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Abstract: Estimating accurately evapotranspiration (ET) in urban ecosystems is difficult due to the
complex surface conditions and a lack of fine measurement of vegetation dynamics. To overcome
such difficulties using recent developments of remote sensing technology, we estimate leaf area index
(LAI) from Sentinel-2-based Normalized Difference Vegetation Index (NDVI) using the NDVI–LAI
nonlinear relationship. By applying Sentinel-2-based LAI and land cover classification (LCC) to a
carbon-water coupling model (PML-V2.1) with surface meteorological forcing data as input, we, for
the first time, estimate monthly ET at 10m × 10m resolution for the Beijing Sponge City. Results
show that for the whole sponge city during June 2018, the LAI, ET and gross primary productivity
(GPP) are 0.83 m2 m−2, 1.6 mm d−1 and 2.8 gC m−2 d−1, respectively. For different LCCs, lakes
and rivers have the highest ET (≥8 mm d−1), followed by mixed forests and croplands (ET is
4–6 mm d−1 and LAI is 2–3 m2 m−2) with dominant contribution (>80%) from plant transpiration,
while grasslands (2–4 mm d−1) have 50–70% from transpiration due to smaller LAI (1~2 m2 m−2).
The impervious surfaces occupying ~60% of the sponge city area, have the smallest ET (<2.0 mm d−1)
in which interception evaporation by impervious surface contributes 20–30%, and transpiration
from greenbelts (0.5–1.0 m2 m−2 of LAI) contributes 40–50%. These findings can provide a valuable
scientific basis for policymaking and urban water use planning. This study proposes a Sentinel-
2-based technology for estimating ET as a feasible framework to evaluate city-level hydrological
dynamics in urban ecosystems.

Keywords: evaporation; evapotranspiration; LAI; NDVI; urban ecosystem; sponge city; PML-V2;
Penman–Monteith equation; Sentinel-2

1. Introduction

Owing to the high heterogeneity and complexity in urban ecosystems, it is rather
difficult to monitor or predict the hydrological dynamics of urban surfaces [1]. Some
megacities, e.g., Beijing—the capital city of China—have experienced strong urbanization,
large population inflow, island effect and climate change during the past few decades [2].
These changes induce urban hydrological processes to be highly uncertain and make
policymakers face tough challenges in water use planning and management. Therefore,
there is an urgent need to accurately estimate urban hydrological processes.

Evapotranspiration (ET), as a key component of the urban hydrological processes and
surface energy balance, plays an important role in regulating water resource supply and
relieving the urban island effect (e.g., surface cooling) [3]. Different from natural ecosystems,
the urban ecosystems include large proportions of artificial modifications in land cover,
such as impervious surfaces including roofs, squares and cement or asphalt roads. These
man-made reconstructions could contribute a large fraction of evaporation [4–6], but the
quantification at city levels remains highly uncertain due to a lack of clearly distinguishing
estimations of ET between impervious surfaces and vegetated or bare-soil lands. The
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good news is that recent developments of fine resolution remote sensing for land use and
land cover classification, vegetation dynamics and environmental monitoring provide new
opportunities to estimate urban ET more accurately [7]. For example, the Sentinel-2, as part
of the European Commission’s Copernicus program with the launch of satellite Sentinel-2A
on 23 June 2015, are monitoring variability in global land surface conditions at a 10–60m
resolution and a 5–10-day revisit [8].

In this study, we take the sponge city project in Beijing city as a study case to estimate
ET of the urban ecosystem at 10m resolution using the satellite-based land cover map
and vegetation information derived from Sentinel-2 data. Beijing city has 5-year mean
annual precipitation of 560 mm and mean annual temperature of 12 ◦C, with the potential
evaporation of 550~600 mm year−1. To reduce stress on water supply (e.g., ~30 m3 per
capita water use per year in Beijing) and urban environment, the Beijing Sponge City
project was started on 4 December 2017, aiming at turning 20% of Beijing city into a sponge
city covered area by 2020 [9]. Therefore, to evaluate the benefit of this project, it is essential
to implement a city-level assessment of the project-induced ecohydrological changes at
fine resolution.

2. Materials and Methods
2.1. Observational Forcing Datasets
2.1.1. Land Cover Map at 10m Resolution Derived from Sentinel-2

The land cover classification (LCC) global map at 10m resolution was obtained from
FROM-GLC10 [7]. The FROM-GLC10 LCC data is developed based on Sentinel-2 data in
2017 with Google Earth Engine, and the overall accuracy of this LCC validated against
the circa 2015 validation sample is 73% [7]. The LCC data includes 10 classes (i.e., crop-
land, forest, grassland, shrubland, wetland, tundra, impervious surface, bare land, and
snow/ice). The most advances of the FROM-GLC10 LCC map compared to previous Land-
sat series-based LCC products are that it provides more spatial detail, better distinguish
the forest from shrub or grassland classes, and better performance in coastal areas [7].

