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Abstract: The integration of multi-source, multi-temporal, multi-band optical, and radar remote
sensing images to accurately detect, extract, and monitor the long-term dynamic change of coastline
is critical for a better understanding of how the coastal environment responds to climate change and
human activities. In this study, we present a combination method to produce the spatiotemporal
changes of the coastline in the Yellow River Delta (YRD) in 1980–2020 with both optical and Synthetic
Aperture Radar (SAR) satellite remote sensing images. According to the measurement results of GPS
RTK, this method can obtain a high accuracy of shoreline extraction, with an observation error of
71.4% within one pixel of the image. Then, the influence of annual water discharge and sediment
load on the changes of the coastline is investigated. The results show that there are two significant
accretion areas in the Qing 8 and Qingshuigou course. The relative high correlation illustrates that
the sediment discharge has a great contribution to the change of estuary area. Human activities,
climate change, and sea level rise that affect waves and storm surges are also important drivers of
coastal morphology to be investigated in the future, in addition to the sediment transport.

Keywords: Yellow River Delta; coastline extraction; optical remote sensing; Synthetic Aperture
Radar; spatiotemporal changes; water discharge; sediment load; human activities

1. Introduction

As one of the most active, complex, and fragile regions in the world, coastal, estuary,
and river delta areas that are densely populated and economically developed contribute
little to global landmass, where hydrosphere, lithosphere, atmosphere, biosphere, and
human society interact very frequently [1]. Therefore, accurate and dynamic monitoring of
the changing coastal and delta zone is critical for a better understanding of how the Earth’s
surface system responds to human activities.

As one of the most important topographic elements on land and sea maps, coastline is
named as one of the 27 most important surface features by the International Geographic
Data Committee (IGDC) [2]. Many large river deltas in the world are facing the impacts of
shoreline change, and the study of delta erosion and expansion has attracted the attention of
the scientific community and policymakers [3–10]. The change of coastline has an extremely
important impact on the security of ports, the change of coastal ecological environment,
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and the erosion of coastal land [11,12]. Coastline changes are affected by many factors and
show certain rules under the comprehensive action of many factors. Therefore, analyzing
the spatiotemporal dynamics of shorelines in coastal areas and exploring the drivers of
shoreline changes are essential to understanding how those shorelines respond to natural
and anthropogenic effects [13,14].

The modern Yellow River Delta (hereinafter referred to as YRD) located in the north-
east of Shandong Province, China, was formed in 1855 when the Yellow River migrated
northward from the Yellow Sea to the Bohai Sea, and now is rich in estuarine wetlands,
oil, gas, salt production, and aquaculture [15,16]. As the widest, most intact, and youngest
delta both in China and in the world, the YRD is a highly concentrated area of human
society and economy, but its ecosystem environment is vulnerable due to its special location
and industrial structure [17].

There are five large rivers in East and Southeast Asia (Yellow, Yangtze, Pearl, Red, and
Mekong) that are important contributors of terrigenous sediment to the western Pacific
Ocean. The Yellow River in China has been widely recognized as having one of the highest
sediment loads of approximately 1 × 109 t per year, accounting for 5% of the global river
sediment budget [18]. At present, human engineering controls the expansion and shrinking
of more and more deltas [19]. Over the past century, intense anthropogenic activities
from dam building, agricultural irrigation, groundwater pumping, hydrocarbon extraction,
and artificial diversion of the estuary have triggered rapid morphological evolution for
the modern YRD and dramatically decreased the terrestrial sediment delivered to the
sea [16,19–25].

Earth observation from a large amount of globally available satellite remote sensing
sensors has played a crucial role in providing accurate information on unravelling these
processes [1]. For example, Zhang et al. [26] studied the spatial and temporal shoreline
changes of the southern YRD in 1976–2016 by utilizing 364 Landsat satellite images. Based
on high spatial resolution satellite imagery covering nearly four decades, Kuenzer et al. [27]
employed manual feature digitization to present oil-industry-induced river bed changes
and overall changes in the appearance of the YRD. However, most existing studies focused
on evolutions of the YRD river mouth region with mainly coarse and medium resolution
optical and multispectral data [16,20,28]. For the area dynamics of the entire YRD region,
there is still a lack of long-term accurate temporal and spatial quantitative description of
erosion, accretion, and subsidence.

In recent years, earth observation from moderate resolution (1–20 m) and sub-meter
resolution remote sensing images including optical, multispectral, thermal as well as
Synthetic Aperture Radar (SAR) data have been widely used for analyses and quantification
of land surface dynamics in most of the large river deltas globally [1,7,8]. Time series of
optical and multispectral satellite data from, e.g., Landsat and Sentinel series as well as
QuickBird and WorldView images, are the preferred choices for detecting, extracting, and
monitoring the boundary between land and water, and for quantitatively characterizing
land cover and land use [1,8,9,13,29–33].

However, water vapor content is higher all year round in tropical and subtropical
coastal areas, whilst cloud and rain weather lasts for a long time. This greatly impedes
available high-quality optical and multispectral observations and further affects the extrac-
tion of dynamic coastline information. As a microwave remote sensing technology, SAR
can penetrate clouds and provide an important complementary data acquisition, which
has been successfully used to track coastlines, coastal erosion, and accretion patterns, in
addition to various geological hazards [1,32,34–36].

A review of the existing literature yields few studies focused on the coastline detection
and extraction with SAR images in the YRD except for many previous studies on the
analysis of shoreline changes using optical remote sensing data sources [7,16,26,37,38].
The long-term time series fusion of multi-source optical and SAR remote sensing data is
expected to provide an accurate quantitative estimate of the coastline geolocation of the
YRD in the past 40 years and reveal its dynamic change drivers. Therefore, in this study,
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we firstly introduce a combination method for extracting the coastline of the YRD with
both optical and SAR satellite remote sensing images and then evaluate the accuracy of
results. Furthermore, we investigate the influence of annual water discharge and sediment
load as well as critical sediment on the changes of the coastline.

