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Abstract: Terrestrial water storage (TWS) in high mountain areas contributes large runoff volumes
to nearby lowlands during the low-flow season when streamflow is critical to downstream water
supplies. The potential for TWS from GRACE (Gravity Recovery and Climate Experiment) satellites
to provide long-lead streamflow forecasting in adjacent lowlands during the low-flow season was
assessed using the upper Yellow River as a case study. Two linear models were trained for forecasting
monthly streamflow with and without TWS anomaly (TWSA) from 2002 to 2016. Results show that
the model based on streamflow and TWSA is superior to the model based on streamflow alone at up to
a five-month lead-time. The inclusion of TWSA reduced errors in streamflow forecasts by 25% to 50%,
with 3–5-month lead-times, which represents the role of terrestrial hydrologic memory in streamflow
changes during the low-flow season. This study underscores the high potential of streamflow
forecasting using GRACE data with long lead-times that should improve water management in
mountainous water towers and downstream areas.

Keywords: streamflow forecast; terrestrial water storage; GRACE; low-flow season; water tower

1. Introduction

Long-term streamflow forecasts often depend heavily on terrestrial hydrologic mem-
ory [1,2]. As sparse in situ observations and large uncertainties in climate forecasts impede
long-lead streamflow forecasting in mountainous regions [3], long-term memory of soil
moisture and groundwater can significantly contribute to forecast skill [1,4]. However, the
use of terrestrial hydrologic memory for streamflow forecasts has been restricted due to
limited observations [5,6]. In recent decades, remotely sensed data, such as snow and soil
moisture, have been increasingly used for streamflow forecasting, and may play a more
important role in hydrology in the future [7], despite considerable uncertainty [8]. Among
others, the original Gravity Recovery and Climate Experiment (GRACE), and the GRACE
follow-on satellite missions, provide unique observations of Terrestrial Total Water Storage
(TWS), including snow, canopy, surface water, soil moisture, and groundwater [9].

TWS anomalies (TWSAs) inferred from GRACE satellites have global coverage and
are provided with about 1-month latency [10], and have been widely used for detect-
ing changes in TWS and groundwater in many regions [11,12]. GRACE TWSA has also
shown great potential for streamflow prediction at short term or seasonal timescales [13,14].
GRACE TWSA allows for the early warning of flood events, with more than 5-month lead
times in the U.S. Missouri River Basin [15]. In the Ganges-Brahmaputra-Meghna Rivers,
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fairly reliable streamflow forecasts with 2–3-month lead times were achieved with GRACE
TWSA data alone [16]. The important role of GRACE TWSA was further recognized
when used in conjunction with meteorological data in seasonal streamflow forecasts in
Central Asia [17]. Previous studies indicate that streamflow forecasting during the flood
season generally benefited from month-to-month variations in the terrestrial hydrologi-
cal memory represented by GRACE TWSA. The strength of the terrestrial hydrological
memory may vary seasonally and over different hydrological regimes [6,18,19]. Thus, the
contribution of GRACE TWSA to forecast skill would differ across seasons with different
hydrological regimes.

Snow and soil moisture conditions, which represent the initial conditions in hydro-
logical models, have the strongest influence on streamflow forecasts, especially for flood
prediction during the wet season [20–22]. However, TWS components are not well rep-
resented yet in current hydrological models, which makes it a challenge to model the
variation in streamflow during low-flow seasons [23]. Previous studies mainly focused
on applying GRACE TWSA in forecasting wet season streamflow; however, it is unclear
how knowledge of water stored during the wet and warm season would aid in streamflow
forecasts in the subsequent dry season.

Predicting low flow in a changing climate is critically important to society. Variations
in streamflow during low-flow periods destabilize water supplies to humans and the
environment downstream to different degrees. River low-flows, which are essential for
municipal water supply, irrigation, industry, hydropower, river navigation, recreation, and
wildlife conservation, face unprecedented threats from climate extremes and change [24–27].
Observed evidence of drier dry seasons, predominantly in extratropical latitudes, suggests
that reduced dry season water availability can be attributed to human-induced climate
change as a consequence of increasing evapotranspiration under global warming [28–30].
Thus, an improved understanding of variations in low-flow and the extension of long-lead
forecasts are essential for enhancing water resource management downstream.

