeling Complex Subsurface Sensing and Imaging Problems. Remote Sensing, 13(1), 94. https://doi.org/10.3390/rs13010094