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Abstract: As the frequency of earthquakes has increased in Korea in recent years, designing
earthquake-resistant facilities has been increasingly emphasized. Structures constructed with rebars
are vulnerable to shaking, which reduces their seismic performance and may result in damage to
human life and property. Because the construction of facilities requires the maintenance of sub-
constructions, such as by cutting rebars or compensating for missing rebars, information on rebar
diameter is required. In this study, the YOLO-v3 algorithm, which has the fastest object recognition
performance, was applied to the structural correction data, and a basic experiment was conducted
in the air to predict the diameter of rebars in a facility, in real time based on ground-penetrating
radar data. The reason for using the YOLO-v3 algorithm is that in the case of GPR data that change
slightly according to the diameter of the reinforcing bar, it is difficult to discriminate with the naked
eye, and the result may change depending on the inspector. The model achieved a higher accuracy
than conventional rebar detection and diameter prediction methods. In addition, the possibility of
real-time rebar diameter prediction during construction, using the proposed method, was verified.

Keywords: ground-penetrating radar; rebar diameter; migration; YOLO-v3

1. Introduction

In recent years, the frequency of earthquakes in Korea has increased, and the possi-
bility of damage to existing buried objects in the process of facility redevelopment and
maintenance is increasing [1]. Therefore, it is necessary to obtain information on buried
objects not shown in drawings, as well as objects at a given location that can be confirmed
from existing drawings. In addition, because it is necessary to acquire information for the
execution of subsidiary work such as cutting rebars or compensating for missing rebars, a
method for inspecting rebars to supplement information, such as that offered by facility
drawings, is required. Examples of reinforcement work conducted as a result of missing
rebars or the cutting of rebars include work conducted to address the missing rebars at the
Mokgam Water Quality Restoration Center in 2013 [2], the missing rebars at the Daewoo
E&C apartment in 2014, and the cutting of ceiling beams at the Dongbu E&C apartment [3].

When such sub-construction occurs, the facilities are vulnerable to shaking, resulting
in deteriorations in the seismic performance. Therefore, the construction of reinforcements
that do not follow design drawings and the use of nonstandard rebars can cause safety
vulnerabilities. In particular, information on rebar diameter is necessary for safety diagnosis
using devices that inspect the depth, diameter, arrangement, etc., of rebars in existing
facilities. Such devices have rebar detectors; however, they measure an extensive range
of rebars, in terms of their degree of interaction, by applying a magnetic field to a coil
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that approaches the rebars [4]. In addition, it is difficult to simultaneously measure the
depth and diameter of rebars. One citation alternative is to use ground-penetrating radar
(GPR), which analyzes the signal reflected after electromagnetic waves are passed into
the ground or facilities; such waves pass through buried objects, such as non-metallic
materials. This approach has the advantage of easily detecting rebars but depends on the
surrounding environment. However, compared with a conventional rebar detector, it is
easier to measure rebars buried relatively deeply, and this method has the advantage of
shortening the time required for safety diagnosis by detecting a wide area of rebars at once.

Therefore, in this study, GPR image data obtained for the detection of rebars inside
a facility are subjected to signal processing based on existing studies exploring rebar
detection [5,6]. Using the processed data, an object recognition algorithm is employed to
estimate the diameter of the detected rebars to improve the accuracy of rebar detection.

1.1. Research Trend

Research on obtaining the diameter information of buried materials using the electro-
magnetic wave method has been actively conducted. Studies have focused on estimating
the diameter of a pipe embedded in concrete using the electromagnetic wave method [7]
and on estimating the diameter of a rebar embedded in concrete by graphing data using
the electromagnetic wave method [8]. In addition, full-waveform inversion was used to
study the diameter of the buried pipe and the estimated value of the infilling material [9].

Recently, several studies have been conducted regarding the detection and diam-
eter estimation of buried objects using deep learning, in which a convolutional neural
network (CNN) was applied to image data acquired through the electromagnetic wave
method [10–12]. Additionally, in recent years, many studies have been conducted to es-
timate the diameter using machine learning [13]. However, methods that employ deep
learning based on the electromagnetic wave method mainly use B-scan data, which are
not highly accurate, and focus on data visualization. In addition, it is difficult to measure
and estimate the diameter of a buried rebar using existing methods because of signal inter-
ference. Thus, there is a need for a technique that can overcome the problem to increase
accuracy and minimize signal interference.

1.2. Research Content and Method

In this study, the rebar diameter was estimated using GPR, one of the tools that uses
the electromagnetic wave method. Using GPR has the advantage of rapid safety diagnosis
because a wide range of safety diagnoses can be performed.

