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Abstract: Terrestrial laser scanning (TLS) is an important part of urban reconstruction and terrain
surveying. In TLS applications, 4-point congruent set (4PCS) technology is widely used for the global
registration of point clouds. However, TLS point clouds usually enjoy enormous data and uneven
density. Obtaining the congruent set of tuples in a large point cloud scene can be challenging. To
address this concern, we propose a registration method based on the voxel grid of the point cloud
in this paper. First, we establish a voxel grid structure and index structure for the point cloud and
eliminate uneven point cloud density. Then, based on the point cloud distribution in the voxel
grid, keypoints are calculated to represent the entire point cloud. Fast query of voxel grids is used
to restrict the selection of calculation points and filter out 4-point tuples on the same surface to
reduce ambiguity in building registration. Finally, the voxel grid is used in our proposed approach
to perform random queries of the array. Using different indoor and outdoor data to compare our
proposed approach with other 4-point congruent set methods, according to the experimental results,
in terms of registration efficiency, the proposed method is more than 50% higher than K4PCS and
78% higher than Super4PCS.

Keywords: TLS; 4PCS; voxel grid; keypoint

1. Introduction
1.1. Background

With the ever-increasing computing power of computers in recent years, the price of
TLS instruments has significantly declined. TLS point cloud data are widely used in robot
navigation, three-dimensional reconstruction, terrain surveying, and other directions [1,2].
Fast and efficient TLS point cloud registration is not only a key technology but also a
major research hotspot. TLS point cloud registration is the process of fusing point cloud
data with different coordinate systems into a single coordinate system [3]. Since point
cloud data are usually not collected all at a single time, it is often mandatory to perform a
rigid transformation of three-dimensional space rotation and translation on the data from
different poses.

The most commonly used algorithm in registration is Iterative Closest Point (ICP) [4].
The ICP algorithm is used to find the nearest point in the target point cloud for each data
point in the origin point cloud. The rigid body transformation is estimated using the closest
point pairs and is applied to the source point cloud. The closest point pair and the rigid
body transformation can be determined through iterations, and the convergence can then
be calculated. The ICP algorithm requires a good initial pose; otherwise, it would easily
fall into the local optimum. In the past two decades, many studies have improved the
convergence range and convergence speed of ICP. Popular ICP variants [5–7], such as
Go-ICP [6] and Symmetric Objective ICP [7], both have good performance. Since the input
point cloud has uneven density and incomplete overlap, there is no complete point-to-point
relationship. Some scholars have carried out relevant studies on the corresponding relation
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for selection [8]. To solve the corresponding point problem, two types of registration
methods have emerged: using feature points and without feature points.

The first type designs a robust feature descriptor by detecting keypoints of the original
point cloud to obtain feature points. The corresponding point pair in the feature point
cloud is determined to calculate the transformation matrix to complete the registration.
However, when the original point cloud density is uneven and the overlap rate is not
high, the quality and the speed of feature extraction using such methods will be limited.
The second type of registration method identifies common subsets through sampling and
establishes the correspondence between two subsets. One such example is the widely used
4-point congruent set algorithm. However, due to noise and outliers, this method has
difficulty finding a high-quality sample subset, which will greatly affect the registration
results. In recent years, some studies have proposed adopting the advantages of these
two methods and combining them into a single comprehensive approach, creating a new
research direction of TLS point cloud registration with a low overlap rate while a large
data volume.

Based on the point cloud data of the voxel grid, a three-dimensional point cloud
registration method combining local feature points and a 4-point congruent set is proposed
in this paper. First, a voxel grid about the original point cloud and a linear index relationship
should be established. Some outlier points are eliminated through the distribution of
points in the voxel grid. Based on the point’s distance from the grid center, a density
value is assigned to each grid through the Gaussian function. Using the density value of
the point cloud data in the voxel grid, the density conversion rate is calculated for the
different directions, and the feature points are filtered out. The way to search feature points
is inspired by the Harris corner detection [9], which has been widely used for images.
Compared with the keypoints detection based on the normal, the feature point based
on the density conversion rate is more stable. Moreover, the use of the query advantage
of the voxel grid index to filter the 4-tuple base can effectively reduce the probability
of misregistration. The query advantage of the voxel grid index is used to improve the
speed of verifying the congruent candidate set, the process of finding the largest common
point-set (LCP) [10]. This registration method has high efficiency and accuracy for TLS
point cloud data with low overlap density and uneven distribution.

The succeeding sections of this paper are arranged as follows. In chapter 1, we discuss
relevant studies on point cloud registration. Section 2 presents the proposed registration
method in detail, including the voxel grid establishment, keypoints extraction, base filter,
and rapid search and verification method. Section 3 discusses the experiments evaluating
the efficiency and accuracy of our proposed method. Finally, the discussion and conclusions
of the study are presented in Sections 4 and 5.

1.2. Reviews

Two types of registration methods have emerged: using feature points and without
feature points. In this section, we review the description of features and the 4-point
congruent set.