The objective of this study was to test the potential of the GRACE TWSA signal,
obtained in the wet and warm season, for improving long-lead streamflow forecasts during
the low-flow cold season. The Upper Yellow River (UYR) in China is an ideal system to
test the approach because of the large variability in streamflow and the importance of low
flows to downstream users. The UYR originates in the Tibetan Plateau, which is known as
the water tower of the Yellow River because of its significant contribution (~34%) to the
total runoff of the entire Yellow River basin [31]. In the UYR, precipitation mostly occurs
during the warm season (April to October), and low streamflow in the following cold dry
season (November to March) is mostly associated with TWS from the preceding season’s
precipitation [32,33]. Low river flows from the UYR profoundly influence ecosystems and
economies dependent on the water source [25,34,35]. Novel aspects of this study are the
use of the GRACE TWSA signal obtained in the wet season for low-flow prediction and
extending the lead times up to 5 months at a mountainous river basin, with limited ground
observations. This study should have important implications for streamflow management
and improvement of hydrological modeling in the Yellow River, with potential applications
to similar river basins globally that are fed by mountainous watersheds.

2. Materials and Methods
2.1. Precipitation, Streamflow and TWSA Data

Monthly streamflow data from 2002 through 2016 were collected for the control
station in the UYR of China, i.e., the Tangnaihai station (altitude 2.7 km; Figure 1), from
annual hydrological yearbooks [36]. Monthly areal precipitation during 2002 to 2016 was
calculated as the average precipitation of all grid cells within the UYR from the China
meteorological forcing dataset [37]. The catchment area of the UYR (122,000 km2) is at the
lower limit of GRACE resolution (~100,000 km2). Monthly TWSA in the UYR from April
2002 through December 2016 was derived from the GRACE Release 06 (RL06) mascon
solutions provided by NASA Jet Propulsion Laboratory (JPL) and the University of Texas
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Center for Space Research (CSR). The JPL GRACE RL06 mascon solution (version 2.0),
with a spatial resolution of 0.5◦, includes the coastline resolution improvement [38,39].
The native resolution of CSR GRACE RL06 mascon solution (version 1) is 1◦ and was
downscaled to 0.25◦ [40]. TWSAs were calculated from the two GRACE solutions by
removing the mean for the 2002–2016 period. In this study, monthly TWSA data were
spatially aggregated over the GRACE grids weighted by the fraction covered by the UYR
basin. A total of 19 months of data are missing from the GRACE products from April 2002
to December 2016 due to satellite operational issues. The data in October are missing in
2012, 2015, and 2016. Linear interpolation was used to fill the missing months using the
nearest two neighbors. The length of individual data gaps is less than 2 months. Thus,
the data filled by linear interpolation should have minimal impact on the results [41,42].
The average TWSA of the JPL and CSR solutions was used in the main analysis, and the
results of each solution are provided in the Supplementary Materials. According to the
streamflow climatology in the UYR (Figure 2), the low-flow season is defined as the period
from November to March, and the TWSA data from October were used as predictors of
streamflow during the low-flow season.
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Figure 1. Map of the upper Yellow River. Figure 1. Map of the upper Yellow River.

2.2. Linear Models

Two linear models (LM1 and LM2), following Reager et al. [15], were used to develop
monthly streamflow forecasts. LM1 included one predictor which can be monthly stream-
flow, TWSA, or 5-month cumulative precipitation. Taking streamflow (Q) for an example:

Q̂t = a1 × Qt−τ + c1 (1)

where Q̂t is the predicted monthly streamflow at t month, Qt−τ is the observed streamflow
at t − τ month (τ months before time t), τ is the lead time (months), a1 is the regression
coefficient, and c1 is a constant. LM2 used a combination of two to three of the predictors
(e.g., streamflow, TWSA, or 5-month cumulative precipitation), and taking streamflow and
TWSA for an example:

Q̂t = a2 × Qt−τ + b2 × TWSAt−τ + c2 (2)
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where a2 and b2 are regression coefficients, c2 is the intercept. The coefficients for the
linear models were determined using the least-squares method implemented by the python
package scikit-learn (https://scikit-learn.org/, accessed on 19 May 2021). In this study,
streamflow and TWSA from October were used as predictors of streamflow from November
to March.
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Figure 2. Seasonality of precipitation (P), streamflow (Q), and GRACE-based terrestrial water storage
anomaly (TWSA) from 2002 to 2016. TWSA is the average of JPL and CSR solutions. The inner
plot shows the correlations between TWSA in October and streamflow in the following months
(orange), and between streamflow in October and that in the following months (blue), i.e., November,
December, January, February, and March. JFM represents the averages for January, February, and
March. The grey dashed line indicates the statistically significant correlation coefficient at the
95% level.