However, the poor visibility of B-scan image data, as shown in Figure 1, which are
commonly used for buried objects in GPR, remains a significant disadvantage. In addition,
in the case of rebars buried closely, it is difficult to apply a deep learning–based CNN
because the regions of the rebars overlap. So, in effort to solve this problem, we attempted
to use signal processing such as migration and f–k. This method can improve the accuracy
of the diameter estimation of buried rebars using a CNN based on B-scan image data and
can address the difficulty of signal overlap due to closely buried rebars.

The possibility of applying this approach to rebar diameter estimation was confirmed
by converting the B-scan GPR image data into heatmap images with good visibility through
data processing and color correction.

Rebar specimens were prepared to obtain GPR B-scan image data to measure their
diameter; the image data were then transformed into processed data with improved
visibility through structural and color correction. The technique was validated by applying
the YOLO-v3 object recognition algorithm using the B-scan image data and migrated
image data to compare the resulting accuracies with regard to the detection and diameter
estimation of rebars.
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Through this approach, it is possible to determine the locations of steel materials, the spac-
ing between reinforcements, and the depth of the steel materials. 

Figure 1. Example of low visibility of B-scan image data (frequency: 2.5 GHz).

2. Research Methods
2.1. GPR Detection Principle and YOLO-v3 Principle for Rebar Diameter Estimation
2.1.1. GPR Exploration Principles

When GPR is employed, electromagnetic waves in the frequency range of megahertz
to gigahertz are transmitted through a transmitting antenna (Tx antenna), and reflected
signals from media with different dielectric constants are received by a receiving antenna
(Rx antenna).

Information on the two-way travel time and amplitude of electromagnetic waves is
stored in the received signal, and the depth and presence of buried objects are confirmed
through analysis of the shape, amplitude, and travel time of the received wave.

GPR operates as shown in Figure 2. A-scan, B-scan, and C-scan transformations are
used to investigate the radar velocity, and a calibration process is presented to obtain this
velocity. In the case of A-scan, there is a single reception wave, and B-scan refers to a
method of visualizing a set of consecutive reception waves along a specific direction. The
method of collecting B-scan data and visualizing the horizontal area of the x- and y-axes
along the z-axis is called C-scan.
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Figure 2. Method of visualizing GPR data: (a) A-scan method, (b) B-scan method, and (c) C-scan method.

In the case of B-scan image data, which is commonly used to detect buried objects
through GPR, it appears differently depending on the shape of the object, but in the case of
a circular object, it has a hyperbola shape. The horizontal axis of the B-scan data represents
the moving distance of the GPR equipment (antennas), and the vertical axis represents
the depth at which the arrival time of the reflected wave is converted into a distance.
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Through this approach, it is possible to determine the locations of steel materials, the
spacing between reinforcements, and the depth of the steel materials.

2.1.2. Frequency–Wavenumber Migration

The term migration refers to a series of data processing steps employed to obtain
a depth section in which the reflective surface is moved to the actual position based on
the time sections obtained after the processing of GPR data. In addition, it focuses the
hyperbola’s echoes on a punctual echo located at the apex.

To obtain this information, the speed of the transmitted waves in the target medium
is recorded. In the case of the finite difference structural correction method, there is a
limitation regarding the stratum slope that may cause vulnerabilities. Structural correction
methods, such as frequency–wavenumber migration (f–k migration) using the fast Fourier
transform (FFT), have a fast calculation speed and no limitation of finite difference struc-
tural correction. For this reason, they are often used for the structural correction of GPR
data [14].

Equation (1) represents a two-dimensional scalar wave equation. In the case of a GPR
that employs high-frequency electromagnetic waves, because the frequency propagates as
a wave, frequency–wave structural correction is performed using a wave equation, and the
basic principle of frequency–wave structural correction assumes that the wave equation,
shown below, is satisfied.

∂2 p(x, z, t)
∂x2 +

∂2 p(x, z, t)
∂z2 =

1
v2

∂2 p(x, z, t)
∂t2 (1)

In the above equation, x refers to the horizontal distance, z is the depth, t is the time, v
is the speed, and p(x, z, t) represents the wave field propagating through the target medium.

Through the Fourier transform and the inverse Fourier transform, Equation (1) can be
adapted for a section that is to be structurally corrected, as shown in Equation (2), through
which a depth section is obtained by moving the reflective surface to the actual position
from the time section.

p(x, z, 0) =
1

4π2

∞x

−∞

pxz(kx, kz, 0)ei(kx x+kzz)dkxdkz (2)

An example of GPR data before and after structural correction was performed, via a
series of processes, is shown in Figure 3. This structural correction involves data processing
to collect the energy dispersion of electromagnetic waves diffracted at the top of the
diffraction point, thereby improving the visibility of GPR buried detection data [14–17].
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2.1.3. YOLO (You Only Look Once)-v3

Algorithms based on region-based CNNs (R-CNNs) are frequently used to recognize
objects in images. This method uses a domain-based composite product in which several
neural networks are continuously connected, and weight values correspond to each neural
network. The weight values are determined via learning, and the determined weight
values are used for object recognition. The R-CNN family of algorithms includes Fast
R-CNN, Faster R-CNN, Mask R-CNN, etc., and further research is underway [18].