1.2.1. Keypoints and Feature Points

With smaller amounts of data, keypoints can better represent the whole information
about an object. Keypoints have been widely applied in point cloud registration. The
keypoints detection must be robust to rotation and noise, with unchanged resolution.
Numerous keypoints extraction methods for point cloud data draw on two-dimensional
image keypoints, such as the sift algorithm proposed by David Lowe [11,12]. This method
uses a local feature description algorithm based on scale space and remains strong robust-
ness. Lindeberg [13] extends a similar method in calculating the sift3D keypoints and
provides the three-dimensional application of the sift operator. However, the viewpoint
transformation angle of the point cloud data can change easily, and the density is uneven,
resulting in unstable sift3D features.
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Sipiran [14] draws on the Harris algorithm [9], Harris3D algorithm is proposed. In
the point cloud data, the covariance matrix composed of the normal vector of the point
cloud is used to replace the gradient change covariance matrix of the two-dimensional
image. Intrinsic Shape Signature (ISS) [15] is a method that uses neighborhood information
to find normal vectors to establish a local coordinate system and uses the relationship
between eigenvalues to characterize the degree of point features. It satisfies the rotation
invariance well and thus is used by many scholars. Similarly, Zai et al. [16] proposed
adaptive covariance (ACOV) descriptor using principal component analysis, which has
good robustness to noise. The normal aligned radial feature (NARF) [17] method uses the
scanning attributes of the instrument to perform planar or spherical projections on the
point cloud data to obtain image depths. The edges of the object area are determined by the
scene edge (a sudden change in depth value). The object edge is then used as a reference
to find the stable keypoints through the fractional transformation of the surface along the
main direction.

Numerous studies have analyzed feature point descriptions and directly used feature
descriptors to encode points of interest to match point clouds. Rusu proposed the persistent
feature histograms (PFH) method in 2008 [18], which analyzes the difference in normal
vectors near a point to capture the surrounding geometric information. The Fast point
feature histograms (FPFH) [19] adjusted the PFH and improved the calculation efficiency.
The Radius-Based Surface Descriptor (RSD) [20] fits the sphere using the normal vector
of the surrounding keypoints to encode the descriptor, which also is effective. All the
approaches mentioned use the normal vector, given that it can provide information around
it. However, the normal vector can be computationally intensive and unstable at the corners.
Dong Z et al. [21] proposed a binary shape context descriptor that can quickly and stably
calculate three-dimensional feature points. In recent years, the feature point search method
based on neural networks has also become popular [22–24]. For instance, PointNet [24] is a
new deep learning model for processing point cloud data that has been used for a variety
of cognitive tasks for point cloud data, such as classification semantic segmentation and
target recognition. One drawback of PointNet is the inability to obtain local features, which
makes it difficult to analyze complex scenarios. In PointNet++ [23], two main methods
have been previously employed to improve the network and better extract local features.
These methods work well, but the premise requires sufficient training data. The weakly
supervised feature point detection method [25] and the unsupervised key point detection
method [26] proposed by Lee et al. do not require manual labeling and ground-truth, and
outstanding in terms of repeatability, distinctiveness, and computational efficiency.

Here we propose a fast keypoints detection method based on a voxel grid. The original
data are unevenly distributed and have noise, and the data needs to be preprocessed. Our
strategy to handle it is to grid the point cloud voxels. We assign a density value to each
voxel grid according to the distribution of the number of points in the grid to normalize
(unitize) the data and reduce the influence of noise and outliers. Then directly establish the
Hessian matrix according to the gradient of the voxel grid density value transformation
and quickly calculate the key points through the Hessian matrix, which avoids the time-
consuming operation of calculating the normal vector.

1.2.2. Four-Point Congruent Sets and Related Methods

In recent years, the registration method without feature points, which uses mathe-
matical rules to identify corresponding pairs from different clouds, has become a research
hotspot. Point cloud registration requires only three sets of corresponding point pairs to
calculate the transformation matrix and complete the registration. Mach proposed the Ran-
dom sample consensus (RANSAC) method [27] to find three corresponding points in two
point clouds and then calculate the transformation matrix based on three corresponding
points. However, finding the three-point correspondence set can be difficult due to the
presence of noise, and the method requires large amounts of calculations.
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The 4-point congruent set (4PCS) [28] method modified the RANSAC and increased
the correspondence set requirement to four points, resulting in increased robustness and
less computational complexity of the cube, namely the square level. Mellado [29] proposed
an intelligent search method based on this (i.e., Super4PCS method), optimizing the time
complexity from square to linear. Both the 4PCS and Super4PCS use four points on the
plane, which can result in wrong alignments for buildings with repeated structures and
unsatisfactory registration effect. Similar findings were reported, and potential solutions
were provided in [30–32]. For instance, two generalized 4PCS algorithms, i.e., G-4PCS
and G-Super4PCS, were introduced in [30,31], where the authors exploited the richer
geometry of 3-D data and generalized the four-point base by removing the planarity
constraint. Zhang et al. [33] extended the G-Super4PCS method to the registration of
photogrammetric and TLS point clouds in geology applications, where the scale difference
between the two sources of point clouds was considered. Theiler [34–36] found that 4PCS
is not well suited to TLS point clouds with large data volume and proposed the Keypoints-
4PCS(K4PCS) that uses fewer keypoints to represent objects. Other 4-point congruent set
methods have also been developed based on semantic keypoints [37]. In the past two
years, numerous approaches have been developed, combining feature points with 4-point
consistent set methods, such as the MSSF-4PCS [38] and A4PCS [39] methods. In addition,
some scholars have used RANSAC to change the registration elements. For example, B
Yang et al. [40] constructed a triangle using the intersection point of line features and
carried out registration using the triangle concordant relation. Yusheng Xu et al. [41] used
planar uniform sets for registration.

The above-mentioned methods have good performance in some respects. These
methods are based on the mathematical ideas of RANSAC. The above methods have done
a lot of research on speeding up the base query and reducing the number of candidate
sets, but the experiment shows that the most time-consuming is the verification phase.
In the 4PCS and Super4PCS source code, this step takes up 80–90% of the overall time.
At this stage, it is necessary to find the largest common point-set (LCP) to judge whether
the transformation matrix is optimal. Finding the largest common point-set is a research
problem itself. We made improvements in three aspects, respectively: extracting key
points, filtering out excellent bases, and improving the query method of finding the largest
common point-set to effectively improve the registration efficiency.