2. Datasets and Methods
2.1. Study Area

Originating from the eastern Qinghai–Tibet Plateau, the Yellow River drains a wide
basin of >75,000 km2 with a total length of 5464 km [39]. The place where the Yellow River
meets the Bohai Sea is the YRD located in Dongying City, Shandong Province, projecting in
a fan shape, with a total area of 5943 km2 (Figure 1). There are ecological tourism areas,
harbor industrial areas, high-end industrial areas, efficient ecological agriculture areas, and
so on in this area.
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River, the YRD National Reserve of Shandong Province dominated by wetland types was 
established in 1992 and declared Ramsar wetland sites in 2013 [27]. The wetland is com-
posed of two units, with the southern part located along the course of the Yellow River 
and extending out to the Bohai Sea, while the northern part is located at Diaokou River, 
referred to as the ‘Ancient Yellow River’. This site is an almost naturally intact estuary 
wetland composed of marshes, reed swamps, tidal flats, canals and drainage channels, 
shallow estuarine waters, and aquaculture ponds at the mouth of the Yellow River Estu-
ary (hereinafter referred to as YRE). 

In modern times, there were nine major diversions of the river estuary, three of which 
occurred after the 1950s. Before 1953, the water flowed from the Tianshuigou Course 
(60%) and Shenxian’gou Course (40%) to the Bohai Sea. In July 1953, Tianshuigou river 
groove into the Shenxian’gou into the sea alone. On New Year’s Day of 1964, the dike was 
destroyed and the Yellow River was diverted to the sea by the Diaokou River. After 1972, 
as silt accumulated, the flow began to branch again. In May 1976, the Yellow River shifted 
to Qingshuigou Course into the sea. In 1996, artificial diversion made the water flow from 
Qing 8 Course into the sea. This flow path continues to this day. In this study, the east side 
of the Tiaohe course to the Qingshuigou course is selected as the study area. 

  

Figure 1. Location of the study area. On the left, the black solid line and green solid point represent the distribution of the
Yellow River basin and Lijin Hydrometric Station, respectively. The figure on the right represents the 30 m natural true-color
image of the YRD derived from the Landsat-8 Operational Land Imager (OLI) in March 2020.

Meanwhile, on both sides of the estuary of the new Yellow River and the old Yellow
River, the YRD National Reserve of Shandong Province dominated by wetland types
was established in 1992 and declared Ramsar wetland sites in 2013 [27]. The wetland is
composed of two units, with the southern part located along the course of the Yellow River
and extending out to the Bohai Sea, while the northern part is located at Diaokou River,
referred to as the ‘Ancient Yellow River’. This site is an almost naturally intact estuary
wetland composed of marshes, reed swamps, tidal flats, canals and drainage channels,
shallow estuarine waters, and aquaculture ponds at the mouth of the Yellow River Estuary
(hereinafter referred to as YRE).

In modern times, there were nine major diversions of the river estuary, three of which
occurred after the 1950s. Before 1953, the water flowed from the Tianshuigou Course
(60%) and Shenxian’gou Course (40%) to the Bohai Sea. In July 1953, Tianshuigou river
groove into the Shenxian’gou into the sea alone. On New Year’s Day of 1964, the dike was
destroyed and the Yellow River was diverted to the sea by the Diaokou River. After 1972,
as silt accumulated, the flow began to branch again. In May 1976, the Yellow River shifted
to Qingshuigou Course into the sea. In 1996, artificial diversion made the water flow from
Qing 8 Course into the sea. This flow path continues to this day. In this study, the east side
of the Tiaohe course to the Qingshuigou course is selected as the study area.
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2.2. Datasets

In this study, 10 key years are selected for coastline analysis on the premise that
optical and SAR data sources are available, by taking into account the position change of
the Yellow River estuary and the principle of uniform time sampling interval. Besides,
the characteristics of water flow and sediment transport in the Yellow River basin vary
significantly with the seasons [21]. The satellite remote sensing images as shown in
Table 1, including Landsat-3 Multispectral Scanner (MSS), Landsat-5 Thematic Mapper
(TM), Landsat-8 Operational Land Imager (OLI), Envisat Advanced Synthetic Aperture
Radar (ASAR) Image Mode Precision (IMP) L1 Image, Sentinel-1 Interferometric Wide
Swath (IWS) mode, and GaoFen-3 (GF-3) Fine Strip (FSII), are mainly focused on June,
July, and August of each year. All images were selected with consideration of both spatial
coverage and pixel resolution. The optical and SAR images are freely and readily available
from United States Geological Survey (USGS), European Space Agency (ESA), and National
Satellite Ocean Application Service (NSOAS). The optical false color composite images and
SAR intensity images are shown in Figure 2.

Table 1. Optical and SAR remote sensing imagery used for coastline extraction in this study.

Date Time Satellite Level Sensor Pixel Spacing (m)

1980-07-14 01:53:31 Landsat-3 L1TP MSS 80
1985-08-05 02:11:42 Landsat-5 L1TP TM 30
1991-07-05 02:05:09 Landsat-5 L1TP TM 30
1996-07-02 01:55:39 Landsat-5 L1TP TM 30
1999-06-25 02:19:49 Landsat-5 L1TP TM 30
2003-08-07 02:18:46 Landsat-5 L1TP TM 30
2009-08-30 13:57:26 Envisat L1TP ASAR-IMP 12.5
2013-06-15 02:43:55 Landsat-8 L1TP OLI 30
2017-07-02 13:04:39 Sentinel-1 Level 1 SAR-IWS 20
2020-07-11 09:57:57 GaoFen-3 L1TP SAR-FSII 10

In this paper, SAR intensity information and band operation of optical images are
used to carry out land and sea segmentation. To compare the differences in the extraction
details between the two kinds of images, we investigated the shoreline extraction results of
the YRD derived from the Landsat-8 OLI and Sentinel-1 IWS images by taking the example
of the year 2017. The results are superposed on GaoFen-2 (GF-2) images with nadir pixel
resolution of 3.2 m (see Figure 3). Due to the limitation of the GF-2 data source, the
acquisition time was distributed between 2017 and 2020, leading to the actual distribution
of coastlines in 2017 slightly different from those of the Landsat-8 and Sentinel-1.

