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Abstract: Real-time cycle slip detection and repair is one of the key issues in global positioning
system (GPS) high precision data processing and application. In particular, when GPS stations are in
special environments, such as strong ionospheric disturbance, sea, and high-voltage transmission
line interference, cycle slip detection and repair in low elevation GPS observation data are more
complicated than those in normal environments. For low elevation GPS undifferenced carrier
phase data in different environments, a combined cycle slip detection algorithm is proposed. This
method uses the first-order Gauss–Markov stochastic process to model the pseudorange multipath
in the wide-lane phase minus narrow-lane pseudorange observation equation, and establishes
the state equation of the wide-lane ambiguity with the pseudorange multipath as a parameter,
and it uses the Kalman filter for real-time estimation and detects cycle slips based on statistical
hypothesis testing with a predicted residual sequence. Meanwhile, considering there are certain
correlations among low elevation, observation epoch interval, and ionospheric delay error, a second-
order difference geometry-free combination cycle slip test is constructed that takes into account
the elevation. By combining the two methods, real-time cycle slip detection for GPS low elevation
satellite undifferenced data is achieved. A cycle slip repair method based on spatial search and
objective function minimization criterion is further proposed to determine the correct solution of
the cycle slips after they are detected. The whole algorithm is experimentally verified using the
static and kinematic measured data of low elevation satellites under four different environments:
normal condition, high-voltage transmission lines, dynamic condition in the sea, and ionospheric
disturbances. The experimental results show that the algorithm can detect and repair cycle slips
accurately for low elevation GPS undifferenced data, the difference between the float solution and the
true value for the cycle slip does not exceed 0.5 cycle, and the differences obey the normal distribution
overall. At the same time, the wide-lane ambiguity and second-order difference GF combination
sequence calculated by the algorithm is smoother, which give further evidence that the algorithm for
cycle slip detection and repair is feasible and effective, and has the advantage of being immune to
the special observation environments.

Keywords: cycle slip; Kalman filter; hypothesis testing; low elevation; second-order difference;
spatial search; objective function minimization criterion

1. Introduction

High-quality global positioning system (GPS) observation data play a key role in
obtaining high precision GPS positioning. However, when a satellite signal is blocked
by an obstacle and fails to reach a receiver, or the satellite signal experiences temporary
loss of lock due to external interference and harsh environment in which the receiver
is located, an integer number of cycles in the phase observable jumps suddenly. This
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phenomenon is referred to as cycle slip [1–4]. Cycle slips will lead to destruction of
continuous primary carrier phase observation values, which will seriously affect high
precision gps data processing results. Therefore, accurately detecting and repairing cycle
slips is an important data pre-processing task in high precision GPS positioning and
applications. Basically, there are two approaches for processing cycle slips: one is to detect
and repair; and the other is to use cycle slips as an unknown ambiguity parameter, which
is estimated together with other unknown parameters in subsequent data processing [5,6].
Obviously, the second approach of dealing with cycle slips is not satisfactory, because it
makes the data processing more complicated [5,6]. For frequent cycle slips, unpredictable
situations may arise. Therefore, many cycle slip detection and repair algorithms have been
developed based on the first approach [7,8]. Commonly used cycle slip detection methods
include the polynomial fitting method [9–11], TurboEdit method [12], Bayesian theory [13],
and the combination method of pseudorange and carrier phase [14–16]. These methods all
have shortcomings. For example, the polynomial fitting method is mostly suitable for cycle
slip detection of static GPS data. The cycle slip detection of Bayesian theory is effective
only for high sampling GPS data without ionospheric disturbance. In the TurboEdit and
combination method of pseudorange and carrier phase, small cycle slips are often missed
owing to the observation noise with a large pseudorange [17–19]. In particular, in special
observation environments like sea and high-voltage transmission lines, these methods
more likely cause greater multipath errors in low elevation GPS data, and thus affect
wide-lane phase minus narrow-lane pseudorange combination failures when detecting
cycle slip of two cycles or less. Moreover, in a strong ionospheric disturbance environment,
cycle slip detection and repair in low elevation GPS observation data are more complicated
than in normal environments, and common cycle slip detection methods will also cause
cycle slip detection failure or inaccuracy [20–22]. Nevertheless, low elevation undifferenced
GPS observation data usually contain a significant amount of useful information (such
as tropospheric delay and water vapor information). Therefore, how to detect and repair
the cycle slip of GPS phase data in different environments is an important problem to
be solved.