1.3. Our Works

Although the existing methods have shortened running time and improved registra-
tion accuracy, the registration results are not satisfactory in particular cases. When the
overlap rate of scanned data from two stations is not high, or the outliers are relatively
large, finding the corresponding common subset can be difficult. Thus, the computational
complexity becomes relatively high. In the 4-point congruent set framework, verification
is mostly time-consuming. This means that reducing the times of verifications as well as
time consumed by a single verification is very important. When Super4PCS is used for
scenes with repeated structures or symmetrical structures such as buildings, it is easy to
encounter registration misalignment, leading to low registration success rates. In response
to these problems, we propose a method based on a point cloud voxel grid.

The main contributions of this paper are as follows:
1. Establish a grid for the data, and assign density values to the grid by Gaussian

weighting according to the distribution of points in the grid to eliminate the adverse effects
of uneven data density and noise on the registration. The keypoints are quickly calculated
through the transformation gradient of the grid density value, which reduces the amount
of calculation and improves the registration efficiency.

2. When the quaternion base is on the same surface, more candidate sets are generated,
and thus it is easier to mismatch synthetic scenes such as buildings. To solve this problem,
the four-tuple bases are selected, and the four-tuple bases on the surface of the same object
are filtered out to improve the robustness of the algorithm.
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3. In evaluating the candidate congruent set, we improved the determination of LCP
and optimized the point search using the voxel grid random query instead of the KD-Tree
search. The overall time efficiency increased by 70% compared to the original Super4PCS.

2. Materials and Methods

Our method follows the same framework as the 4PCS. It includes four core steps: point
cloud voxelization, feature point generation, base extraction, and candidate congruent
set extraction verification. First, the point cloud is voxelized into a three-dimensional
grid structure, and the voxel grid is indexed. A density value is given to each voxel
grid using the Gaussian function based on the density distribution of surrounding points.
By calculating the second-order partial derivative of the voxel grid, the Hessian matrix
of the density transformation gradient can then be obtained. Inspired by the Harris
keypoints detection method [9], the keypoints are calculated and optimized using the
Hessian matrix eigenvalues. The RANSAC-based strategy is adopted to find the quadruple
base in the target point cloud according to the overlap rate and the size of the point
cloud range. The point cloud is used to quickly query and filter out the quadruple bases
on the surface of the same object (such as walls). Finally, the corresponding quaternion
candidate set is determined by matching the affine transformation ratio, and the candidate
transformation matrix is calculated by Singular Value Decomposition (SVD) decomposition
for each candidate quaternion. We use our own voxel grid index structure to find the
LCP method, evaluate the correctness of the corresponding candidate transformation
matrix, and obtain the optimal transformation Topt from the candidate transformation
matrix. The Topt parameter is employed to register the point clouds using two steps of
rotation and translation. Figure 1 illustrates the process and summarizes the core steps and
results involved.
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2.1. Voxelization and Indexing Structure Generation

Since the TLS data have uneven density distribution and large data volume, its direct
usage has very low registration efficiency, and the registration success rate is low. Generally,
data preprocessing is performed before registration. The first step for these raw data is
the establishment of a voxel grid. The point cloud is traversed to find the minimum
(minX, MinY, minZ) and maximum (maxX, maxY, maxZ) point values in the X, Y, and Z
directions. Given the voxel grid size (VoxelSize), the voxel grid can then be generated. As
shown in Figure 2b, a voxel grid of

[
maxX−minX

VoxleSize

]
∗
[

maxY−minY
VoxleSize

]
∗
[

maxZ−minZ
VoxleSize

]
is obtained,

where [∗] is the rounding operation. The point cloud is traversed again to calculate the
voxel grid coordinates (Vi.x, Vi.y, Vi.z) for each point, which can be obtained using the
following equation: 

Vi.x =
[

Pointi.X−minX
VoxleSize

]
Vi.y =

[
Pointi.Y−minY

VoxleSize

]
Vi.z =

[
Pointi.Z−minZ

VoxleSize

] Pointi ∈ PointCloud (1)
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where Pointi is the i-th point in the point cloud. All indexes belonging to the voxel grid are
saved so that the voxel grid can quickly find the points it contains. Since the voxel grid is a
three-dimensional array, we can quickly determine whether the voxel grid contains points,
and the time complexity is O(1). Due to the uneven data distribution, we use the voxel
grid to perform a normalization process on the data, and each voxel grid takes one point as
the calculation point.
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2.2. Keypoint Extraction

Keypoint detection combines the high accuracy of the registration method with feature
elements and the fast registration time from the registration technique without feature
elements. On the one hand, the extracted feature points retain the regular characteristics of
the point cloud distribution and have good feature representation. On the other hand, it
significantly reduces the number of point clouds and minimizes redundancy in the 4-point
congruent set. It also limits time consumption of the 4PCS algorithm and improves feature
representation of the 4-point congruent set, therefore improving registration accuracy.

2.2.1. Assign Voxel Grid Density Value by Point Distribution

Many point cloud keypoints feature point detection methods have been developed
in the past two decades, and most use normal vector calculations. Normals contain local
point cloud information, and their usage has multiple advantages. However, normals of
areas with sudden change rates (such as wall corners and edges) and point cloud edges
(occlusion edges) can be very unstable. In addition, normal calculations can be extremely
time-consuming.