Streamflow and TWSA time series were divided into a 13- (or 12)-year training period
and a two-year forecast period. More specifically, the length of the training dataset was
13 years for the target months of November and December, and 12 years for January to
March. A test suggested that longer forecast periods (shorter training periods) would result
in slightly poorer linear models due to limited records (Figure S1 online). The bootstrap
method was used to resample the training and forecast datasets 100 times to estimate the
uncertainty in the linear models caused by the selection of training data. Accordingly, an
ensemble (100 time series) of streamflow forecasts was generated. We used the ensemble
medians of streamflow simulations for the main analysis, with uncertainty estimated from
the 25th and 75th percentiles of the ensemble.

The contribution of GRACE TWSA data to the forecasts was evaluated by compar-
ing monthly streamflow from the models and observations during the low-flow season.
Relative error (RE) and mean relative absolute error (MRAE) were used to evaluate the
performance of the linear models, which were calculated as

RE = 100 ×
Qt, f − Qt,o

Qt,o
(3)

https://scikit-learn.org/
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MRAE = 100 × 1
N

N

∑
i=1

∣∣∣Qt, f − Qt,o

∣∣∣
Qt,o

(4)

where Qt,f and Qt,o are the forecasted and observed monthly streamflow, respectively, at
month t, N is the number of data points (the number of years in this study), and i indicates
the ith year. The RE and MRAE were calculated for all data, i.e., including the training and
forecast data.

The adjusted R2 (R2
adj) was also used to examine the goodness of fit:

R2
adj = 1 −

(
1 − R2)(N − 1)

N − k − 1
(5)

R2 =

 1
N

∑
(
Qi

t,o − Qt,o
)(

Qi
t, f − Qt, f

)
σQt,o σQt, f

2

(6)

where k is the number of independent predictors, Qt,o and Qt, f are averages of observed
and forecasted monthly streamflow, respectively, σQt,o and σQt, f are the standard deviation
of the observed and forecasted monthly streamflow, respectively.

3. Results

TWS changes more slowly than streamflow during the shift from high-flow to low-flow
seasons (Figure 2). Mean monthly streamflow at the Tangnaihai station was ~5.4 mm (con-
verted to runoff depth) and mean monthly precipitation was ~4.3 mm over the UYR during
the low-flow season for 2002–2016. Streamflow from November to February exceeded
precipitation input, implying that water stored from the previous season’s precipitation
contributed a considerable volume of discharge during the low-flow season. Unlike stream-
flow, which is lowest in January and February, TWSA often reaches the lowest values in
April, during the transition from low-flow to high-flow seasons. The potential contribution
of TWSA to discharge can be inferred from the lag-correlations between TWSA in October
and streamflow in the months from November to March (see the inner plot in Figure 2).
The lag-correlations are statistically significant (at the 95% level) and are particularly high
(R ≥ 0.8) for January and February. The correlation coefficients between streamflow in
October and streamflow are larger in November and December than those for TWSA
and streamflow in November and December; thereafter, autocorrelations in streamflow
decrease for the following months and are smaller than those between TWSA in October
and streamflow in January, February, and March (see the inner plot in Figure 2).

Using LM1 and LM2, we predicted monthly streamflow in the low-flow season
(November through March) at the end of the preceding high-flow season (October). The
linear models were fitted with the least-squares method, and the Akaike information
criterion (AIC) values were estimated (Table 1). The results based on the average TWSA of
JPL and CSR solutions show that AIC values of LM1 are generally smaller than those of
LM2 for the predictions of November and December, while the opposite is found for the
predictions of January to March.

The performances of the linear models based on the average TWSA of the JPL and
CSR solutions are shown in Figure 3 (see also Figures S2 and S3 online). As indicated
by the mean relative absolute errors (MRAEs) (Figure 3A), the performance of LM1 with
predictor streamflow (LM1_Q) is better for target months November and December, while
LM1 with predictor TWSA (LM1_S) is better for target months January to March. The LM1
with predictor cumulative precipitation (LM1_P) is the worst. The MRAEs of the LM2
with predictors streamflow and TWSA (LM2_QS) are significantly lower than those of
LM1_Q for all target months (Table S1 online), while the MRAEs of the LM2 with predictors
cumulative precipitation and TWSA (LM2_PS) and the LM2 with predictors TWSA are
significantly higher than those of LM1_Q for target months November and December, but
are significantly lower (at the 95% confidence level) for target months from January to



Remote Sens. 2021, 13, 1993 6 of 12

March. Among others, LM2_QS shows the best performance for all target months. The
median MRAEs of LM2_QS in these target months are 7.9% (January), 12.8% (February),
10.7% (March), and 9.3% (JFM), which are at least 25% less than those of LM1_Q. Overall,
the inclusion of GRACE TWSA reduced the error in streamflow forecasts with a lead time
of 3–5 months by 25% to 50%.