2.1.2. NDVI and LAI at 10m Resolution Derived from Sentinel-2

We calculate the Normalized Difference Vegetation Index (NDVI) from the Sentinel-2
reflected radiance by

NDVI =
Rnir − Rred
Rnir + Rred

(1)

where Rnir and Rred are the spectral bands at near infrared (842 nm) and red (665 nm),
respectively. The Sentinel-2 reflectance data are available at the USGS EROS Center
(https://www.usgs.gov/centers/eros, accessed on 8 April 2021). The leaf area index (LAI)
at a 10m resolution was derived from the retrieved Sentinel-2 NDVI using a nonlinear
regression model between LAI and NDVI,

LAI = a ∗ exp(b ∗ NDVI) + c (2)

where the parameters a, b and c are determined as 12.4, 6.4 and 0.6, respectively.
The determination process was based on MODIS-based NDVI and LAI products,

which was described as: (i) The MODIS LAI (MOD15A2H) and surface reflectance (SR)
products (MOD09A1) at 500m were collected over the study area (Beijing Sponge City)
for the summer months (June, July, and August) from 2013 to 2019. The NDVI was then
estimated using the 500m SR product (Equation (1)). (ii) MODIS LAI and NDVI values
were collocated on the pixel basis. As the MODIS LAI product has a valid range between
0 and 6.9, with a precision of 0.1, we classified all NDVI values into 69 groups based on
unique LAI values (eliminating the zero-LAI group). The probability density plots for each
group are shown in Figure 1a. (iii) For each LAI-based value group, the probability density
was fitted using the Gaussian distribution function. Then, the NDVI value corresponded by
the maximum probability density was extracted and collocated with the specific LAI value.

https://www.usgs.gov/centers/eros
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The result shows a strong exponential relationship between NDVI and LAI, especially
when the LAI value increased beyond 0.5–0.6 (Figure 1b). Therefore, the scatter values
were fitted using the exponential model (Equation (2)), which resulted in an R2 of 0.82,
implying that such exponential model in Equation (2) is robust for the Beijing Sponge City.
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Figure 1. The nonlinear relationship between LAI and NDVI. (a) Frequency distribution of NDVI–LAI. Higher values of the
scatter number in (a) indicate stronger relation between LAI and NDVI. (b) Regression between LAI and NDVI. The brown
curve was fitted using Equation (2) from the NDVI–LAI values (blue stars) under the maximum probability density.

2.1.3. Surface Climate Driving Dataset

To estimate evapotranspiration of urban ecosystem at 10m resolution, a high-resolution
surface climate forcing data including precipitation, surface air temperature, wind speed,
surface pressure, specific humidity, downward shortwave and longwave radiations, etc., is
needed to drive the terrestrial evapotranspiration model (PML-V2 model, see Section 2.2).
In this study, we used the China Meteorological Forcing Dataset (CMFD) version 1 at
0.1◦ × 0.1◦ and daily resolution for June 2018 as input for the PML-V2 model. The CMFD
V1.0 dataset covered the period of 1979–2018 and was downscaled from station-based data,
TRMM satellite-based precipitation, GEWEX-SRB shortwave radiation and the GLDAS
forcing dataset [10]. The surface climate driving variables used for the Beijing Sponge City
area were spatially bilinearly interpolated onto a 10m × 10m resolution. The monthly CO2
concentration observed in June 2018 is set as 407 ppm.
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2.2. PML-V2.1 Model

Version 2 of the Penman–Monteith–Leuning model (PML-V2) was developed by
coupling the widely-used photosynthesis model [11] and a canopy stomatal conductance
model [12] with the Penman–Monteith energy balance equation [13] to jointly estimate
gross primary productivity (GPP), Ec and Es [14–18]. The PML-V2 model also simulates
the Ei based on a revised Gash-model scheme [19]. The PML-V2 model has been applied
to successfully produce the MODIS LAI-based global GPP and ET products at a 500m and
8-day resolution from 2002 to present, which were noticeably better than most widely used
GPP and ET products [16]. In this study, we incorporated modules of impervious surface
evaporation (Eu) and open-water evaporation (Ew) into the PML model (PML-V2.1) to
make it suitable for urban ecosystems. Key parameters used in the PML-V2.1 model are
provided in Table 1. The following shows the detailed description for PML-V2.1.

Table 1. Key parameters used in the PML-V2.1 model.