To tackle the above problems, a cycle slip detection combination algorithm is proposed
in this study, based on the observation equation of wide-lane phase minus narrow-lane
pseudorange; the correlation between the pseudorange multipath and certain time intervals
is considered in the algorithm; and the first-order Gauss–Markov stochastic model is used
for processing. A state equation with wide-lane ambiguity and pseudorange multipath
as parameters is established and the Kalman filter is used to conduct real-time estimation.
The separation of wide-lane ambiguity and pseudorange multipath is achieved and cycle
slip detection is performed by constructing a statistical hypothesis testing method con-
taining prediction residual sequences. At the same time, on the basis of the geometry-free
observation equation, the correlation between low elevation, observation epoch interval,
and ionospheric delay error is considered, and a second-order difference geometry-free
cycle slip test quantity taking into account the elevation factor is constructed to minimize
the impact of ionospheric residuals generated by ionospheric fluctuations for cycle slip
detection. Real-time cycle slip detection is achieved by combining the above two methods.
According to the integer number nature of cycle slips, the method of spatial search and
objective function minimization criterion are used to determine the correct solution of
cycle slips for repairing. The algorithm is verified using the measured static and kinematic
data of each low elevation satellite under normal environment, high-voltage transmission
lines, sea environment, and ionospheric disturbances in the experiment. The experimental
results show that the algorithm can accurately detect and repair cycle slips in low elevation
GPS satellite phase data, which is feasible in real-time processing of GPS undifferenced
data cycle slips.
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2. Materials and Methods

In this section, the pseudorange multipath error and cycle slip detection performance
of wide-lane phase minus narrow-lane pseudorange combination are firstly analyzed.
Then, the influence of ionospheric residuals on the cycle slip detection method of first-
order difference geometry-free combination is discussed. On this basis, the combination
algorithm of cycle slip real-time detection and repair is proposed, and the principle and
steps of the whole algorithm are described in detail.

2.1. Wide-Lane Phase Minus Narrow-Lane Pseudorange (WL-NL) Combination with
Pseudorange Multipath

For single epoch GPS satellites, the undifferenced observation equation of dual-
frequency code pseudorange and carrier phase can be derived as follows [23–25]:

P1 = ρ + c(dtu − dts) +
Ie

f 2
1
+ T + MP1 + η1 (1)

P2 = ρ + c(dtu − dts) +
Ie

f 2
2
+ T + MP2 + η2 (2)

λ1 ϕ1 = ρ + c(dtu − dts)− λ1N1 −
Ie

f 2
1
+ T + mp1 + ε1 (3)

λ2 ϕ2 = ρ + c(dtu − dts)− λ2N2 −
Ie

f 2
2
+ T + mp2 + ε2 (4)

In Equations (1)–(4), ρ is the geometric distance between the satellite and receiver
antenna; dtu and dts are the receiver clock error and satellite clock error, respectively; Ie is
the ionospheric delay error; T is the tropospheric delay error; P1 and P2 are the pseudorange
measurements; MP1 and MP2 are the pseudorange multipath errors; η1 and η2 are the
pseudo-range noise errors; ϕ1 and ϕ2 are the carrier phase measurements; N1 and N2 are
the ambiguities; mp1 and mp2 are the carrier phase multipath errors; ε1 and ε2 are the phase
noise errors; c is the speed of light; λ1 and λ2 are the wavelengths; and f1 and f 2 are the
frequencies of GPS signals. By subtracting Equation (2) from Equation (1), the pseudorange
combination equation can be obtained that eliminates the clock error, tropospheric delay,
and geometric distance between the satellite and the Earth:

P1 − P2 = −Ie
f 2
1 − f 2

2
f 2
1 f 2

2
+ (MP1 −MP2) + (η1 − η2) (5)

From Equation (5), the ionospheric delay error can be calculated:

Ie = −
f 2
1 f 2

2
f 2
1 − f 2

2
[(P1 − P2)− (MP1 −MP2)− (η1 − η2)] (6)

At the same time, dividing two sides of Equations (3) and (4) by λi and then subtracting
the equations yields the wide-lane phase combination equation:

ϕ1 − ϕ2 + N1 − N2 =
f1 − f2

c
(ρ + c(dtu − dts) + T) +

f1 − f2

c f1 f2
Ie +

f1mp1 − f2mp2

c
+

f1ε1 − f2ε2

c
(7)

Substituting Equation (6) into Equation (1) to solve the term ((ρ + c(dtu − dts) + T)
yields

ρ + c(dtu − dts) + T =
f 2
1 P1 − f 2

2 P2

f 2
1 − f 2

2
−

f 2
1 MP1 − f 2

2 MP2

f 2
1 − f 2

2
−

f 2
1 η1 − f 2

2 η2

f 2
1 − f 2

2
(8)

Substituting Equations (8) and (6) into the terms (ρ + c(dtu − dts) + T) and Ie of
Equation (7) yields [26]
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λw(ϕ1 − ϕ2) + λwNw =
f1P1 + f2P2

f1 + f2
− f1MP1 + f2MP2

f1 + f2
− f1η1 + f2η2

f1 + f2
+

f1mp1 − f2mp2

f1 − f2
+

f1ε1 − f2ε2

f1 − f2
(9)

In Equation (9), Nw = N1− N2 is the wide-lane ambiguity and λw = c
f1− f2

is the wide-
lane carrier phase wavelength. Because the observation noise of the carrier phase is 2 mm,
the maximum multipath error does not exceed 5 cm, so the item f1mp1− f2mp2

f1− f2
+ f1ε1− f2ε2

f1− f2

can be ignored. Meanwhile, letting MP = f1 MP1+ f2 MP2
f1+ f2

and η = f1η1+ f2η2
f1+ f2

, the relationship
between the combined pseudorange multipath error MP and wide-lane ambiguity Nw can
be obtained as

λw(ϕ1 − ϕ2) + λwNw =
f1P1 + f2P2

f1 + f2
−MP− η (10)

It can be seen from Equation (10) that, when using it for cycle slip detection, the
accuracy of cycle slip detection mainly comes from the pseudorange multipath error MP
and measurement noise η; in an ideal situation, the mean value of the multipath error and
measurement noise of pseudorange measurement should be close to 0, and the pseudorange
measurement error Merror introduced by MP and η can be approximately calculated by

MLW = NMW + (MP + η) =
f1P1 − f2P2

f1 + f2
− λw(ϕ1 − ϕ2) (11)

Merror = MLW −Mean(MLW) = MP + η (12)

In Equations (11) and (12), MLW is the measurement error of the pseudorange combi-
nation including the wide-lane ambiguity, and NMW = λwNw, NMW should be a constant
when there is no cycle slip. Mean(MLW) is the mean of MLW within the observation arc.

To intuitively analyze the magnitude of the pseudorange measurement error (Merror),
the measured GPS data from the BJFS reference station are used as an example. The data
were observed on 1 January 2014 and the sampling rate was 30 s. The code observation
types are C/A and P2. The dual frequency observations corresponding to satellites G26
and G08 are selected and calculated according to Equation (12). The relationship between
the pseudorange measurement error sequence of G26 and G08 and their elevation is shown
in Figure 1.
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Figure 1. (a) Elevation and pseudorange measurement error sequence of satellite G26; (b) elevation and pseudorange
measurement error sequence of satellite G08.
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It can be seen from Figure 1 that, even when the satellite is at a high elevation
(above 30◦), its pseudorange measurement error can reach ±0.4 m; when the satellite
is at a low elevation (5–20◦), the effect of its pseudorange measurement error can reach
±1.0 m; therefore, when the wide-lane phase minus the narrow-lane pseudorange combi-
nation is used to calculate the ambiguity NMW , the pseudorange measurement error must
be dealt with, otherwise the accuracy of ambiguity will be reduced.