Table 1. Akaike information criterion (AIC) of LM1_Q and LM2_QS. The mean, minimum, and
maximum AICs are calculated from the 100 model runs with resampled data for each month.

Month
LM1_Q LM2_QS

Mean Min Max Mean Min Max

November 17.31 17.07 19.25 19.11 18.83 21.07

December 19.24 18.71 23.82 20.57 20.03 25.17

January 18.71 18.40 21.50 15.95 15.76 17.30

February 19.69 19.37 23.00 17.73 17.47 19.79

March 22.81 22.19 28.36 19.76 19.27 23.43

JFM 20.21 19.79 24.19 17.40 17.10 19.80
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Figure 3. Performance of the linear models (LM) for streamflow forecasts at the Tangnaihai sta-
tions: (A) Mean relative absolute errors (MRAEs) of modeled streamflow compared to observations.
(B) Adjusted R2 of the simulations. The thick bars show the ensemble medians, while the rectangles
show the ranges between the 25th and 75th percentiles. The MRAEs are averaged over all years for
each target month. In the legend, Q, S, and P denote streamflow, TWSA, and cumulative precipitation,
respectively, as the predictors used in the linear models. The average TWSA of the JPL and CSR
solutions was used. Median MRAEs and median adjusted R2 of LM1_Q are shown in black and those
of LM2_QS are in red.
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Improved performance of the linear models due to the inclusion of TWSA is also
indicated by the adjusted R2 values (Figure 3B). The LM1_Q, LM2_QS, and LM2_QP
have similar adjusted R2 values for target months November (>~0.7) and December (~0.5).
LM1_P has the lowest adjusted R2 for all target months, while the adjusted R2 of LM1_S
is much higher than that of LM1_Q for January, February, March, and JFM. LM2_QS
shows the best performance in January, with a median adjusted R2 ≥ 0.8, and ~0.7 for
February and JFM. The median adjusted R2 values of LM1_Q are ~0.3–0.4 for January
and February, and ~0.1 for March. Differences in median adjusted R2 values between
LM1_Q and LM2_QS are ~0.3–0.4 for January to March, suggesting that the inclusion
of GRACE TWSA in LM2 can explain ~30–40% more variance in streamflow forecasts.
LM2_QS represented the improvement of streamflow forecast well relative to LM1_Q, due
to the inclusion of TWSA. Therefore, for simplicity, the results of these two models are
presented in the following analysis.

The REs in the simulated streamflow by LM1_Q are larger than those for LM2_QS
(Table 2) for most years. Specifically, about 60% to 70% of REs of LM2_QS predictions are
less than those of LM1_Q. Only four REs are out of the ±20% range for LM2_QS, which is
much less compared to the 21 REs for LM1_Q. For all target months, annual fluctuation in
REs of simulated streamflow from LM1_Q is larger than that from LM2_QS. The difference
between the maximum and minimum ensemble median REs during the 15 or 14 years
ranges from 51% to 78% for LM1_Q, relative to 32% to 52% for LM2_QS for all target
months. This indicates that more robust forecasts can be achieved if the LM2_QS approach
is adopted, i.e., including GRACE TWSA signal.

Table 2. Relative errors in simulated streamflow by LM1_Q and LM2_QS.

Year
LM1_Q LM2_QS

November December January February March JFM November December January February March JFM