Parameter Definition Unit
Land Cover Classification (a)

CRO MIF GRA SHR WET WAT IMP BAR

α Surface albedo for shortwave radiation − 0.150 0.150 0.250 0.250 0.250 0.050 0.350 0.350

ε Emissivity for longwave radiation − 0.960 0.990 0.950 0.950 0.960 0.990 0.940 0.940

D0
Reference vapor pressure deficit at

stomatal conductance reduction kPa 2.000 0.552 0.638 0.864 0.661 0.700 0.552 0.864

kQ Extinction coefficient of PAR − 0.721 0.386 0.595 0.230 0.996 0.600 0.386 0.230

kA
Extinction coefficient of available

energy − 0.899 0.899 0.900 0.888 0.888 0.700 0.899 0.888

Slea f
Specific canopy rainfall storage

capacity per unit leaf area mm 0.010 0.198 0.227 0.014 0.022 0.000 0.198 0.014

FER0

Specific ratio of evaporation rate over
rainfall intensity per unit vegetation

cover
− 0.092 0.256 0.010 0.010 0.017 0.000 0.256 0.010

SU

Specific canopy rainfall storage
capacity per unit impervious surface

area
mm 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014

LAIre f Reference LAI m 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000

h Canopy height m 1.000 10.00 0.5000 10.000 0.500 0.500 10.00 0.500

Vm,25
Maximum catalytic capacity of

Rubisco per unit leaf area at 25°C

µmol
m−2

s−1
22.560 28.450 29.560 18.770 24.440 0.000 28.450 18.770

β Initial photochemical efficiency − 0.029 0.029 0.029 0.029 0.029 0.000 0.029 0.029

η
Initial value of the slope of CO2

response curve

mol
m−2

s−1
0.069 0.040 0.026 0.024 0.069 0.000 0.040 0.024

m Ball-Berry coefficient − 5.289 8.355 3.934 4.406 9.211 0.000 8.355 4.406

Dmin
The threshold below which there is no

vapor pressure constraint kPa 1.499 0.711 0.650 1.493 0.664 1.000 0.711 1.493

Dmax
The threshold above which there is no

assimilation kPa 6.500 3.500 5.199 5.797 5.188 6.500 3.500 5.797

(a) CRO: cropland, MIF: mixed forest, GRA: grassland, SHR: shrubland, WET: wetland, WAT: water body, IMP: impervious surface and
BAR: bare land.
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2.2.1. Energy Balance at Urban Land Surface

Based on the surface energy balance, the net radiation (Rn) can be balanced by the
latent heat flux (LE), sensible heat flux (H) and ground heat flux (G). As for a biweekly or
longer estimation, the G is often negligible (G � H + LE), then the H is given by

H = Rn − LE − G ≈ Rn − LE (3)

The net radiation at the surface is the sum of the net shortwave downward radiation
and the net longwave downward radiation,

Rn = (1 − α)SW +
(

LW − εσTa
4
)

(4)

where the shortwave downward radiation SW (W m−2), the longwave downward radiation
LW (W m−2) and the surface air temperature Ta (K) are from atmospheric forcing input
data [10]. The shortwave albedo α (-) and the longwave emissivity ε (-) are from satellite-
based estimations. σ is the Stefan–Boltzmann constant (5.67 × 10−8 W m−2 K−4). The
latent heat flux (LE, W m−2) is calculated by LE = 1

c λET and

ET = Ec + Es + Ei + Eu + Ew (5)

where λ = 2500 − 2.2(Ta − 273.15) is the latent heat of vaporization (kJ kg−1) at Ta, and
c (=86.4) is a conversion factor for units from (MJ m−2 d−1) to (W m−2). ET is the evapo-
transpiration (mm d−1) summed from the canopy transpiration (Ec) and soil evaporation
(Es), interception evaporation (Ei), impervious surface evaporation (Eu) and open-water
evaporation (Ew).

2.2.2. Canopy Transpiration (Ec ) and Soil Evaporation (Es)

The transpiration at canopy scales (Ec) is coupled with the photosynthesis process
(Ags) via the dynamical modulation of the canopy stomatal conductance (Gc), and the soil
evaporation (Es) depends on absorbed energy flux and soil water deficit,

Ec =
εAc +

(
ρcp/γ

)
DGa

ε + 1 + Ga/Gc
(6)

Es =
f εAs

ε + 1
(7)

where the surface available energy (A = Rn − G) is divided into canopy absorbed energy
(Ac) and soil absorbed energy (As), Ac = (1 − τ)A and As = τA, τ = exp(−kALAI),
kA = 0.6. ε = ∆

γ , and ∆ is the slope of the curve relating saturation water vapor pressure
to temperature (kPa ◦C−1). ρ is the density of air (g m−3); cp is the specific heat of air at
constant pressure (J g−1 ◦C−1); D is vapor pressure deficit (kPa); Ga is the aerodynamic
conductance (m s−1); Gc (m s−1) is the canopy conductance; f is a dimensionless variable
that determines the water availability for soil evaporation.

The canopy stomatal conductance (Gc) is calculated by the photosynthesis process
(Ags) for each PFT with the constraint of D at surface.