2.2. Inaccurate Detection of Cycle Slip by Conventional MW Combination

The analysis in Section 2.1 indicates that the pseudorange multipath in the wide-lane
phase minus narrow-lane pseudorange combination (i.e., MW combination) is the main
factor affecting the accuracy of the wide-lane ambiguity calculation; when the conventional
MW combination is used to detect cycle slips, the mean recursive algorithm is used to
obtain the mean of the wide-lane ambiguity Ni

MW and the root mean square σi for each
epoch, and the cycle slip testing is performed by the following equation [12,18,26]:∣∣∣Ni

MW − Ni−1
MW

∣∣∣ ≥ 4σi (13)

Because the accuracy of the P code pseudorange is approximately 0.3 m, and the MW
combination is also affected by the pseudorange measurement error, this method is not
sensitive to small cycle slips (two cycles or below), and thus inaccurate cycle slip detection
may occur. The above mentioned G08 satellite is used as an example again; at the 50th and
250th epochs of the L1 carrier phase observation, cycle slips of injecting one and two cycles
are simulated. The conventional MW combination cycle slip detection results are shown in
Figure 2. It can be seen from the results in Figure 2 that, for low elevation satellites, the
cycle slips identified by conventional MW combination for two cycles or less are invalid.
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2.3. Cycle Slip Detection with Fused Kalman Filter and Hypothesis Testing

As GPS receivers cannot usually obtain P1 code observation, in general, C/A code is
used instead of P1 code to perform the MW combination in Equation (10). The observation
accuracy of C/A code is lower than that of P1 code, which is greatly affected by pseudor-
ange multipath, so the accuracy of the calculated wide-lane ambiguity value is reduced.
Therefore, the pseudorange multipath error MP in Equation (11) must be separated from
the wide-lane ambiguity NMW . As the pseudorange multipath error is not constant and
correlated with a certain time interval, the first-order Gauss–Markov process can be used
to estimate the multipath error [27,28]:

M̂P(t) = − 1
τ

MP(t) (14)
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where M̂P(t) is the change rate of multipath error and τ is the correlation time. Meanwhile,
when the carrier phase has no cycle slip, the ambiguity is equal, and a state equation with
the wide-lane ambiguity and pseudorange multipath error as the state parameters can
be established: [

M̂P(t)
0

]
=

[
−1/τ 0

0 0

][
MP(t)
NMW

]
(15)

Using Equation (11) as the observation equation of the discrete system, combined with
Equation (14), the following Kalman filter model can be established [29–31]:{

Xk = φk,k−1Xk−1 + ωk ωk ∼
(
0, Qωk

)
Lk = AkXk + vk vk ∼

(
0, Rvk

) (16)

where Xk and Xk−1 are the state parameter vectors, φk,k−1 is the state transition matrix

and φk,k−1 =

[
exp
(
−∆t

τ

)
0

0 1

]
, Lk is the observation vector and Lk = f1P1− f2P2

f1+ f2
−

λw(ϕ1 − ϕ2), and Ak is the coefficient matrix and Ak =
[

1 1
]
. ωk and Qωk are the

state noise and its variance matrix, respectively, Qk =

[
qτ
2

[
1− exp

(
− 2∆t

τ

)]
0

0 10−15

]
,

and vk and Rvk are the observation noise and its variance matrix, respectively [32,33]. The
Kalman filter recursive equation is used to achieve the separation of wide-lane ambiguity
and pseudorange multipath error by epoch, and the best estimation of wide lane ambiguity
is obtained.