The YOLO algorithm has evolved into the YOLO-v3 algorithm [19], which features
approximately 100 to 1000 times faster object recognition than other algorithms such as
Faster R-CNN, which previously exhibited the best performance. In addition, the YOLO-v3
model has the advantage of learning the universal forms of objects well.

As shown in Figure 4, YOLO-v3 estimates multiple bounding boxes simultaneously
for one CNN in addition to estimating the class probability for each bounding box. The
CNN used here is called the backbone network, which is used for generating feature maps.
This feature map comprises several grid cells, and YOLO-v3 can simultaneously determine
the type and location of the target object by applying the score method to each cell [20–22].
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2.2. Experimental Planning and Configuration

For GPR data acquisition, as shown in Figure 5, an acrylic box specimen and a rebar
specimen were prepared. The size of the acrylic box specimen was 80 × 80 × 50 cm3, and
each of the holes was ∅31 mm at a height of 25 cm, and was made for the installation of
the rebar.
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Figure 5b shows rebar specimens with diameters of ∅10, ∅20, and ∅30 mm, from the
left to the right. In the case of data acquisition, data were acquired from the air where
the noise of the GPR data was minimized for the basic experiment. This is to maximize
the learning result. The specifications of the Proceq GPR Live equipment used in the
experiment are shown in Table 1, and the photographs and data collection methods of the
equipment are shown in Figure 6.

Table 1. Specifications of GPR Live equipment.

Frequency Range Sampling Speed Antenna Gap

0.2–4.0 GHz 20.48 GHz 7.2 cm
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Figure 6. Data acquisition method and equipment: (a) setting rebars on acrylic specimen, (b) a total 11 cases of data were
acquired seven times in the direction perpendicular to the rebar by using GPR on the upper part of the specimen, and (c)
equipment used in the experiment.

The B-scan data acquired via GPR Live were subjected to migration and noise filtering
using the Proceq GPR Live software called GPR-SLICE. The structure-corrected image data
are shown in Figure 7; the samples were more clearly visible subsequent to heatmap color
correction. B-scan and migrated image data were obtained by changing the diameter and
arrangement of the rebars in the acrylic box specimen. Data were acquired for cases in
which rebars of two diameters were installed, a rebar with a single diameter was installed,
and no rebar was installed. A total of 77 data points were acquired. After establishing
the dataset, an experiment was conducted to compare and verify the object recognition
accuracy in terms of rebar diameter using the YOLO-v3 algorithm.
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To execute the YOLO-v3 algorithm, a computer equipped with an Intel i5-6300 CPU,
NVIDIA GeForce GTX 960M GPU, and 8 GB of memory was used, and Figure 8 network
architecture was selected as the backbone network [23]. In terms of the acquired data, 80%
was used as learning data and 20% was used as verification data.
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3. Results and Discussion
3.1. Learning Dataset Using the YOLO-v3 Algorithm

Before proceeding with object recognition using YOLO-v3, the algorithm was trained
using B-scan and migrated data. After the labelling work for AI-based learning was
completed, the learning rate of the YOLO-v3 algorithm was set to 0.001, and the gradient
correction coefficient was set to 0.9.

In addition, the decay value, which is a weight penalty that reduces overfitting, was
set to 0.0005, and the active function used a leaky rectified linear unit (ReLU) to maintain a
constant learning rate. The weight value was obtained by 9000 iterations of learning, and
the learning time was approximately 30 h. The results are shown in Figures 9 and 10.

Additionally, Tables 2 and 3 show the values of precision, recall, F1-score, and mAP
for the learning result. Precision is used to indicate how accurate the predicted result is,
and it is calculated by dividing TP (true positive; if positive is predicted as positive) by the
sum of TP and FP (false positive; in the case of incorrectly predicting negative as positive).
Recall is used to indicate how well a positive is predicted when a positive is given as an
input, and it is calculated by dividing TP by the sum of TP and FN (false negative; when the
actual positive is incorrectly predicted as negative). In the case of F1-score, harmonic mean
is used, and F1-score is used when the values of precision and recall differ substantially or
do not differ very much. mAP is the value obtained by averaging the AP for all classes,
where AP means an average of precision values according to the recall value.
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Table 2. B-scan data learning results.