Gc =
mAgs

Ca(1 + D/D0)
(8)

Ags =
P1Ca

k(P2 + P4)

{
kLAI + ln

P2 + P3 + P4

P2 + P3 exp(kLAI) + P4

}
(9)

Vm =
Vm,25 exp[a(T − 25)]
1 + exp[b(T − 41)]

(10)
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where P1 = AmβI0η; P2 = AmβI0; P3 = AmηCa; P4 = βI0ηCa; Am = 0.5Vm. I0 is the
photosynthetically active radiation (PAR, in mol) from shortwave downward radiation. Ca
is the atmospheric CO2 concentration (in ppm or mol mol−1). Vm,25, β, η, m, Dmin, Dmax
and D0 are the parameters (see Table 1) in the PML-V2.1 model.

Finally, the gross primary productivity (GPP) is calculated by

GPP = Ags fD (11)

fD =


1, D < Dmin

Dmax−D
Dmax−Dmin

, Dmin < D < Dmax

0, D > Dmax

(12)

where fD is the D constraint function; Dmin and Dmax are the parameters (see Table 1).

2.2.3. Interception Evaporation (Ei) by Canopy Vegetation

The rainfall interception evaporation (Ei) is calculated by the van Dijk model, which
was developed by van Dijk and Bruijnzeel [19,20], who modified it from the original Gash
model [21,22]. The modified Van Dijk model used in this study is described by

Ei =

{
fV P

fV Pwet + fER(P − Pwet)
f or P < Pwet
f or P ≥ Pwet

(13)

with

fV = 1 − exp

(
− LAI

LAIre f

)
(14)

Pwet = −ln
(

1 − fER
fV

)
SV
fER

(15)

fER = fV FER0 (16)

SV = Slea f LAI (17)

where P is rainfall rate (mm d−1), and Pwet is reference threshold precipitation rate when
the canopy is wet (mm d−1). fV describes the fraction area covered by intercepting leaves,
which is determined by the leaf area index (LAI) and reference LAI (LAIre f , see Table 1)
for the specific vegetation types. fER is the ratio of the average evaporation rate over the
average rainfall intensity during storms, and SV is the canopy rainfall storage capacity
(mm), which currently is parameterized as water storage in the leaf at the canopy level.
The fER0 and Slea f are the parameters shown in Table 1.

2.2.4. Impervious Surface Evaporation (Eu)

Impervious surface evaporation (Eu) is calculated by the revised van Dijk model in
this study,

Eu =

{
fU P

fU Pwet + fER(P − Pwet)
f or P < Pwet
f or P ≥ Pwet

(18)

with
fU = 1 − fV − fw (19)

Pwet = −ln
(

1 − fER
fU

)
SU
fER

(20)

fER = fU FER0 (21)

where fU describes the fractional area covered by impervious surface in urban ecosystems,
which is the rest fraction of vegetation coverage ( fV) and water body covered fraction ( fw).
SU is the impervious surface storage capacity (mm).
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2.2.5. Open-Water Evaporation (Ew)

The open-water evaporation (Ew) in lakes, rivers and other water bodies for Northern
China is parameterized on the basis of Dalton’s Law [23],

Ew = 0.144(1 + 0.75U1.5)[D + ∆(T1.5)(α − 1)T1.5] (22)

where U1.5 and T1.5 is wind speed (m/s) and air temperature (◦C) at 1.5 m height, re-
spectively. ∆(T1.5) is the slope of the curve relating saturation water vapor pressure to
temperature T1.5. α − 1 is a regulator coefficient for atmospheric stability.

3. Results
3.1. Validation of Estimated LAI and ET

The LAI estimated from the Sentinel-2-based NDVI was compared to the observed
LAI for June 2018 in the Beijing Sponge City (Figure 2a). The observed LAI was measured
within the region around 39.50–40.50◦ N, 115.40–116.10◦ E. The result shows that the
Sentinel-2-based LAI has a high correlation with the observed values (R2 = 0.74), indicating
that the LAI at 10m resolution estimated from Sentinel-2 can be well applied to estimate ET
for the Beijing Sponge City.
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We also validate the performance of PML-V2 in simulating ET in the Beijing region.
Figure 2b–d shows the comparisons of PML-V2-estimated ET based on MODIS LAI with
the observed ET over 2008–2010 from three field sites (i.e., Daxing, Miyun and Guantao)



Remote Sens. 2021, 13, 2048 8 of 15

which are located within the Beijing region. The result indicates that PML-V2 has satisfied
performance in simulating ET for Beijing Sponge City with (R2 = 0.64–0.90). Therefore,
based on the above good performance in the Sentinel-2-estimated LAI and the PML-
V2-estimated ET, we further evaluate NDVI, LAI, and ET and related variables at 10m
resolution for Beijing Sponge City.