In the proposed framework, a density value is assigned using the number of points
in each voxel grid to correspond to the gray value of the image. If the number of points
in a single voxel grid is changed into a density value, the voxel grid formed by these
small cubes is shown to be non-rotation-invariant, and a sawtooth effect is produced. To
overcome this phenomenon, a Gaussian blur operation is performed to eliminate aliasing
and smoothen the data. The following equations are used to calculate the density value VD
of Gaussian filtering:

VD =
3

∑
i=−3

3

∑
j=−3

3

∑
k=−3

n

∑
n=1

ωn (2)

ωn =
1√

2πσ2
exp

−1
2σ2 (||Xn−Xc||)2

(3)

where i, j, and k are the neighborhood range of the current grid (the value range is i,j,k∈
{−3, −2, −1, 0, 1, 2, 3}); n is the number of original points contained in the current grid;ω
is the density-weighted value based on the positional relationship between the original
point and the grid center; Xn is the three-dimensional coordinate information of the current
calculation point in the original point cloud; and XC is the current grid center. These
equations can be used to calculate the 343 (7*7*7) field grid of the current grid.
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If the number of original points in the grid is used in computing the density, many
original point position information may be lost. To avoid the loss of the original character-
istics, the weighting method can be used. Points far from the grid center contribute less
to the density value, while closer points contribute more. The use of weights effectively
solves the problem of grid aliasing, as shown in Figure 2b.

2.2.2. Keypoints Detection by Density Gradient

Based on the traditional Harris feature point extraction algorithm, the sudden change
in density value is used as reference for the corner point measurement. Using the weighted
density voxel grid, the Hessian matrix MD of the voxel grid point density value is ex-
pressed as:

MD =

 dxdx dxdy dxdz
dydx dydy dydz
dzdx dzdy dzdz

 (4)

In the formula, dx, dy, dz are the partial derivatives of the grid point density values in
the x, y, and z directions, The resulting graph of the first derivative is shown in Figure 3b,
respectively, and dxdy are the second-order partial derivatives. Since the density grid is
continuous when constructed, the forward difference quotient (Equations (5) and (6)) can
be obtained in the form of the definition formula of the derivative when calculating the
partial derivative:

fx =
f(x + ∆x)− f(x)

∆x
(5)

fxx =
fx(x + ∆x)− fx(x)

∆x
(6)Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 22 
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To avoid large errors from the selection of ∆x on the overall result, the weighted
five-point difference quotient is used to replace the two-point method forward difference
quotient method in Equations (7) and (8). The weighted difference values of adjacent points
are used in the following equations to generate a more accurate approximation:

fx =
wi(f(x + 2∆x)−f(x− 2∆x))+wj(f(x + ∆x)−f(x− ∆x))

4∆x
(7)

fxx =
wi(fx(x + 2∆x)−fx(x− 2∆x))+wj(fx(x + ∆x)−fx(x− ∆x))

4∆x
(8)

If the value of each element in MD is obtained, the density covariance matrix M of
each grid point can be calculated. The corner point value RD of each grid point can then be
calculated using the formula:

RD= detMD − α(traceMD)
3 (9)
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where detMD is the determinant of the matrix MD; traceMD is the direct trace of the
matrix MD; α is an empirical constant with a value range of 0.04~0.06. Based on the input
thresholds, when RD > threshold, the current point can be judged as a feature point.

2.2.3. Keypoints Location Optimization

For discretely distributed data points, the maximum value detected may not be the
true maximum value for the discrete data point fitting equation. The selection of the
Harris feature points is determined based on the calculated RD (in Equation (9)) and the
threshold value of the corner point. The larger the value RD, the better the characteristic
representativeness of the point. Specific points are more suited to represent the local
characteristics, depending on whether the corner point can approach the actual maximum
value in the functional relationship of the local fitting. Here, we adopt the two-step method,
and the Taylor expansion formula of point X in the neighborhood of (X̂ = X + ∆X) is
expressed as:

R(X̂) = R(X) +
∂RT

∂X
∆X +

1
2

∆XT ∂2R
∂X

∆X (10)

where R(X) is the angle value at the grid point X. The first-order derivative vector ∂RT

∂X and

the second-order partial derivative matrix ∂2R
∂X of the density grid have been obtained in

the previous stage and can be used directly in this process. If X̂ is an extreme point, R(X̂)
has the maximum value. The derivative of Equation (10) can be obtained again. When the
derivative is exactly 0, X̂ can be obtained as:

X̂ = X− ∂2R−1

∂X2
∂R
∂X

(11)

such that X̂ is the new coordinate point. Bringing Formula (9) back to Formula (7), the
new value of the Harris corner at this updated coordinate point can then be obtained. In
the entire iterative process, after each calculation of X̂, ∆X should be calculated. When the
value of any element of ∆x,∆y,∆z is greater than 0.5 grid units, it means that the maximum
value point is closer to the neighboring grid. Position optimization is performed on the
neighbor grid. X is replaced with X̂ to continue the iteration process until the difference of
R(X̂) obtained at the interval of two times is less than the given threshold, or the number of
iterations reaches the upper limit (usually set to 5 times). When the value of R(X̂) becomes
less than the corner point threshold, the iteration stops, and the nearest result is returned.

2.3. Voxel-Based 4-Point Congruent Sets
2.3.1. Base for Voxel Grid Filter

In the building’s TLS point cloud data, when looking for the base in P, the point cloud
will be misregistered if the four coplanar points are set on the surface of an object. The
voxel grid can be used to filter and find the coplanar 4-point-set base (a, b, c, d). First,
calculate the triangle formed by points a, b, and c. For segments ab, bc, and bc, the decimal
points in the line segments are taken. Query the voxel grid for each equally divided point
to determine whether there is a point cloud around the point. A value of 1 means there is a
point cloud and 0 for no point cloud. This means that there is a 10-dimensional code for
the line segments between the points. The following is an example for the line segment ab:

Pi = A + i/11 ∗ (B−A) i ∈ [1 ∼ 10] (12)
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where A is the three-dimensional coordinates of point a, B is the three-dimensional coordi-
nates of point b, and Pi is the three-dimensional coordinates of the i-th bisecting point. The
bisecting points can then be calculated:

fi =

 1 voxel(
[

Pointi.X−minX
VoxleSize

]
,
[

Pointi.Y−minY
VoxleSize

]
,
[

Pointi.Z−minZ
VoxleSize

]
) ∈ voxel

0 voxel(
[

Pointi.X−minX
VoxleSize

]
,
[

Pointi.Y−minY
VoxleSize

]
,
[

Pointi.Z−minZ
VoxleSize

]
) /∈ voxel

(13)

The code Fab(fi)i ∈ [1, 10] is obtained for line segment ab. If ||Fab ||, ||Fac ||, ||Fbc ||
in base (a, b, c, d) are greater than 8, the base can be considered to lie on a plane. This
procedure can effectively filter out the coplanar 4-point-set of non-identical object planes,
therefore improving efficiency and reducing the number of calculations.

2.3.2. Voxel Grid Improved LCP Search

After more than ten years of development, significant improvements and modifica-
tions have been proposed on the 4PCS framework, such as the K4PCS and Super4PCS. Most
of the improvements have focused on reducing the number of calculations by improving
the search speed of candidate point pairs, increasing constraints, and reducing the number
of candidate sets. In our experiments, we found that the most time-consuming procedure in
the entire framework is finding the LCP, which accounts for 80% to 90% of the overall time.

In the previous method, the KD-Tree or OctoTree index relationship is established for
the point cloud P. Using the correspondence between the candidate set and the base, the
rotation matrix T is calculated, and the rotation is applied to the point cloud Q. For each
point in the rotated point cloud Q, determine whether point cloud P exists in the range
δ near the query point. If there is a midpoint P within the range δ near the query point,
consider the point as a “goodPoint”. Using the ratio of goodPoint in Q, find the highest
score (the one with the most goodPoint) in the candidate sets. The complexity of finding
the largest common subset of a candidate set is calculated using O(N log(M)) where N is
the number of points in the Q point cloud, M is the number of points in the point cloud P,
and log(M) is the query time. Here, part of the computational memory space is sacrificed,
and the query raster index can complete the query at O(1) complexity. The LCP can then
be calculated using the formula:

VLCP =
∑

Nq
i=1 fi

Nq
(14)

where Nq is the number of points in the target point cloud, and fi is a single-point query
(as defined in Equation (13)).

3. Results
3.1. Experimental Data Sets

The proposed method was evaluated using different scanning instruments and TLS
point clouds in different scenarios. Four data sets were analyzed, comprised of two indoor
and two outdoor data. The first data are the indoor point cloud of BaoLi Commercial
Housing collected by Faro Foucus3D X130. The second data were obtained from the
Redwood open data set [42], which was collected using the Faro Focus 3D X330 HDR
Scanner. The third data set is from Jacob University [43]. This data set was recorded using
a Riegl VZ400 Scanner in the City Center of Bremen. The last data set was from the open
data set of Wuhan University [44], which was collected with Leica P40 Scanner (Hereinafter
referred to as WHU Residence). For two indoor data, the subsampling operation with the
minimum point spacing of 0.005 was carried out; for two outdoor data, the subsampling
operation with the minimum point spacing of 0.04 was adopted. We then generated the
root mean square error (RMSE), as defined in Equation (17). Table 1 lists the details of the
data set scenarios used in the experiments. Figure 4 is the visualization of the data.
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Table 1. Information of experimental data set (the RMSE computed on 50,000 points).

Parameters
BaoLi House Redwood Apartment Bremen City WHU Residence

Source Target Source Target Source Target Source Target

Dimension of
bounding box(m)

X 12.79 10.51 3.96 7.51 526.63 336.67 239.77 271.61
Y 14.30 6.78 6.01 8.08 651.84 684.12 117.32 150.59
Z 2.77 9.47 2.86 2.75 120.51 96.05 92.99 96.77

Number of Points (thousand) 9250 10749 1492 2174 7484 6885 5820 6145

RMSE (m) 0.95 0.09 3.59 1.64

3.2. Evaluation Metric

We mainly evaluate the keypoints extraction and registration results. All experiments
were performed on a 64-bit Windows 10 mobile workstation, 8 GB RAM, and Intel (R) Core
(TM) i7-9750H @2.6 GHz CPU.

3.2.1. Evaluation Metric of Keypoints Extraction

Our evaluation criteria for keypoint extraction comprise two aspects: repeatability
and efficiency. Repeatability refers to the ability of a detector to detect keypoints in the
same locations. This is the most important metric for a critical point detector [26].

(1) Repeatability: Given point clouds {P, P̃} of the same scene with a different viewpoint,
there is a known transformation matrix T ∈ SE(3) between the data of the two point
clouds. A keypoint detector detects a set of keypoints K = {k1, k2, · · · , km} and
K̃ = {k̃1, k̃2, · · · , k̃m} from {P, P̃}, respectively. A keypoint ki ∈ P is repeatable if the
distance between Tki and its nearest neighbor k̃ j ∈ P̃ is less than the threshold ε.
For the value of ε in the experiment, we use 0.1 m for indoor data (BaoLi House and
Redwood Apartment) and 0.2 m for outdoor data (Bremen City and WHU Residence).
The formula for repeatable judgment of keypoint is:

Rep(ki) =

{
1 ||Tki − k̃ j|| ≤ ε

0 ||Tki − k̃ j|| > ε
(15)

The formula for calculating the Repeatability is:

Repeatability =
∑P Rep(ki)

Nmb(K)
(16)

where Nmb(K) is the number of keypoints in point cloud P.
(2) Efficiency: After defining some parameters, we averaged 50 experimental running

times of keypoints detection.