In Figure 3, we can find that there is a significant difference between the shorelines
in those nearshore areas where the slope is very flat and sediment is enriched (a, e, f, g)
by visual interpretation. The result extracted from Sentinel-1 is closer inland than the
Landsat-8. The biggest difference exists in the southern sediment-rich area of Qingshuigou
Course in Figure 3f. In SAR images, the backscattering intensity is used to extract the
coastline, which is the boundary between land and water. Therefore, we used existing
Sentinel-1, GF-3, and Envisat ASAR images with a higher spatial resolution to replace
Landsat images from 2004 onwards, except for that of 2013 (see Table 1).
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Figure 2. Optical false color composite images derived from Landsat-3 MSS band 6/5/4 (a), Landsat-
5 TM band 4/3/2 (b–f), and Landsat-8 OLI band 5/4/3 (h), and SAR intensity images derived from
Envisat ASAR (g), Sentinel-1 (i), and GF-3 (j).
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Figure 3. Comparison of the coastlines extracted from Landsat-8 and Sentinel-1 images in 2017. The basemap of the whole
YRD is downloaded from http://www.geodata.cn/, accessed on 20 October 2020. The basemap of subgraphs (a–g) is
derived from GaoFen-2 images with Rational Polynomial Coefficient (RPC) orthorectification in the Pixel Information
Expert (PIE®) Basic 6.0.

2.3. Methods
2.3.1. Coastline Detection

As shown in Figure 4, the preprocessing of Landsat images was firstly performed with
ENVI® 5.5, including radiometric calibration and atmospheric correction. As a satellite-
derived index derived from the near-infrared (NIR) and Green bands [40] (Equations (1)–(3)),
normalized difference water index (NDWI) is usually used to make a preliminary distinc-
tion between land and seawater.

NDWILandsat−3 =
(Band 4Green − Band 7NIR)

(Band 4Green + Band 7NIR)
(1)

NDWILandsat−5 =
(Band 2Green − Band 5NIR)

(Band 2Green + Band 5NIR)
(2)

NDWILandsat−8 =
(Band 3Green − Band 5NIR)

(Band 3Green + Band 5NIR)
(3)

http://www.geodata.cn/
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The NIR reflectance is affected by leaf internal structure and leaf dry matter content
but not by water content [41]. Although the NDWI index was created for Landsat MSS
images [30], it has been successfully used with other sensor systems in applications where
the measurement of the extent of open water is needed [42]. In this study, we used Landsat-
3 band 4/7, Landsat-5 band 2/5, and Landsat-8 band 3/5 to compute the NDWI values.

As for SAR images, GF-3 was preprocessed with the Pixel Information Expert (PIE®)
SAR 6.0, while Envisat ASAR and Sentinel-1 were preprocessed with the Sentinel Ap-
plication Platform (SNAP®) 7.0. After preprocessing, binarization processing was then
employed. According to a series of morphological operations, the results showed a clear
boundary of water and land. Enhanced Lee filter is used primarily to suppress speckle
in radar imagery while simultaneously preserving texture information in heterogeneous
areas. This filter that uses local statistics (coefficient of variation) within individual filter
windows smooths images without removing edges or sharp features while minimizing the
loss of radiometric and textural information. In areas containing isolated point targets, this
filter preserves the observed value.

The most widely used threshold segmentation method is the fusion of NDWI and
image binarization. Thresholding is a conceptually simple segmentation technique by using
a histogram to segment images. At present, the optimal threshold is designed to determine
and improve the threshold segmentation method. In this study, we used the threshold
segmentation method proposed by Otsu [43], which is considered a gold standard in the
field of thresholding.

Figure 5 shows the flowchart of detailed water edge extraction. In the binary images
obtained above, the gray level of pixels in the image was first converted to 0 or 1. The
pixels with gray level 0 are represented by black, while the pixels with gray level 1 are
represented by white. Morphology defines the white area with a gray level of 1 as the
‘highlighted part’ and the black part as the ‘background’. Then, small water patches were
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removed after binarization. Furthermore, opening and closing operations were used to
smooth the coastlines.
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Opening operation is a dilation after a erosion, using the same structuring element for
both dilation and erosion. Closing operation is an erosion followed by a dilation. Expansion
and corrosion are usually used in pairs to eliminate small particle noise and make the
water edge smoother. Dilation operation process is to highlight the effect of target pixels
extend outward into the background, and can splice and combine the fractured object for
extracting the main body of the object. It also can be used to fill the patches in the region of
interest, eliminate speckle noise in the region of interest. The function of erosion operation
is to eliminate the highlighted boundary points. It is the process of boundary shrinking
inward, aiming to eliminate the small and meaningless target objects at the boundary. Sobel
operator method is simple, fast, and the extracted boundary is smooth and continuous.
Therefore, Sobel edge detection operator was used to extract water edges in this paper.