3.2. Land Use and Vegetation Information in Beijing Sponge City

By analyzing the Sentinel-2-derived 10m resolution LCC map in 2017, we find that the
Beijing Sponge City project (Figure 3) covers ~1265 km2 over the central Beijing city, China,
including impervious surface buildings (59.27%), grasslands (26.08%), mixed forest (7.34%),
croplands (5.10%), and wetlands and water bodies (~2%). Figure 3 presents fine spatial
details of the urban ecosystem, such as clear patterns of lakes, rivers and streets. Most
grasslands are parks, and fixed forests are mainly concentrated in northwestern Beijing
Sponge City, while the eastern parts are croplands.
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Figure 3. Land cover classification at 10m resolution for Beijing Sponge City. Land cover map for 2017 derived from the
FROM-GLC10-based Sentinel-2.

We further analyze the NDVI and LAI for June 2018, which was composited from
10-day Sentinel-2 images in June 2018 in clear-sky conditions. We can see high spatial
details in the NDVI from Figure 4a. The NDVI for lakes and rivers is ≤0.0, the impervious
surfaces (e.g., large mansions and main streets) are 0.0–0.25, and grasslands and croplands
are 0.1–0.5, while mixed forests and some parks with forest reserve have NDVI values of
0.5–0.7 (Figure 4a). A high NDVI indicates a high LAI in this study. Figure 4b shows the
detailed pattern of LAI for different land cover classes for the sponge city area. As expected,
the lakes and rivers have no LAI, and the impervious surfaces (e.g., large mansions and
main streets) have only <1.0 m2 m−2 of LAI, but 1~2 m2 m−2 of LAI can be seen in many
avenues with greenbelts. The mixed forests in northwestern Beijing Sponge City have LAI
values ranging from 1 to 3 m2 m−2. Most grasslands and croplands have 1~2 m2 m−2 of
LAI, but some parks with forest reserves show the highest values (3–8 m2 m−2) of LAI
(Figure 4b).
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3.3. ET and Related Variables in Beijing Sponge City

Based on the Sentinel-2-derived LCC and LAI data, we conducted daily simulations
for June 2018 at 10m resolution using the PML-V2 model with daily climate forcing data
from CMFD v1.0. Figure 5 presents the spatial patterns of simulated monthly ET and
GPP averaged over the daily output for June 2018. Lakes and rivers have the highest ET
(≥8 mm d−1) due to the full water supply for evaporation in Summer. There is no GPP
in lakes and rivers as simulated by PML-V2. The vegetation production activities are
strongest in mixed forests and croplands, with the GPP ranging from 8 to 16 gC m−2 d−1

(Figure 5b). In these mixed forests and croplands, the ET is also high (4–6 mm d−1), where
the plant transpiration (Ec) plays a dominant role with ratios of Ec to ET larger than 0.8
(Figure 6a). In addition, the impervious surfaces have very small ET (<2 mm d−1) and GPP
(<4 gC m−2 d−1), indicating both Ec and soil evaporation (Es) are very small in these areas.
The grasslands have 2–4 mm d−1 of ET and 4–8 gC m−2 d−1 of GPP in the sponge city
(Figure 5), where the ratio Ec/ET are 0.5–0.7 (Figure 6a).
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In summary, on average, for the whole sponge city, we find that the LAI in June 2018
is 0.83 m2 m−2; the ET is about 1.6 mm d−1; the GPP is 2.8 gC m−2 d−1. Table 2 further
gives the evaluation for different districts in the sponge city. It shows that the central
areas (i.e., Xicheng and Dongcheng districts) have the smallest LAI (0.66–0.7 m2 m−2), ET
(~1.61 mm d−1) and GPP (2.36–2.44 gC m−2 d−1), while the western areas (i.e., Shijingshan
and Haidian districts) have the highest LAI (0.93–1.05 m2 m−2), ET (~1.65 mm d−1) and
GPP (3.10–3.53 gC m−2 d−1).
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Table 2. The ecohydrological environment in different districts in Beijing Sponge City.

District in
Beijing Sponge City

LAI
(m2 m−2)

ET
(mm d−1)

GPP
(gC m−2 d−1)