2002 34.3 26.1 - - - - 24.5 14.0 - - - -

2003 14.5 23.6 42.2 23.2 32.7 32.8 9.6 14.6 −2.1 −15.6 5.8 −2.9

2004 −2.9 6.5 30.7 44.8 26.3 32.9 −4.7 3.7 3.8 14.0 4.7 6.7

2005 16.7 28.9 12.2 17.0 17.1 15.4 15.8 27.2 1.7 5.8 8.3 5.3

2006 9.4 11.2 17.7 20.1 25.1 21.3 7.6 8.5 13.4 16.1 20.7 17.0

2007 −6.1 2.9 16.0 18.4 0.9 10.1 −6.8 1.9 5.7 7.1 −5.4 1.0

2008 −6.7 −2.3 −2.5 19.0 0.2 4.0 −8.2 −5.1 −7.3 12.2 −3.9 −0.7

2009 −16.8 −23.6 6.9 −7.4 −8.1 −3.7 −17.4 −24.5 −2.7 −15.5 −14.6 −11.6

2010 −14.5 −4.1 −9.5 −12.8 −7.7 −10.0 −11.0 2.0 −13.4 −16.3 −11.0 −13.5

2011 −15.7 −21.5 −14.8 −5.0 −1.4 −6.7 −14.6 −19.6 −2.6 9.1 10.1 5.7

2012 −3.9 −4.1 −17.4 −18.3 −18.9 −18.2 1.5 5.0 −13.1 −13.4 −15.1 −14.0

2013 0.6 6.1 −25.8 −32.8 −28.5 −29.1 6.1 15.0 −7.6 −15.2 −13.9 −12.3

2014 10.9 −6.3 −1.0 −3.3 −2.5 −2.3 16.6 1.7 18.9 17.0 13.1 16.0

2015 11.0 0.4 −14.4 −9.5 −5.0 −9.4 10.6 −0.2 5.5 12.1 13.5 10.5

2016 4.3 −3.0 16.0 12.8 10.3 12.9 −0.5 −10.0 11.1 7.3 7.4 8.4

Note: Bold numbers mean that the magnitude of REs from LM2_QS are smaller than those from LM1_Q.

The MRAEs were also calculated for streamflow forecasts in the three driest and three
wettest years (Table 3). For the target months, except for December, MRAEs from both
LM1_Q and LM2_QS are larger in the three driest years than in the three wettest years.
MRAEs from LM2_QS, particularly in the dry years (MRAE is ~10%), are less than those
from LM1_Q for all target months. In the driest (wettest) years, the MRAEs of streamflow
forecasts from LM1_Q for January, February, March are at least 13 (5) larger than those
of LM2_QS. In other words, streamflow forecasts by LM2_QS reduced MRAEs by 5% to
70% in the driest years, and by 3% to 30% in the wettest years compared to LM1_Q. The
range of MRAEs across the driest and wettest years from LM2_QS is 7% to 16%, which is
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lower than that of LM1_Q (12% to 27%). This further indicates better performance by the
LM2_QS approach for streamflow forecasting during the low-flow season, especially in
dry years.

Table 3. Mean relative absolute errors (MRAEs, %) in modeled streamflow by LM1_Q and LM2_QS
for each target month during the three driest years (labeled Dry) and three wettest years (labeled
Wet). The differences (Diff) in MRAEs between LM1_Q and LM2_QS are shown as percentages.

Month LM1_Dry LM2_Dry Diff (%) LM1_Wet LM2_Wet Diff (%)

November 17.2 13.6 20.8 16.6 16.1 2.9

December 12.9 12.2 5.3 15.6 15.9 −2.4

January 24.6 7.5 69.5 17.7 10.9 38.1

February 27.3 13.7 49.6 20.6 15.1 26.7

March 25.0 7.5 69.8 18.6 12.2 34.5

JFM 25.4 7.6 70.1 19.1 12.7 33.4

The REs of each year for the training period and forecast period show that LM2_QS
generally performs better overall than LM1_Q during both periods (Figure 4 and Figure S4
online). Specifically, LM2_QS agrees better with observed Q than LM1_Q in most years,
particularly in years when LM1_Q has large REs (e.g., 2003, 2004, and 2013). The REs for the
training years are often larger than those of the forecast years for both LM1_Q and LM2_QS.
This is also indicated by the ensemble mean of absolute REs for each year for training (pink
and light blue lines) and forecast (red and blue lines) periods, respectively. For both training
and forecasting periods, the ensemble mean REs for LM1_Q are significantly different from
those for LM2_QS at the 95% significance level in each year for all target months.
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4. Discussion