A good overview of the state of the art for coastline and shoreline derivation from
remote sensing images is given by Gens [44], who notes that the term ‘coastline’ is custom-
arily used in remote sensing-based studies, while the coastal community commonly refers
to it as ‘shoreline’. The definition of the shoreline theoretically is supposed to represent
the linear boundary between the maritime. Though its apparent simplicity, for practical
purposes, the dynamic nature of this boundary and its dependence on the temporal and
spatial scale at which it is being considered results in the use of a range of shoreline indi-
cators as following [30]. Therefore, the chosen definition should consider the shoreline in
both a temporal and spatial sense and take account of the dependence of this variability on
the time scale by which it is being investigated.

Accurate shoreline extraction is very important to find out the relationship between
shoreline change and sediment load. Tidal variation plays a leading role during high
resolution aerial survey, whilst it can be safely neglected for satellite data acquisition due
to the coarser resolution of the satellite data. The aspect of time averaging can be critical
for some remote sensing techniques [44]. Boak and Turner [14] proposed three groups of
shoreline indicators as the ‘true’ shoreline positions as shown below.

• A visually discernible indicator is a feature that can be physically seen, e.g., a previous
high-tide line or the wet and dry boundary, usually preferred for photo interpretation,
aerial photography, and earth observation data.

• A specific tidal datum based shoreline indicator is determined by the intersection of
the coastal profile with a specific vertical elevation, defined by the tidal constituents
of a particular area, for example, mean high water (MHW) or mean sea level.

• An indicator for the application of image processing techniques to extract proxy
shoreline features from digital coastal images that are not necessarily visible to the
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human eye and the accuracy of all techniques usually rely on the spatial resolution of
the images used.

Due to the lack of tidal data for long-term span that could be used for tidal correc-
tion to get the mean high water, the second method would not be realizable. Therefore,
Kuenzer et al. [27] used the first indicator to derive shorelines of YRD. However, the range
of error caused by resolution that lies in the range of half a pixel is much less than the range
of shoreline change.

In this study (Figure 6), we mainly used the third indicator group to derive the water–
land boundary as the shoreline. For the early low-resolution images in 1980 and 1985, the
shoreline extracted were also inspected by combining the visual interpretation.
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To evaluate the coastline extraction accuracy, we conducted Global Position System
real time kinematic (GPS RTK) measurements of water boundary along the Gudong oilfield
artificial coastal dam on 11 January 2020. The Gudong coastal dam, with a length of 12 km,
was built in the 1980s to prevent the intrusion of seawater and provide the most important
security barrier between the Gudong oilfield and Bohai Sea [15]. The highest point of the
dam below the seawall is 4.3 m and the lowest point filled with dolosse to sea water is
3.4 m, both of which are higher than the high sea-level of 2.5 m.

2.3.2. Change Rate of Coastline

The rate of change in the past four decades is derived from a time series of shoreline
vector data of the YRD with the Digital Shoreline Analysis System (DSAS) version 5.0. As
is shown in Figures 7 and 8, end point rate (EPR) and linear regression rate (LRR) are used
to describe the change rate of the coastline (Equations (4)–(7)).

EPR =
Distance

Time
=

Net Shoreline Movement (m)

Time Span (years)
(4)
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where net shoreline movement (NSM) is equal to distance oldest and youngest shoreline;
time span (SP) equals to time between oldest and most recent shoreline.
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A linear regression rate-of-change statistic can be determined by fitting a least-squares
regression line to all shoreline points for a transect. As the slope of the line (Equation (6)),
the calculation of the LRR is based on accepted statistical concepts [45,46]. The method of
linear regression uses all the data, regardless of changes in trend or accuracy.

y = a + bx (5)

b =
∑n

i=1(xi − x)(yi − y)

∑n
i=1 (xi − x)2 (6)

a = y− bx (7)

where xi is the year; yi is the distance from the intersection to the baseline along one
transect; x and y are the averages of xi and yi, respectively.

In the selection of the baseline position, the trend of all shorelines should be taken
into account, especially in areas where the shoreline curvature changes greatly. In addition,
the true change of shoreline of each section still needs to be manually identified. When
selecting the location of the section, the selection of the tangent line depends on the setting
of the baseline, especially the places with very drastic changes for some jumping points
of the curve, which may also be difficult to reflect the real changes of the shoreline. In the
section of uncertainty analysis of coastline extraction below, we set up a tangent with 50 m
as the sampling interval to calculate the distance between the extracted coastline and the
reference coastline along the tangent.

EPR and LRR can only roughly reflect the changes of shoreline. In cases where more
data are available, EPR only uses the oldest and most recent shoreline, which would ignore
additional information, e.g., the trends of accretion and erosion. The method of linear
regression is susceptible to the effects of outliers and trends to underestimate the rate of
change relative such as EPR [45–47]. In order to describe how shorelines change over
time in detail, Figure 9 shows the staged ‘end point rate’ based on the distance of the
intersection point along a transect between the adjacent shorelines, which presents the
detailed information of shoreline accretion and erosion year by year in the YRD.

In shoreline analysis section, we use Pearson’s correlation coefficient and coefficient
of determination to analysis that shoreline change. As shown in Formula (8), Pearson’s
correlation coefficient is used to measure the strength of the relationship between two
variables and their association with each other. The values can range from [−1.0, +1.0],
where the +1.0 and −1.0 respectively indicate the perfect positive and negative relationship
between the variables considered, and a 0.0 value indicates that no relationship exists.

r = Correlation(X, Y) = ∑ (x− x)(y− y)√
∑ (x− x)2 ∑ (y− y)2

(8)

where x and y are the average of two variables x, y, respectively.
As shown in Equation (9), coefficient of determination R2 is used to measure the

percentage of variance in the data that is explained by a regression. As a dimensionless
index, the value ranges from 1 to 0, where 1 is perfect fit. R2 values close to 1.0 imply that
the best-fit line explains most of the variation in the dependent variable.

R2 = 1− ∑ (y− y′)2

∑ (y− y)2 (9)

where y, y′, and y is measured data, predicted value, and mean of the measured data, re-
spectively.