Xicheng 0.66 1.62 2.36
Dongcheng 0.70 1.60 2.44
Shijingshan 1.05 1.67 3.53

Haidian 0.93 1.64 3.10
Chaoyang 0.84 1.51 2.79

Fengtai 0.74 1.50 2.56
Tongzhou 0.86 1.66 3.01

Overall Mean 0.83 1.60 2.83

We further investigate how ET changes spatially with increasing LAI for June 2018.
It is shown that the fraction Ec/ET increases with LAI for the three vegetation types
(grassland, mixed forest and cropland) in the sponge city (Figure 6b). The Ec/ET for mixed
forests increase from 0.4 (LAI = 0.5) to 0.8 (LAI > 3), while Ec/ET for grasslands and
croplands show higher values, increasing from 0.6 (LAI = 0.5) to 0.9 (LAI > 3). The ratio
ET/LAI represents the amount of water loss per unit LAI. In Figure 6c, we can find that
ET/LAI for mixed forests and some grassland parks show the lowest ET/LAI (0.8–1.2),
while impervious surfaces have the highest ET/LAI, with about 2-3 times larger values
(2.4–3.6). The ET/LAI for the major vegetation types (grassland, mixed forest and cropland)
decrease with LAI increase (Figure 6d); with LAI increasing from 0.5 to 5.0, the ET/LAI
for mixed forests decrease from 2.0 to 0.6, and ET/LAI for grasslands and croplands from
3.0 to 1.0. This result indicates that grasslands and croplands have much higher water
consumption per unit LAI than mixed forests.

Fractional contributions of other ET components to ET have been estimated (Figure 7).
Soil evaporation (Es) contributes a relatively small fraction (≤0.2) due to a very small
fraction of bare lands and large vegetation coverage in mixed forests, grasslands and
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croplands in June 2018 in the Beijing Sponge City. The fraction of Ei/ET is small (≤0.1)
in most LCC types but in grasslands is 0.1–0.2 (Figure 7b). According to a previous
study, the city impervious surface could contribute less than 20% of ET [4]. Surprisingly,
the impervious surface evaporation (Eu) for the Beijing Sponge City contributes 0.2–0.3
fractions to the ET in June 2018 in most impervious areas (Figure 7c). Finally, all ET from
lakes and rivers are contributed by water body evaporation Ew (Figure 7d).
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ET can be converted to latent heat flux (LE, in W m−2) and plays an important role
in regulating surface energy balance (Figure 8). For June 2018 in Beijing, the surface
receives about 260–270 W m−2 of shortwave radiation, but about half is reflected in the
atmosphere with the net radiation (Rn) for impervious surface less than 130 W m−2. For
mixed forests and grasslands, the Rn is about 140–150 W m−2, and the croplands and
water bodies have a higher Rn of 170–180 W m−2 (Figure 8b). Lakes and rivers have the
highest LE (>250 W m−2) but the smallest sensible heat flux (SH, <−60 W m−2). The SH
for mixed forests, forest parks and croplands are relatively small (−20 to 20 W m−2), while
both impervious surfaces and grasslands are high (40–60 W m−2) (Figure 8d). This result
indicates that the high surface air temperature (reflected by SH) in the summer of Beijing’s
central city is mostly contributed by impervious surfaces and grasslands.
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4. Discussion

In this study, we applied a water-carbon coupling model (PML-V2) with the use of
Sentinel-2 LAI and land use and cover data and with surface meteorological forcing data as
the input to estimate urban ET and its components at 10m resolution for the Beijing Sponge
City. Our results indicate that the current vegetation coverage for the Beijing Sponge City
is still at a low level (only with mean LAI < 1 m2 m−2 in June 2018), and the city gains
relatively limited benefits from urban ecosystem services.

Eddy covariance measurements to study evaporation from urban ecosystems [24,25]
generally helped us to understand the combined evaporation from all land cover types,
lacking the capability to divide individual contributions from such as impervious surfaces
(roofs, roads and plazas, etc.) and vegetated areas (bare soil, forests, grasslands and
croplands, etc.). For different land cover classes, by using an advanced water-carbon
coupling ET model driven by Sentinel-2 LAI, we find that lakes and rivers have the highest
ET (≥8 mm d−1), followed by mixed forests and croplands (ET is 4–6 mm d−1 and LAI
is 2–3 m2 m−2), where the plant transpiration (Ec) plays the dominant role (>80%), then
grasslands have 2–4 mm d−1 of ET, where the LAI is 1~2 m2 m−2, while impervious
surfaces have smallest ET (<2.0 mm d−1). In most impervious areas, the impervious
surface evaporation (Eu) contributes 20-30% of ET, which is larger than the estimate (18%)
from previous studies [4]. We have shown that another 40–50% of ET in impervious areas
are contributed by plant transpiration (Ec) due to the small fractional area covered by
greenbelts with trees and grassland (LAI is 0.5–1.0 m2 m−2). This study did not consider
water vapor conversion from human water use activities, which also contributes to the
impervious evaporation from building indoor water use [25].

5. Conclusions

First of all, we show the good performances of the nonlinear regression model (Equa-
tion (2)) for estimating Sentinel-2 LAI based on the strong exponential relationship between
NDVI and LAI and the PML-V2.1 model of estimating ET and GPP at 10m resolution
using Sentinel-2 LAI and land cover map. This Sentinel-2-based technology using the
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PML-V2.1 model with surface meteorological forcing data as the input for estimating ET
provides a new framework to evaluate city-level hydrological dynamics in urban ecosys-
tems. Secondly, we find that plant transpiration from greenbelts with trees and grassland
play an important role in most impervious areas for Beijing Sponge City. Thirdly, mixed
forests, forest parks and croplands due to their high ET have much smaller surface heat
contribution than the impervious and grasslands, providing better ecosystem services (e.g.,
cooling) for the sponge city.