3.2.2. Evaluation Metric of Registration

The registration effect is evaluated using the reference registration results. The refer-
ence registration is achieved through manual calibration and then refined using standard
ICP. Our evaluation criteria for registration performance comprise three aspects: time,
registration accuracy rate, and success rate. These features have been adopted in similar
studies (Theiler et al., 2014, [35]; Dong et al., 2018, [21]). Time performance is related to
efficiency, including the time cost of the entire workflow. For the experiments, the execution
times using the Super4PCS method and our method were recorded for each scan.
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(1) Registration Accuracy: The root mean square error (RMSE) between the reference
registration results of the converted input set was used in evaluating the registra-
tion accuracy:

RMSE =

√
1
n

n

∑
i=1

(
xi − x′i

)2
+
(
yi − y′i

)2
+
(
zi − z′i

)2 (17)

where n is the number of points in the point cloud; (xi, yi, zi) the i-th point coordi-
nate in the source point cloud S after transformation; and (x′i, y′i, z′i) is the i-th point
coordinate in the reference registration point cloud.

(2) Success rate: Based on the root mean error, the registration success rate (RS) can be
directly calculated using the formula:

RS =

{
1 RMSE ≤ δ
0 RMSE > δ

(18)

The RMSE threshold can be set according to the application requirements. The formula
for calculating the successful registration rate (SRR) is:

SRR =
NRS

N
(19)

where NRS is the number of successful registrations, and N is the number of experi-
ments. Since our method involves the RANSAC process, SRR is evaluated in a series
of 50 trials.

(3) Computational Efficiency: The calculation efficiency is evaluated using the average
total running time Tt of the entire process. Take the average of 500 experimental data
for the overall coarse registration.

3.3. Keypoints Extraction

Fifty experiments were performed on each data set, and the final results were averaged
as presented in Table 2. For the one object data, the larger the voxel, the smaller the voxel
grid generated by the data, resulting in fewer keypoints in the final extraction. The increase
of the voxel grid will lead to a decrease in repeatability because larger voxel grids increase
the difficulty of location optimization, and a small number of point optimization locations
also deviate. At the same time, the larger the voxel grid, the greater the time requirement
since the Gaussian operation involves more points when density values are assigned to
the grid.

Table 2. Keypoint extraction under different voxel grids (repeatability defined in Section 3.2.1).

Data Set
Voxel Source Scan Target Scan

Size (m) Key Points Repeat-Ability Time (ms) Key Points Repeat-Ability Time (ms)

BaoLi House
0.1 5487 96.1 36 5334 97.2 24
0.2 2248 95.6 91 2443 95.9 54
0.5 515 92.3 307 780 92.8 185

Redwood
Apartment

0.1 1864 92.7 267 2643 89.4 374
0.2 897 91.6 546 1022 87.5 851
0.5 184 87.6 1344 342 84.3 1546

Bremen City
0.1 152,416 91.2 1896 186,421 90.6 2173
0.2 64,185 88.6 3859 81,638 87.4 4681
0.5 21,067 84.9 8746 24,025 84.1 9857

WHT
Residence

0.1 196,492 77.6 1154 172,649 76.5 1274
0.2 72,991 74.2 1978 63,594 73.6 2027
0.5 40,050 69.4 5865 10,370 70.1 5304
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As shown in Figure 5, when the density value is assigned to the voxel grid, an
excessively small radius is selected to calculate the density value of the voxel grid, which
will lead to a sawtooth effect on the voxel mesh density values, resulting in a decrease in the
quality of key points, therefore reducing the success rate of registration. However, too large
a calculation radius will lead to an increase in time consumption, making the detection
efficiency of key points low. Finally, after comprehensive consideration, the calculation
radius of the field is set as three times the size of the voxel, which effectively solves the
sawtooth effect caused by the voxel mesh and has high computational efficiency.
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3.4. Keypoints Comparison

The keypoints extraction method in this paper is compared with other traditional
keypoints extraction methods (such as SIFT3D, HARRIS3D, ISS). We debugged different
parameters of the mainstream keypoints extraction methods, resulting in having acceptable
experimental parameters in terms of time and keypoints quality. In consideration of
calculation time and repeatability, different voxel grid sizes were used for indoor and
outdoor data to participate in subsequent calculation and analysis. The results of the voxel
grid size of 0.2 m were adopted for indoor data and 0.5 m for outdoor data. This is because
the outdoor data scene is large, with a high number of points and plenty of noise.

Figure 6 shows the results of the keypoints repeatability comparison. On the whole,
the repeatability of indoor point cloud data is higher than that of outdoor data because
there is more noise in outdoor data. For indoor data, because the building has sharp edges
and corners, there is a huge change in density, so our method can stably detect the corners.
Since the density value is generated by Gaussian weighting according to the distribution of
points, the influence of noise can be effectively reduced. Therefore, the repeatability of the
method in this paper is also better than that of the contrast method in outdoor data.
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Figure 6. Keypoints repeatability comparison. For the parameters of our method, the voxel grid size of indoor data (BaoLi
House and Redwood Apartment) is 0.2 m, and that of outdoor data (Bremen City and WHU Residence) is 0.5 m.

Figure 7 shows the results of the comparison of detection efficiency of keypoints. The
method presented in this paper and the SIFT3D method have good efficiency. Harris3D
needs to calculate the normal vector and construct the covariance matrix, while ISS needs
to carry out the principal component analysis. All these steps have a significant time
overhead. In WHU Residence indoor data, the efficiency of the proposed method is lower
than that of the SIFT3D method, but the efficiency of the proposed method is the highest
among the other three data. The results show that our method yielded good performance
in keypoints quality and time efficiency.
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Figure 7. Keypoints efficiency comparison. For the parameters of our method, the voxel grid size of indoor data (BaoLi
House and Redwood Apartment) is 0.2 m, and that of outdoor data (Bremen City and WHU Residence) is 0.5 m. Notice that
the y-coordinate is on a logarithmic scale.