The observations of sediment load and water discharge are collected at the Yellow
River Lijin Hydrometric Station (http://www.mwr.gov.cn accessed on 1 April 2021). The
Lijin Station is the last hydrological station before the Yellow River enters the sea. The mea-
surements of water discharge and sediment load from this station are used to investigate

http://www.mwr.gov.cn
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the correlation between the amount of water and sediment and the change of shoreline
length and area of YRD.
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3. Results
3.1. Historical Evolution of Coastlines over the YRD

As shown in Figure 7 for the analysis of shoreline change, the extracted shoreline
ranges from the eastern part of Tiaohe Course to the southern part of Qingshuigou Course,
where the distance between adjacent transects is set as 1000 m.

The rate of change from 1980 to 2020 in Figure 8 shows spatial heterogeneous variabil-
ity as a whole with average EPR of 87.87 m/a and LRR of 47.82 m/a, respectively. There
are significant positive bursts in four areas including Tiaohe, Shenxian’gou, Qing 8, and
Qingshuigou course, which are mainly due to artificial land reclamation and deposition of
sediment. However, a great negative change with the erosion rate more than −150 m/a
in EPR and LRR exists in the northernmost area of YRD near Diaokou river course that
probably attributes to winter storm surge erosion.

In Shenxian’gou Course, the maximum change rates of the shoreline are 93.86 m/a
in EPR and 52.18 m/a in LRR, which are 2.9 times the average EPR and 3.6 times of the
average LRR within transects from no. 55 to no. 66. In Qing 8 Course, the maximum
change rate reach 523.21 m/a in EPR and 385.4 m/a in LRR, which are 4.9 times the average
EPR and 6.2 times the average LRR within transects from no. 82 to no. 101, respectively. In
Qinghsuigou Course, the maximum change rates of the coastline reach 462.54 m/a in EPR
and 311.48 m/a in LRR, which are 4.5 times the average EPR and 5.8 times of the average
LRR within transects from no. 107 to no. 129. In summary, Qing 8 and Qingshuigou Course
are the areas with the most dramatic changes of shoreline in the past 40 years.
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The staged average annual rate of change of adjacent shorelines in three key areas of
the YRD is illustrated in Figure 10. From 1980 to 1985, all the three sections of shorelines
were in a state of accretion. From 1985 to 1996, the annual change rate of shoreline in the
Qingshuigou Course was as high as 400 m/a due to the high sediment transport, while
there was a sharp decline in the period of 1996–1999 as a result of the artificial diversion of
the Yellow River. From 1999 to the present, the overall annual change rate in the three areas
is less than 100 m/a, which indicates that erosion and accretion alternate and gradually
reach a balance, except that of Qing 8 in 2009–2013.
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3.2. Area Change, Water Discharge, and Sediment Load

As shown in Figure 11, the staged area changes over the YRD for the last four decades
are estimated from the extracted coastline vector data. From 1980 to 1985, the entire YRD
was basically in the state of accretion. In the years 1985–1996, the accretion area was mainly
located in the Qingshuigou Course due to sufficient sediment accumulation, while the
erosion area was located in the north part of the YRD. In 1996, the coastal boundary outline
of Gudong Oilfield was initially formed, and the coastline of this area has been stable since
1996. From 1996 to 2003, the change of the mouth of the Yellow River led to the reduction of
the area of Qingshuigou channel, and Qing 8 Course gradually expanded to the sea. From
2003 to 2013, the Qing 8 Course further expanded to the sea, mainly in the mouth of the
Yellow River to the direction of the lobes on both sides of the river, while the Qingshuigou
Course was eroded to a lesser extent. Since 2013, the YRD has been in a state of erosion on
the whole, with only a slight expansion at the mouth of the river.

In Figure 12a, we can find that a similar variation trend between water discharge and
sediment load, especially before the implementation of water and sediment regulation
projects during the period of 1980–2002. According to the official Yellow River Sediment
Bulletin (http://www.mwr.gov.cn/sj/, accessed on 13 May 2021), six major water and
sediment regulation projects were carried out between 2002 and 2010. However, both water
discharge and sediment transport began to decrease after 2002 [48], in which sediment
transport was small in the years (2002, 2003, 2004, 2005, 2007, and 2010) with large water
volume. Artificial hydraulic engineering increases the water discharge, but the total amount

http://www.mwr.gov.cn/sj/


Remote Sens. 2021, 13, 1940 14 of 27

of sediment load does not increase significantly, which mainly resulted in the corresponding
decrease of the shoreline length in the estuary area.
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In Figure 12b, the total length of coastline continued to increase (from 150 km to
220 km) and reached a peak during the period 1980–2005. From 2005 to 2013, the growth
rate of shoreline slowed down and the length of the coastline decreased to 180 km. Since
2013, the coastline length has started to grow rapidly again, reaching 220 km. However,
the total area is accompanied by an increase and then a decrease with a period of about
5–10 years, and the highest peak of the total area is about 210–220 square kilometers.

Due to the twists and turns of the shoreline in the YRE, the change of shoreline length
and area is not always positively correlated. As shown in Figure 12c, the coastline change
is usually accompanied by a positive change in area, as in 1985, 1991, 1996, 1999, and 2009.
However, the increase of length does not necessarily correspond to the increase of area,
and vice versa, mainly due to the irregularity of the estuarine shoreline shape. Therefore,
there are also shoreline changes accompanied by inverse changes in area, such as in 2003
and 2013.