Author Contributions: Conceptualization, X.Z.; methodology, X.Z.; software, X.Z. and P.S.; vali-
dation, X.Z. and P.S.; formal analysis, X.Z.; investigation, X.Z.; resources, X.Z.; data curation, X.Z.;
writing—original draft preparation, X.Z.; writing—review and editing, X.Z. and P.S.; visualization,
X.Z. and P.S.; supervision, X.Z.; project administration, X.Z.; funding acquisition, X.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Beijing Municipal Natural Science Foundation (grant
number 8212017), the National Natural Science Foundation of China (grant number 42001019) and
the Shanghai Sailing Program (grant number 19YF1413100). The APC was funded by the Beijing
Municipal Natural Science Foundation (grant number 8212017).

Data Availability Statement: The resulting dataset in this study is available at https://doi.org/10.6
084/m9.figshare.14387630.v2 (accessed on 8 April 2021). More data and codes can be accessible from
the corresponding author upon request.

Acknowledgments: We acknowledge the Beijing Water Science and Technology Institute (BWSTI)
for providing technical and financial supports to this work. We thank the three anonymous reviewers
and editors for their constructive suggestions and comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Teuling, A.J.; de Badts, E.A.G.; Jansen, F.A.; Fuchs, R.; Buitink, J.; Hoek van Dijke, A.J.; Sterling, S.M. Climate change, reforesta-

tion/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe. Hydrol. Earth Syst. Sci. 2019, 23,
3631–3652. [CrossRef]

2. Gong, P.; Liang, S.; Carlton, E.J.; Jiang, Q.; Wu, J.; Wang, L.; Remais, J.V. Urbanisation and health in China. Lancet 2012, 379,
843–852. [CrossRef]

3. Wang, X.; Liu, H.; Miao, S.; Wu, Q.; Zhang, N.; Qiao, F. Effectiveness of Urban Hydrological Processes in Mitigating Urban Heat
Island and Human Thermal Stress during a Heat Wave Event in Nanjing, China. J. Geophys. Res. Atmos. 2020, 125. [CrossRef]

4. Ramamurthy, P.; Bou-Zeid, E. Contribution of impervious surfaces to urban evaporation. Water Resour. Res. 2014, 50, 2889–2902.
[CrossRef]

5. Wang, L.; Huang, M.; Li, D. Where Are White Roofs More Effective in Cooling the Surface? Geophys. Res. Lett. 2020, 47. [CrossRef]
6. Zhang, Y.; Xia, J.; Yu, J.; Randall, M.; Zhang, Y.; Zhao, T.; Pan, X.; Zhai, X.; Shao, Q. Simulation and assessment of urbanization

impacts on runoff metrics: Insights from landuse changes. J. Hydrol. 2018, 560, 247–258. [CrossRef]
7. Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited

sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci.
Bull. 2019, 64, 370–373. [CrossRef]

8. Sentinel-2. Overview of Sentinel-2 Mission. 2015. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2
(accessed on 8 April 2021).

9. The People’s Government of Beijing Municipality. Announcement of Beijing Sponge City Project. 2017. Available online:
http://www.beijing.gov.cn/zhengce/zhengcefagui/201905/t20190522_60725.html (accessed on 8 April 2021).

10. He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process
studies over China. Sci. Data 2020, 7, 25. [CrossRef]

11. Farquhar, G.D.; von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species.
Planta 1980, 149, 78–90. [CrossRef]

12. Yu, Q.; Zhang, Y.; Liu, Y.; Shi, P. Simulation of the stomatal conductance of winter wheat in response to light, temperature and
CO2 changes. Ann. Bot. 2004, 93, 435–441. [CrossRef]

13. Monteith, J.L. Evaporation and environment. The state and movement of water in living organisms. In Symposium of the Society of
Experimental Biology; Fogg, G.E., Ed.; Cambridge University Press: Cambridge, UK, 1965; Volume 19, pp. 205–234.