In this study, we examined the possibility of improving streamflow forecasts in the low-
flow season by including GRACE TWSA information from the previous high-flow season
with linear models. The results suggest that the inclusion of GRACE TWSA information
would significantly improve streamflow prediction during the dry season. Particularly, the
linear models including GRACE TWSA would perform better in years that the model with
streamflow alone performs poorly. For short term (e.g., 1 to 2 months ahead) streamflow
forecasts, the added information from TWSA plays only a minor role. That is, streamflow
forecasts for November and December by the linear models are mainly dominated by the
preceding streamflow. The limited role of TWSA in streamflow forecasts for November and
December implies that streamflow in the two months may be impacted by other factors
not represented by TWSA in the UYR, e.g., freeze-up, which often starts in mid-November.
Improvement in streamflow forecasts is greatest for longer lead times (3–5 months). For
example, for the target months of January, February, and March, the linear model with
streamflow and TWSA from the previous October reduced errors by 25% to 50%, relative
to the model with streamflow alone for 3–5-month lead time forecasts. The inclusion of
GRACE TWSA improves streamflow forecasts in dry years more than in wet years, which
suggests a more important role of GRACE TWSA in dry years. Improved performance
of streamflow forecasts underscores the strong connections between TWSA during the
wet season and streamflow in the following dry season, which is largely associated with
long-term terrestrial hydrologic memory in the headwater region [13,43]. During the wet
season, both streamflow and water stored in the watershed, including surface water and
groundwater, are significantly affected by precipitation. The TWS would contribute to
streamflow in the subsequent dry season. TWSA, which decreases during the dry season,
primarily results from changes in surface water, soil moisture, and groundwater rather
than snowpack in the UYR because snow accumulates while TWS continues to decrease
during the cold winter (Figure 2).

Previous studies demonstrate the potential of GRACE data for streamflow forecasts
during the flooding season, following Reager et al. (2014). However, this study provides
new insights into the topic by focusing on cold- and low-flow season prediction using
GRACE data from the preceding wet season. Streamflow in the wet season is linked to
the decrease in upstream TWS related to snow melting and groundwater storage change.
GRACE detects the TWS change from month to month, serving as a good predictor of
storage change. During the cold and low-flow season, however, streamflow mainly drains
from water stored in the wet season under gravity. The GRACE TWSA at the end of the
wet season (not TWS change from month to month) can be used to predict streamflow in
the following low-flow months, which relies on a mechanism which is different from that
demonstrated in previous studies. Alternatively, the results show that, even with ground-
based streamflow observations, GRACE TWSA can greatly improve long-lead streamflow
forecasts. GRACE TWSA may be a better indicator of water stored in the basin at the end
of the wet season compared with observed streamflow. The mechanism presented here is
not basin- or region-specific and should be applicable to other mountainous rivers with
sufficient contributing basin areas, where low flows are mainly derived from water stored
during the wet season and drain under gravity during the following dry season.

5. Conclusions

The case study in the UYR shows that inclusion of GRACE TWSA, alone or in com-
bination with other hydrometeorological observations, in the linear models significantly
reduced prediction errors and provided more robust long-lead streamflow forecasts in the
low-flow season. Therefore, this study underscores the importance of water stored during
the high-flow seasons in modulating streamflow in the low-flow seasons and the great
potential of GRACE-based TWSA information in improving streamflow forecasts in moun-
tainous rivers. The GRACE follow-on mission will further enhance the skill of streamflow
forecasts and, to some extent, make operational forecasts possible [17]. Understanding the
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processes linking streamflow, soil moisture, and groundwater would be very valuable in
enhancing streamflow forecasting using hydrological models. The UYR basin is a typi-
cal mountainous headwater area which serves as a water tower supplying a substantial
volume of water to meet local and downstream water demands [44]. Streamflow from
headwaters to downstream reaches in the low-flow season commonly depend on contribu-
tions from water (in the forms of surface water, soil moisture, and groundwater) stored
in the preceding high-flow season. The UYR example suggests that GRACE observations
should be a useful long lead-time predictor of streamflow in the low-flow season in valleys
adjacent to mountainous headwater areas. The improvement provided by GRACE TWSA
in streamflow forecasting with a long lead-time in low-flow seasons would favor water
resources management and planning in the world’s water towers and areas downstream of
mountainous rivers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13101993/s1, Figure S1: Performance of the linear models with different forecast periods,
Figure S2: Performance of the linear models with the JPL TWSA at the Tangnaihai stations, Figure S3:
Performance of the linear models with the CSR TWSA at the Tangnaihai stations, Figure S4: Observed
monthly streamflow and modeled results with resampled data for each target month in each year.
Table S1: Mean relative absolute error (MRAE) for LM1_Q (LM1) and LM2_QS (LM2), and the
significance (P) of the difference between LM1 and LM2 for each target month and each year.
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