In Figure 13, we can find that there is a strong positive correlation (up to 0.865) between
water discharge and sediment load, which means sediment load is correspondingly high in
the years with high water discharge. Furthermore, there is also a good positive correlation
between the area change of the YRE and the entire area change of the YRD. Besides, both
area changes are highly correlated with the water discharge and sediment load.
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4. Discussion
4.1. Considerations of Sensors, Image Resolution, and Extration Methods

The sensors that collected images can be divided into two types: multi-spectral and
SAR. The difference is mainly in the data preprocessing stage before the binarization step.
NDWI that is calculated from two bands of the multispectral image can be considered
as a nonlinear function related to reflectance, while filtered and radiometric calibrated
amplitude that is generated from the SAR SLC image represents the backscattering intensity
corresponding to the ground target closely related to the target medium, water content, and
roughness. Then, both NDWI and amplitude images are used for binarization, morphologic
operation, and edge detection, in which basically there is no loss of precision involved
(Figure 14).
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Image resolution can be considered the biggest source of uncertainty caused by the
process of vector to raster conversion. The process of image acquisition by sensor is
rasterization. Each pixel in raster data contains only one attribute data value, which is a
generalization of various attributes within the pixel. The type of error that occurs when the
feature is not captured properly is called a positional error, as opposed to attribute errors
where information about the feature capture is inaccurate or false.

Geometric error refers to the positional error caused by the transformation of vector
data into raster data, as well as the error of length, area, and topology matching caused
by the positional error. The size of geometric error is proportional to the size of the pixel.
When the polygon network represented by vector data is approximated by pixels, the
problem of topology matching is serious.

Attribute error is related to the sensors that collect images and the image resolution.
For example, the ground area corresponding to each pixel in the Landsat-3 MSS image is
approximately 80× 80 m. The attribute value of the pixel is the average reflected reflectivity
of the objects. Some objects with high reflectivity will have a great influence on the pixel
attribute value, even if their area is small. This will lead to misclassification and loss of
some other useful information. Attribute error occurs when images are acquired. Due to
the absence of measured data, especially as early as 1980, we cannot evaluate the attribute
errors. However, when discussing uncertainty due to these various images used, attribute
errors due to sensors and resolutions must be taken into account.

Positional error can be easily calculated with the measured data. According to overly-
ing real vector and raster maps, the amount of correctly classified grids and misclassified
grids can be counted. However, in many cases, the measured data cannot be provided. The
rasterization error must then be estimated from the grid itself. The error is related to two
factors. One is the distance between a random point in the vector map and pixel center in
the raster map, and the other is the geometric characteristic of sampling grids. That means
the higher the resolution, the smaller the pixel error.

It is not possible to use satellite images with the same resolution over a period of
40 years, especially from different sensors. However, the understanding of the relationship
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between image resolution and uncertainty of shoreline extraction is crucial for weighing
the reliability of the results of shoreline changes in different periods.

The method we used to extract the shorelines is the most widely used threshold
segmentation method from the fusion of NDWI and image binarization. Thresholding is
a conceptually simple segmentation technique by using a histogram to segment images.
At present, the optimal threshold is designed to determine and improve the threshold
segmentation method. In this study, we used the threshold segmentation method proposed
by Otsu [43], which is considered a gold standard in the field of thresholding.

4.2. Uncertainty Analysis of Coastline Extraction

With respect to river course or coastline extraction, several methods exist, such as
image differencing, unsupervised land–water classification, supervised land–water classifi-
cation, image segmentation, and manual coastline digitization. Most of them are based on
multispectral bands or derived indices, such as the NDWI. A detailed review of the latest
developments in coastline/shoreline derivation from remote sensing data has been pre-
sented by Gens [44]. However, it should be mentioned that while automatic digital image
processing is fast and might seem more elegant, for coastline extraction, so far nothing can
yield better results than a thorough human interpretation and manual digitization.

Since there are many types of coastline in the YRD region, it is difficult to use a single
tidal station to correct the tide of the whole coastline. Furthermore, there is a lack of long
time series of historical tidal observation data, especially in the YRE. Therefore, a dry–wet
boundary is a more suitable choice for the coastline [27]. As far as the results of shoreline
change are concerned, the annual average rate of change reached 87.87 m/a, and the range
of change at the mouth of the Yellow River reached ~500 m/a. The remote sensing images
used in this paper were acquired from June to August and the tidal coastline migration
made little contribution to the coastline change. Considering that the spatial resolution of
the optical and SAR images is about 10–30 m except for earlier 80 m Landsat-3 MSS imagery,
the accuracy of image extraction will have an impact on the result of coastline change.

By comparing the performance of SAR and optical images in shoreline extraction, we
find that SAR images are more suitable for intertidal shoreline detection. Therefore, we
used them instead of multispectral images at the corresponding time, when SAR images are
available. Visual interpretation and manual identification are necessary in the procedure
of automatic shoreline extraction, especially for the low-resolution multispectral images
from 1980 and 1985. Due to the extremely frequent and drastic changes in the Yellow River
Delta, there is still a lack of long-term continuous GPS time-series measurements. We only
used GPS observation to evaluate the accuracy of the results in 2020.

As shown in Figure 15, the coastline extracted from GF-3 SAR on 11 July 2020, is con-
sistent with observations from the GPS RTK to a large extent. Morphological operation was
used to make the artificial coastal edge smooth, especially for those long, man-made piers
that go deep into the sea, which would probably produce larger errors in the corner area.

Figure 16 illustrates that the percentage of errors within one pixel of GF-3 SAR imagery
(10 m) is 71.4%, while the percentage within two pixels (20 m) is 91.8%. The outliers more
than 20 m come from the corner area as shown in Figure 15d. Therefore, through the
evaluation from the GPS RTK measurements and manual visual interpretation, the authors
think that the shoreline extraction accuracy is generally controlled at the level of 1–2 pixels.