14. Leuning, R.; Zhang, Y.Q.; Rajaud, A.; Cleugh, H.; Tu, K. A simple surface conductance model to estimate regional evaporation
using MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res. 2008, 44. [CrossRef]

https://doi.org/10.6084/m9.figshare.14387630.v2
https://doi.org/10.6084/m9.figshare.14387630.v2
http://doi.org/10.5194/hess-23-3631-2019
http://doi.org/10.1016/S0140-6736(11)61878-3
http://doi.org/10.1029/2020JD033275
http://doi.org/10.1002/2013WR013909
http://doi.org/10.1029/2020GL087853
http://doi.org/10.1016/j.jhydrol.2018.03.031
http://doi.org/10.1016/j.scib.2019.03.002
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
http://www.beijing.gov.cn/zhengce/zhengcefagui/201905/t20190522_60725.html
http://doi.org/10.1038/s41597-020-0369-y
http://doi.org/10.1007/BF00386231
http://doi.org/10.1093/aob/mch023
http://doi.org/10.1029/2007WR006562


Remote Sens. 2021, 13, 2048 15 of 15

15. Zhang, Y.; Leuning, R.; Hutley, L.B.; Beringer, J.; McHugh, I.; Walker, J.P. Using long-term water balances to parameterize surface
conductances and calculate evaporation at 0.05◦ spatial resolution. Water Resour. Res. 2010, 46. [CrossRef]

16. Zhang, Y.; Kong, D.; Gan, R.; Chiew, F.H.S.; McVicar, T.R.; Zhang, Q.; Yang, Y. Coupled estimation of 500 m and 8-day resolution
global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 2019, 222, 165–182. [CrossRef]

17. Zhang, Y.; Pena-Arancibia, J.L.; McVicar, T.R.; Chiew, F.H.; Vaze, J.; Liu, C.; Lu, X.; Zheng, H.; Wang, Y.; Liu, Y.Y.; et al.
Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 2016, 6, 19124. [CrossRef] [PubMed]

18. Gan, R.; Zhang, Y.; Shi, H.; Yang, Y.; Eamus, D.; Cheng, L.; Chiew, F.H.S.; Yu, Q. Use of satellite leaf area index estimating
evapotranspiration and gross assimilation for Australian ecosystems. Ecohydrology 2018, 11. [CrossRef]

19. van Dijk, A.I.J.M.; Bruijnzeel, L.A. Modelling rainfall interception by vegetation of variable density using an adapted analytical
model. Part 1. Model description. J. Hydrol. 2001, 247, 230–238. [CrossRef]

20. van Dijk, A.I.J.M.; Bruijnzeel, L.A. Modelling rainfall interception by vegetation of variable density using an adapted analytical
model. Part 2. Model validation for a tropical upland mixed cropping system. J. Hydrol. 2001, 247, 239–262. [CrossRef]

21. Gash, J.H.C. An analytical model of rainfall interception by forests. Q. J. R. Meteorol. Soc. 1979, 105, 43–55. [CrossRef]
22. Gash, J.H.C.; Lloyd, C.R.; Lachaud, G. Estimating sparse forest rainfall interception with an analytical model. J. Hydrol. 1995, 170,

79–86. [CrossRef]
23. Hong, J.; Wang, S. Estimation and distribution characteristics of evaporation from water surfaces in Beijing, Tianjin and Tangshan

areas. Geogr. Res. 1987, 6, 68–75. (In Chinese)
24. Hanna, S.; Marciotto, E.; Britter, R. Urban Energy Fluxes in Built-Up Downtown Areas and Variations across the Urban Area, for

Use in Dispersion Models. J. Appl. Meteorol. Climatol. 2011, 50, 1341–1353. [CrossRef]
25. Zhou, J.; Liu, J.; Yan, D.; Wang, H.; Wang, Z.; Shao, W.; Luan, Y. Dissipation of water in urban area, mechanism and modelling

with the consideration of anthropogenic impacts: A case study in Xiamen. J. Hydrol. 2019, 570, 356–365. [CrossRef]

http://doi.org/10.1029/2009WR008716
http://doi.org/10.1016/j.rse.2018.12.031
http://doi.org/10.1038/srep19124
http://www.ncbi.nlm.nih.gov/pubmed/26750505
http://doi.org/10.1002/eco.1974
http://doi.org/10.1016/S0022-1694(01)00392-4
http://doi.org/10.1016/S0022-1694(01)00393-6
http://doi.org/10.1002/qj.49710544304
http://doi.org/10.1016/0022-1694(95)02697-N
http://doi.org/10.1175/2011JAMC2555.1
http://doi.org/10.1016/j.jhydrol.2018.12.054

	Introduction 
	Materials and Methods 
	Observational Forcing Datasets 
	Land Cover Map at 10m Resolution Derived from Sentinel-2 
	NDVI and LAI at 10m Resolution Derived from Sentinel-2 
	Surface Climate Driving Dataset 

	PML-V2.1 Model 
	Energy Balance at Urban Land Surface 
	Canopy Transpiration (Ec  ) and Soil Evaporation (Es ) 
	Interception Evaporation (Ei ) by Canopy Vegetation 
	Impervious Surface Evaporation (Eu ) 
	Open-Water Evaporation (Ew ) 


	Results 
	Validation of Estimated LAI and ET 
	Land Use and Vegetation Information in Beijing Sponge City 
	ET and Related Variables in Beijing Sponge City 

	Discussion 
	Conclusions 
	References