Figure 8 shows the keypoints visualization results. The example is BaoLi House
source data. As mentioned above, we also adopted a voxel grid size of 0.2 m. As shown in
Figure 5a, the keypoints generated by the SIFT3D method are messy, evenly distributed
over the entire data, and have many redundancy problems. In Figure 5b, the traditional Har-
ris3D method yielded missing edge features and lacked representativeness. In Figure 5c,
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the ISS keypoints extraction had good results but used large amounts of calculations such
that its time requirement far exceeded that of our proposed approach. Figure 5d shows the
results of our proposed keypoints detection. Our proposed approach yielded high-quality
keypoints at the corner edges, and the feature point distribution is highly representative.
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3.5. Registraion Time Performance

To test the overall efficiency, we evaluated the time performance of registration for
different scan data. Table 3 provides the summary of the registration time for different
voxel sizes and data set. For indoor data, the speed of keypoints detection is fast. The main
determinant of time consumption is the candidate set verification process. For scenes with
larger voxel grids, the number of keypoints generated is comparatively less, which means
fewer candidate sets used in the calculations and less time required. For outdoor data,
when the voxel grid is small, the extraction time of keypoints is relatively small, but a large
number of keypoints are generated, leading to heavy workload and high time consumption
in post-sequence registration calculation. As stated in Section 3.1, when the voxel grid
is large, the calculation time of key points increases, and the overall time consumption
is high.

Table 3. Time performance under different voxel grids.

Data Set Voxel Size(m) Candidate Set Number Keypoints Detection Time (s) Time (s)

BaoLi House
0.1 2221 0.06 3.28
0.2 1872 0.14 3.23
0.5 118 0.49 1.49

Redwood Apartment
0.1 5016 0.64 6.58
0.2 2036 1.39 4.31
0.5 849 2.89 4.65

Bremen City
0.1 24,311 4.07 41.78
0.2 8604 8.54 22.46
0.5 2673 18.6 21.54

WHU Residence
0.1 8643 2.43 15.46
0.2 4269 4.01 7.74
0.5 1563 11.16 13.28
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3.6. Registration Accuracy

As shown in Figure 9, the registration results of the proposed approach on the four
data set were able to achieve satisfactory results. Table 4 summarizes the quantitative
evaluation results for the different voxel sizes. The RMSE threshold was given five times
the value of the reference RMSE. The general results suggest, when the voxel size is small,
the number of keypoints generated is large, and the registration success rate is high. For
larger voxel grids, the number of keypoints generated is smaller, the required optimization
cost is higher, and the quality of the keypoints obtained is comparatively lower, resulting in
significantly reduced registration rates. For the same object point cloud, there is no obvious
rule of RMSE with the change of different voxel mesh size.
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Table 4. Quantitative evaluation of the registration accuracy.

Data Set Voxel Size (m) Pairs Number Candidate Set Number RMSE (M) SRR (%) Time (s)

BaoLi House
0.1 1839 2221 2.42 95.0 3.28
0.2 1680 1872 1.57 90.1 3.23
0.5 1257 118 1.26 84.6 1.49

Redwood
Apartment

0.1 2844 5016 0.39 89.2 6.58
0.2 1484 2036 0.46 83.5 4.31
0.5 536 849 0.84 77.4 4.65

Bremen City
0.1 8469 24,311 2.86 86.7 41.78
0.2 3024 8604 2.28 83.4 22.46
0.5 1541 2673 3.67 80.4 21.54

WHU
Residence

0.1 3416 8643 2.54 85.5 15.46
0.2 2218 4269 3.38 82.4 7.74
0.5 1280 1563 2.89 79.8 13.28

For each data pair, 500 experiments were performed. The BaoLi indoor data had
minimal noise points. The registration effect was relatively good, with the highest regis-
tration rate at 95.0%. For the Redwood Apartment indoor data, the data overlap rate is
high, but there are repeated folding structures of curtains in the data, as well as shielding
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of some objects, so the registration success rate is lower than that of BaoLi data, with the
highest registration rate at 89.2%. For the Bremen City data, the scene is complex with high
amounts of noise in the data, and its highest registration rate was 86.7%. For the WHU
Residence data, trees significantly affected the registration rate, given that a third of the
keypoints were distributed among the trees. The highest registration rate was 85.5%.

3.7. Registration Comparison and Analysis

For comparison, we used the Super4PCS method. In terms of parameter settings, the
estimated radius of the normal vector in K4PCS was set to five times the value of the point
spacing. In the downsampling process for the Super4PCS and K4PCS, the spatial size of the
voxel grid filter was set to 0.01 m. For indoor data (BaoLi House and Redwood Apartment),
the voxel grid size is 0.2 m, while for outdoor data (Bremen City and WHU Residence), the
voxel grid size is 0.5 m. Our analysis is based on the original coarse registration results,
and there are no subsequent ICP fine registration steps. The detailed experimental results
are shown in Table 5. The comparative analysis of registration accuracy, success rate, and
efficiency is shown in Figures 10–12.

Table 5. Performance comparison.