For Qingshuigou and Qing 8 shorelines, we analyzed the confidence interval of the
calculated change rate to investigate the uncertainty of the change rate. As illustrated in
Figure 17, there are two transects selected, no. 97 for Qingshuigou course and no. 112 for
Qingshuigou course. In Figure 18, 95% confidence belts were plotted using the distance
from the intersections of the shorelines and the transect to the baseline. The standard error
of the slope with confidence interval (LCI for ordinary linear regression) describes the
uncertainty of the LRR.
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distribution of GPS RTK measurements along the coastal dam. (d) The corner area with the great-
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zooming in from (c). The Red line represents ‘true shoreline’ measured with GPS RTK, and the 
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Figure 15. (a) Geolocation of the Gudong Oilfield coastal dam. (b) Aerial photos of the central
section of artificial dam obtained by the unmanned aerial vehicle (UAV) on 31 July 2019. (c) Spatial
distribution of GPS RTK measurements along the coastal dam. (d) The corner area with the greatest
coastline inconsistence between GPS RTK (11 January 2020) and GF-3 SAR (11 July 2020) by zooming
in from (c). The Red line represents ‘true shoreline’ measured with GPS RTK, and the green line
indicates the shoreline extracted from the SAR image.
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along the coastal dam from north to south.
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Figure 18. Distance from baseline versus shoreline date to highlight the percent confidence interval
statistic for (a) transect 97 and (b) transect 112. The colored region illustrates 95% confidence band
(95% CI) around the linear regression rate (black dashed line). LCI95, 95% confidence interval; LRR,
linear regression rate.

In Qingshuigou course (Figure 18a), the band of confidence around the reported rate
of change is 320 m/a ± 82 m/a. In other words, we can be 95% confident that the true
rate of change is between 238 m/a and 402 m/a, leaving a 5% chance that the true line is
outside those boundaries. Due to the artificial diversion of the Yellow River mouth from
Qingshuigou to Qing 8 in 1996, two sections of 95% confidence band can be obtained by
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linear fitting in Qing 8 (Figure 18b), that is, 1312 m/a ± 290 m/a (1022 m/a~1602 m/a)
and −361 m/a ± 45 m/a (−406 m/a~−316 m/a).

4.3. Influence of Water Discharge and Sediment Load

Since the 1950s, human activities have had a more serious impact on the Yellow
River basin due to the great economic and social development. Sediment losses due to
urbanization, upstream irrigation, diversion, and hydraulic dams have altered the delta’s
erosion and accretion balance [49]. Delta ecosystems are often developed well beyond
sustainable limits, especially in developing and emerging countries [22]. Human activities
that impact the river system include dams and reservoirs, flow diversions, and water
extractions. By far >45,000 dams over 15 m in height have been registered in the world
with the purpose of flood control and water extraction [38].

Sediment transport plays an important role in the shoreline change of the YRD. The
water–sediment regulation scheme, beginning in 2002, presented unexpected disturbances
on the delta and coastal system. Increasing grain size of suspended sediment and de-
creasing suspended sediment concentration at the river mouth resulted in a regime shift
of sediment transport patterns that enhanced the disequilibrium of the delta [21]. Over
the past four decades, sediment load decreased stepwise revealed by the datasets from
key gauging stations in the main stream, on account of both natural and anthropogenic
impacts [39]. The sediment load of the Yellow River has an effect on many aspects of the
YRD, including delta morphology and land subsidence [50,51].

From the overall trend of change, the sediment load of the Yellow River decreases
gradually with the anthropological activities. The correlations between the change of
shoreline length and water discharge, sediment load are very low, indicating that water
discharge or sediment transport has little influence on the change of shoreline. The cor-
relations between the area of the YRD and water discharge, sediment load reached 0.562
and 0.572, respectively, indicating that water discharge and sediment load are vital to area
change. The impact of water transport and sediment transport on the YRD is more reflected
in the change of area than the change of shoreline length.

Since the 1990s, the Yellow River flow cutoff has become increasingly serious, which
brings many problems to the evolution of river course and estuaries [52]. The objective
situation of the Estuary of the Yellow River also requires a new understanding of the estuary
and the adoption of new countermeasures. At that time, it was one of the strategies of oil
and gas development in the coastal area of Shengli Oil Field to exploit oil and gas turning
from submerged coastal area to land, by using the silt of the Yellow River to make land. In
1996, owing to the Yellow River shifted to Qing 8 Course from Qingshuigou Couse, and the
status of the YRE began to change obviously, with Qing 8 Lobe forming. From 1996 to 1999,
there was obvious accretion in Qing 8 Course, with the change rate reaching 116.5 m/a, and
obvious erosion occurred in Qingshuigou Course, with the erosion rate reaching 253.2 m/a.
Along with the reduction of sediment discharge, there is a downward trend of the change
range of the YRE coastline. It is a special time period from 2003 to 2009, Qing 8 experienced
a state of obvious accretion, on account of water-sediment modulation. Water-sediment
Modulation has played a vital role in regulating the delivery of material from the Yellow
River to the sea [53,54]. From 2013 to 2020, the range of coastline change in the YRD further
decreased, and there hardly occurs a distinct change in the three regions (Shenxian’gou
Course, Qingshuigou, Qing 8), with the range of change within 50 m/a basically.