Precision Recall F1-Score Mean Average Precision (mAP)

0.63 0.65 0.64 47.32%

Table 3. Migrated data learning results.

Precision Recall F1-Score Mean Average Precision (mAP)

0.82 0.96 0.89 93.89%
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As a result of training, the learning curves of both the B-scan and migrated data
showed a tendency whereby the loss rate gradually approached zero. The decreasing trend
indicates that both datasets were well learned, without overfitting. However, as the number
of learning iterations increased, the loss rate decreased; therefore, if the test is performed
using the weights learned after too many iterations, an overfitting problem may arise in the
trained model. Therefore, the test in this study was conducted using the weights learned
after 8000 iterations, which is the point where the loss rate becomes relatively constant.
Tables 2 and 3 show the learning results for the weights learned 8000 times. As a result of
training, it was confirmed that the mAP of the migrated data was higher than that of the
B-scan data. This indicates that when learning with migrated data, more accurate learning
was performed, and a more accurately classified rebar diameter is possible.

3.2. Rebar Recognition and Diameter Estimation using YOLO-v3 Algorithm

The obtained B-scan and migrated data regarding rebar diameters were compared
with the location and diameter of the reinforcing area acquired from the trained YOLO-v3
algorithm, with respect to different rebar diameters and positions. Figure 11 shows the
bounding box and estimation results of rebar diameters obtained by applying the trained
weight model to the B-scan image data, and Table 4 shows the arrangement of the rebars
by diameter and the results estimated using the YOLO-v3 algorithm. Figure 11c–f demon-
strates the installation of one or two rebars with different diameters. The result of applying
the YOLO-v3 algorithm, Figure 11c,e, indicated that the detection and classification of the
diameter was accurate, and in Figure 11d,f the detection showed the correct result, but it
was confirmed that the classification of the diameter was incorrect.
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When three rebars were installed, as shown in Figure 11a,b, it was confirmed that
rebar detection and classification with respect to diameter were incorrect, owing to the
superposition of signals. The average rebar diameter estimation accuracy was 77%.

Figure 12 shows the result of using a weight model trained using migrated data, and
the arrangement of the rebars by diameter. The results estimated using the YOLO-v3
algorithm are shown in Table 5. With regard to Figure 12, it was confirmed in all cases
that the rebar detection and diameter classification were correct. The average accuracy of
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the estimated rebar diameters was 98% for each result. It was confirmed that the time to
process one image for both the B-scan and migrated data was approximately 26 to 60 ms.

Table 4. Rebar placement status and estimation results (B-scan).

Actual Placement Status of the Rebar Estimation Result of the Rebar Compare Result

(a) ∅30, ∅20, ∅10 ∅30, ∅20 F
(b) ∅30, ∅10, ∅20 ∅30 F
(c) ∅20 ∅20 T
(d) ∅30, ∅10 ∅30, ∅20, ∅10 F
(e) ∅20, ∅30 ∅20, ∅30 T
(f) ∅20 ∅10, ∅20 F
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Table 5. Rebar placement status and estimation results (migrated).

Actual Placement Status of the Rebar Estimation Result of the Rebar Compare Result

(a) ∅10, ∅20, ∅30 ∅10, ∅20, ∅30 T
(b) ∅30, ∅10 ∅30, ∅10 T
(c) ∅30, ∅20, ∅10 ∅30, ∅20, ∅10 T
(d) ∅30, ∅20, ∅10 ∅30, ∅20, ∅10 T
(e) ∅30 ∅30 T
(f) ∅30, ∅10 ∅30, ∅10 T

4. Conclusions

We studied a rebar diameter estimation technique for quickly estimating rebar diam-
eter and obtaining extensive information in the field, using GPR data, during the safety
diagnosis of rebars inside facilities. GPR B-scan data are commonly used to detect buried
materials, and the presence and depth information of buried materials can be quickly
obtained using such a method. As a basic study on rapid rebar diameter prediction by
learning GPR image data in advance, an experiment was conducted to obtain accurate rebar
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diameter prediction results using a CNN, which is widely used for image classification
based on GPR image data.

Acrylic box specimens and rebar specimens were prepared for GPR data acquisition,
and B-scan and migrated data were obtained by varying the diameter and arrangement
of the rebars. Using the acquired data, after performing the labeling task for AI-based
learning, the weight values were obtained by 9000 iterations of learning. By performing
rebar area detection and diameter estimation using the trained model, it was found that
when the migrated data were used, more accurate results were obtained compared to when
the B-scan image data were employed. The possibility of using this technique for rebar
area detection and diameter estimation was confirmed.

Based on this research, data sets for various rebar diameters, depths, and permittivity
will be constructed, and experiments will be conducted to verify the field applicability of
the proposed method.
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