Data Set Method Pairs
Number

Candidate
Set Number RMSE (m) SRR (%) Time (s) Efficiency

Improve (%)

BaoLi House
K4PCS 7114 2762 1.96 86.4 6.59 50

Super4PCS 8874 54,721 2.21 74.6 14.9 78
Our Method 1680 1872 1.57 90.1 3.23

Redwood
Apartment

K4PCS 1493 3749 0.59 79.6 9.24 53
Super4PCS 3747 11,389 1.33 72.5 37.56 88

Our Method 1484 2036 0.46 83.5 4.31

Bremen City
K4PCS 2186 5462 3.86 76.8 57.67 62

Super4PCS 4419 35,449 5.97 69.4 147.42 85
Our Method 1541 2673 3.67 80.4 21.54

WHU
Residence

K4PCS 5734 6190 3.65 81.6 56.92 76
Super4PCS 12,588 33,403 2.21 71.4 235.95 94
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For the comparison of the registration accuracy, different data have different perfor-
mances. For WHU Residence data, the registration accuracy of Super4PCS is the highest,
and the RMSE is the lowest. This is because many key points in the data appear on the tree,
leading to a large RMSE of the proposed method and the K4PCS method. For the other
three data, the RMSE of the Super4PCS method is the largest, and the RSME of the method
in this paper is the largest.

As for the comparison of registration success rate, our method is obviously better than
the Super4pcs method. In WHU data, many key points extracted by our method are in the
tree, which affects the quality of the key points, and thus the registration success rate is
slightly lower than that of K4PCS. For the other three data, the registration success rate of
the method proposed in this paper is higher than that of the K4PCS.

As for the analysis of registration efficiency, the experimental results show that our
proposed method and the K4PCS performed well with the TLS point cloud data. Since
the TLS point cloud data are large, Super4PCS required many calculations and performed
poorly in terms of time and accuracy. There were more noise points generated outdoors.
The K4PCS calculates the keypoints. Fewer keypoints can better represent the whole point
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cloud. When calculating keypoints, fewer candidates were generated in the RANSAC
process, which meant that in terms of time, K4PCS performed better than the Super4PCS.
Compared with the K4PCS, our method was faster in calculating keypoints. Our approach
was able to improve base choices, which effectively reduced the number of candidate sets.
Moreover, we were able to improve the candidate set verification process using the LCP
to quickly find the voxel grid. The experiments found that the set verification process
was effectively improved by 35%. As shown in Table 5, it can be seen that the registration
efficiency is improved by more than 50% compared with the K4PCS method and by more
than 78% compared with the Super4PCS method. Overall, the experiments show that our
proposed method can complete the registration quickly and reliably.

4. Discussion

Since the traditional Harris3D algorithm requires normal vector calculation, the nor-
mal contains the information of the local point cloud, which is indeed advantageous.
However, experiments show that the normal vector of the sudden change rate and the edge
area of the point cloud is unstable, which affects the quality of keypoint extraction. At the
same time, calculating the normal vector increases the time complexity of the algorithm.
This paper uses the voxel grid density value to construct the Hessian matrix, and the
method of detecting key points has a good improvement in time efficiency. Theiler [34–36]
found that 4PCS is not well applied to the ground laser point cloud data point cloud with
large data volume. This paper replaces the original point cloud computing with keypoints,
which can effectively improve the registration time of the TLS point cloud.

The point cloud data acquired by terrestrial laser scanning has the characteristics
of large data volume and uneven distribution, and the point cloud data are disordered.
In some operations, such as filtering the point cloud, calculating the normal vector and
curvature, it is necessary to find the points. This requires a connection between the points
and can find the points and the nearest neighbors in the domain to realize the point
cloud search operation. Generally, a spatial index is established for point cloud data. The
commonly used spatial index structures are the octree and KD-Tree, which are implemented
in the point cloud database. Dr Hunter first proposed the octree model in 1978, which is a
tree-like data structure used to describe three-dimensional space. The KD-Tree is essentially
a binary search tree with constraints. In the case of uneven point cloud distribution, the
performance of the KD-Tree is better than the octree, and it is more popular in practical
applications. In this article, the query application is different from the nearest neighbor
query and radius query of the KD-Tree in the past. We only need to judge whether there is
a point within a certain range. The query time complexity of the KD-Tree of this operation
is O(logN), and the voxel grid is a three-dimensional array. One of the major features of
the array is that it supports random queries. The time complexity of querying whether
the voxel grid contains points is O(1). We compare and analyze the query time multiple
times in the point cloud data. As shown in Table 6, it can be seen that the query time
consumption of the voxel grid is 50~70% of the KD-Tree. Using a voxel grid query to
improve LCP search can effectively improve the efficiency of the Super4PCS algorithm.

Table 6. Query whether there are points in a certain range for comparative analysis.

Method

Number of Points

10,000 Random Points
Data

100,000 Random
Points Data

1,000,000 Random
Points Data

1,000,000 query time (ms) KD-Tree 83 106 131
Our Method 60 59 63

100,000,000 query time (ms) KD-Tree 8264 9838 12,406
Our Method 5881 5948 6057
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5. Conclusions

We developed a fast point cloud registration method based on voxel grid, modifying
the 4-point congruent set framework and significantly improving running time. Compared
to traditional point cloud registration, the experiments show that the proposed approach
could obtain faster and more accurate results than Super4PCS, particularly for TLS point
cloud data with a high number of points. Our method uses a feature point detection
method based on grid density gradient transformation to efficiently find keypoints of
buildings. From the experimental results, our method was able to perform effective
keypoints detection on point cloud data. Using our proposed approach, large-scale point
cloud data can be quickly registered without preprocessing, and satisfactory performance
can be obtained. One of the limitations of our method is that the entire point cloud is
rasterized. One of the limitations of our method is that when the entire point cloud is
rasterized, an excessively large raster size will result in very few keypoints, which cannot
represent the original data well, and the registration effect is not stable enough. A grid size
that is too small will result in too many grids, and there will be many empty grids, which
consumes memory to a certain extent. Therefore, the next step should be to optimize the
memory, eliminate empty grids during the voxel grid, and optimize the memory to reduce
hardware consumption during registration.
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