To further understand the relationship between sediment load and the area of the
YRE (Figure 19), we analyzed the relationship between the area change of the YRE and
water discharge, sediment load. In Figure 20, we can roughly see that the area at the YRE
increases sharply in years with high sediment load (1980–1985), and decreases slightly
in years with low sediment load (1985–1991). After the Yellow River shifted to Qing 8
(1996–2009), the area of erosion (mainly located in Qingshuigou Course) was larger than
the area of accretion (mainly located in Qing 8). The correlations between estuary area
change and water discharge, sediment load are shown in Figure 13, reaching 0.539 and
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0.615, respectively, higher than the previous results of correlation analysis for the whole
study area (0.562 and 0.572). The outcome proves that the influence of water discharge and
sediment load on the area change of the YRD is mainly concentrated in the YRE.
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We can see that there is a strong correlation between sediment load and water dis-
charge before 2003. From 2003 to 2009, water discharge increases slightly and remains in
a relatively stable state, while sediment load decreases obviously due to the water and
sediment regulation projects. However, there is still a weak correlation between them
from the similar trends. The sediment load from upstream in the Yellow River mouth that
does not keep a static state is an important factor affecting delta morphology. It can be
found that the increase or decrease of sediment transport is accompanied by the increase
or decrease of shoreline length, but there is a certain lag in the occurrence time of the latter.
Due to the complicated ocean dynamics from waves and tides, accretion and erosion will
gradually reach a balance.

Theoretically, the greater the water discharge, the greater the sediment transport.
However, this is not always the case. Human activities have a great impact on the change
of sediment in the upper reaches of the Yellow River, such as afforestation activities on the
banks of the Yellow River, flood storage, and sediment control activities of hydropower
stations, and gradual solidification and deposition of coarse sediment on the riverbed.
Therefore, sediment transport does not necessarily increase at the same time as water
flow increases.

4.4. Critical Sediment Deriven by Human Activities and Climate Change

The optical and SAR remote sensing images selected in this study could not fully
reflect the detailed relationship between water, sediment transport, and estuary area with
a time interval of 3–6 years. There are other underlying factors that are affecting the
YRD. Previous studies usually assume that there is a linear correlation between sediment
discharge and coastline change [26,51,52,55,56]. The analysis in Figure 13 shows that the
sediment discharge has a great contribution to the change of estuary area with a correlation
of 0.615. Therefore, the impulsive delivery of muds and sands indeed transforms the
present YRD from a destructive phase to an accretion phase [57]. However, this study
shows that the contribution of sediment transport to the change of the estuary is not the
only dominant factor.

Due to the coarsening of the surface bed material sediments, the erosion efficiency of
the downstream riverbed has reduced. Since 2013–2017 in Figures 9 and 10, continuous
scouring and reduced sediment transport have caused the current delta to re-enter a
phase of erosion and destruction [57]. The previous study has shown that erosion of the
abandoned delta lobes can sustain the supply of sediment to remote offshore depocenters,
even after decades of declining river sediment discharge [58]. The artificial water and
sediment regulation scheme increases the ratio of water flow and sediment transport,
resulting in more sediment being carried away by the current entering the Bohai Sea, and
further reducing the impact of sediment transport on the estuary area [59].

Furthermore, human activities intensified gradually from a negligible factor from
7000 to 3000 cal yr BP to a considerable force compared with natural forces over the last
3000 years, and finally dominated the Yellow River’s sediment discharge within the last few
decades [60,61]. From the 1980s to the present, the anthropogenic influence on the YRE has
been increasing, which further reduces the proportion of the impact of sediment transport
on the estuary area. The transport of sediment into the sea significantly changes in the
geomorphology of the estuary delta, and then the coupling of sediment transport and ocean
dynamics has a superposition effect on the topography of the continental shelf [62,63]. As
shown in Figure 21, the sediments from the Yellow River are mainly transported outward
along two pathways, including the west side of the central Bohai Shoal to the central part of
the Bohai Sea and the Bohai Strait to the Yellow Sea, which is closely related to sea surface
temperature, flow field, wind speed, and wind direction [64].
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Last but not the least, climate change and sea level rise affect waves and storm surges,
which are also important drivers of coastal morphology [65,66]. Much of the world’s sandy
coastline is already eroding, and climate change is likely to exacerbate this as sea level rise
is accelerating, in addition to the combined result of a wide range of potentially erosive or
accretive factors [9]. In particular, the southern section of the Qingshuigou course has a
lower slope and the effect of sea level rise is more serious [37]. In recent years, the impact
of sediment discharge on the area change of the YRD is decreasing, so understanding the
redistribution of sediments by waves and tides as well as dynamics of extreme weather
patterns is critical for human-driven and climate change to deltas.

5. Conclusions

In this study, we present a combination method to extract the coastline of the Yellow
River Delta (YRD) in 1980–2020 with both optical and SAR satellite remote sensing images.
Then, we investigate the influence of annual water discharge and sediment load as well
as critical sediment on the changes of the coastline. The long-term time series fusion
of multi-source optical and SAR remote sensing data provides an accurate quantitative
estimate of the coastline geolocation of the YRD in the last 40 years and reveals its dynamic
change drivers.

The results indicate that the rate of change shows spatial heterogeneous variability
during 40 years. There are four significant accretion areas (Tiaohe, Shenxian’gou, Qing 8,
and Qingshuigou course) due to artificial land reclamation and deposition of sediment. In
the Qing 8 Course, the maximum change rate reaches 523.21 m/a in end point rate (ERR)
and 385.4 m/a in linear regression rate (LRR), while 462.54 m/a in ERR and 311.48 m/a
in LRR in the Qingshuigou Course. However, there was a sharp decline in the period
of 1996–1999 as a result of the artificial water and sediment regulation scheme. Erosion
and accretion gradually reach a balance from 1999 to the present, except for Qing 8 in
2009–2013.

The relative high correlation supports that the sediment discharge has a great contribu-
tion to the change of estuary area. However, the influence of water discharge and sediment
load on the area change of the YRD is mainly concentrated in the Yellow River Estuary
(YRE). Although the artificial hydraulic engineering increases the water discharge, the total
amount of sediment load does not increase significantly, resulting in the corresponding
decrease of the shoreline length in the estuary area. Therefore, apart from the contribution
of sediment transport to the change of the estuary, human activities, climate change, and
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sea level rise that affect waves and storm surges, are also important drivers of coastal
morphology to be investigated in the future.
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