Meanwhile, assuming that there is no cycle slip in the carrier phase observation of
the first k− 1 epochs and cycle slip occurs at the kth epoch, the Kalman filter model in
Equation (17) becomes {

Xk = φk,k−1Xk−1 + ωk
L′k = AkXk + Ck + vk

(17)

The prediction residual of the kth epoch is then

Vk = L′k − AkXk,k−1 = AkXk + Ck + vk − Akφk,k−1Xk−1,k−1
= Ak(φk,k−1Xk−1 + ωk) + Ck + vk − Akφk,k−1Xk−1,k−1

= Akφk,k−1(Xk−1 − Xk−1,k−1) + Akωk + Ck + vk

(18)

At this point, E(Vk) = Ck, QVk = AkQk,k−1 AT
k + Rvk . It can be seen from Equation (18)

that, when a cycle slip occurs, the prediction residual sequence Vk will shift and no longer
obey the zero-mean normal distribution [34,35]. Thus, cycle slip detection is performed by
constructing a statistical hypothesis testing containing the predicted residual sequence, with
the null hypothesis being that the cycle slip does not occur and the alternative hypothesis
being that the cycle slip occurs, namely,{

HV
0 : cycle slip does not occur, Vk ∼ N

(
0, QVk

)
HV

1 : cycle slip occurs, Vk ∼ N
(
Ck, QVk

) (19)

The testing is performed based on the following criteria:
If |Vk| < n

√
QVk , then HV

0 is accepted.
If |Vk| ≥ n

√
QVk , then HV

0 is rejected and HV
1 is accepted.

Here, n is a weighting coefficient, which can be three (99.7% confidence level) or four
(99.9% confidence level). Cycle slip detection is performed up to the last epoch using
this criterion.

2.4. Detecting Cycle Slips with Second-Order Difference Geometry-Free Combination
Considering Elevation

Based on the MW combination and using the fused method of the Kalman filter and
hypothesis testing, cycle slip detection can be performed effectively. However, when the
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equal cycle slip occurs at frequencies L1 and L2, detection blind spots may appear. There-
fore, a difference geometry-free (GF) combination taking into account the elevation factor
is proposed here to correct the blind spots of the cycle slip detection method described in
Section 2.3. By subtracting Equation (4) from Equation (3), the GF combination observation
equation can be obtained to eliminate the clock error and tropospheric delay error [36,37]:

LGF = λ1 ϕ1 − λ2 ϕ2 = λ2N2 − λ1N1 +

(
1
f 2
2
− 1

f 2
1

)
Ie + (mp1 −mp1) + (ε1 − ε2) (20)

Here, the multipath (mp1 −mp1) and observation noise (ε1 − ε2) on frequencies L1
and L2 are approximately equal, so the (mp1 −mp1 + ε1 − ε2) term on the right-hand side
of the equation can be ignored, and the corresponding GF combination only contains the
effects of the ionosphere and the ambiguity. When a cycle slip occurs in the carrier phase
observation of the ith epoch, differencing the above equation between adjacent epochs
yields the first-order difference GF combination [18,25] containing the ionospheric residual
Ie−res = (Ie(i)− Ie(i− 1)) and cycle slip information (λ2∆N2 − λ1∆N1):

∆LGF = (LGF(i)− LGF(i− 1)) =

(
λ2∆N2 − λ1∆N1 +

(
1
f 2
2
− 1

f 2
1

)
Ie−res

)
(21)

Under normal circumstances, the ∆LGF sequence appears as a rapidly changing
curve due to cycle slip. Meanwhile, it can be seen from Equation (21) that the cycle
slip information is affected by the ionospheric residual Ie−res, and especially when GPS
satellites are in an active period of the ionosphere, the ionospheric residual term will
inevitably cause disturbances in the ∆LGF sequence of Equation (21), resulting in inaccurate
cycle slip detection [20,21]. Therefore, to minimize the effect of the ionospheric residual
term, considering the correlation between ∆LGF and the elevation (especially the low
elevation), and the epoch time interval, the second-order difference GF combination cycle
slip detection quantity is constructed that takes into account the elevation, as expressed by
the following equation:

∇∆LGF−Ele = (λ2∆N2 − λ1∆N1)sin(ele) ={
[LGF(i)− 2LGF(i− 1) + LGF(i− 2)]−

(
1
f 2
2
− 1

f 2
1

)
[Ie(i)− 2Ie(i− 1) + Ie(i− 2)]

}
sin(ele)

(22)

The root mean square of the first i epochs is recursively calculated by Eqution (23):

σ2
∇∆LGF−Ele

(i) =
i− 2
i− 1

σ2
∇∆LGF−Ele

(i− 1) +
1
i

(
∇∆Li

GF−Ele

)2
(23)

Then, the cycle slip detection threshold condition is expressed by the following equation:
∣∣∣∇∆Li

GF−Ele

∣∣∣ ≥ 5σi
∇∆LGF−Ele

, cycle slip occurs∣∣∣∇∆Li
GF−Ele

∣∣∣ < 5σi
∇∆LGF−Ele

, cycle slip does not occurs
(24)

The cycle slip detection of low elevation GPS carrier phases in different environments
is performed based on the combination of the above two methods.

2.5. Cycle Slip Repair Based on Spatial Search and Objective Function Minimization Criterion

The methods proposed in Sections 2.3 and 2.4 can achieve real-time detection of cycle
slips. By analyzing Equations (17) and (18), it can be seen that the value of the cycle
slips can be expressed by residuals. Equation (22) shows that the cycle slip value can be
expressed by the difference between the epochs of LGF. However, when the two frequencies
have equal cycle slips, or the cycle slips of the two frequencies are proportional to the
wavelength, a detection blind zone that is not sensitive to cycle slips manifests when the
two methods are used alone. Therefore, in actual application, the two methods need to
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be combined effectively. Together, they make up for each others’ shortcomings, and the
occurring frequency and value of cycle slips can be determined by Equation (25).[

c
f1− f2

− c
f1− f2

−λ1 λ2

][
∆N1
∆N2

]
=

[
Ck

∆LGF

]
(25)

Cycle slips are expressed in integer numbers, while the solution given by Equation (22)
is the float solution of cycle slips [38]; to avoid the effect of rounding errors caused by direct
rounding, a method using spatial search and objective function minimization criteria is
proposed. To obtain the integer solution of cycle slip, the specific steps are as follows:

1. Round the float value calculated by Equation (25) as the initial value of the cycle slip.
2. The effects of low elevation and ionospheric disturbance period are fully considered,

the initial value of cycle slip is taken as the center, ±5 cycles is the search range, and
one cycle is the search step, in order to form a cycle slip candidate combination.

3. Use the cycle slip candidate combination constructed in Step 2 to repair the carrier
phase observation in real time, then re-check it through the cycle slip detection
methods proposed in this study, and store the cycle slip combination that the two
cycle slip detection methods meet the condition of no cycle slip simultaneously.

4. Use the cycle slip combination that meets the detection condition to repair the carrier
phase observation, and substitute the repaired carrier phase into the objective func-
tion, so that the set of cycle slip combinations that makes the objective function in
Equation (26) meet the minimization criterion is the correct cycle slip solution.

(Lk − Lk−1)
2 +

(
Lk

GF − Lk−1
GF

)2
= min (26)

3. Results

In this section, the GPS data in four different environments are firstly introduced,
then the pseudorange multipath error of low elevation satellite is analyzed. Based on the
experimental schemes of small cycle slips, large cycle slips and special cycle slips were
added into the simulation at different epochs of GPS data, and the cycle slip detection and
repair method proposed in this study is verified and analyzed.

3.1. Measured GPS Data in Four Different Environments

To analyze and verify the feasibility of the cycle slip detection and repair methods
proposed in this paper, the following four different environments and different sampling
rates of GPS static and kinematic measured data were used for testing.

3.1.1. Normal Environment

The GPS data of the P090 reference station measured on 3 January 2010 were selected for
testing. The sampling rate of the data was 15 s. The satellite G09 is a low elevation satellite.
The elevation and pseudorange measurement error sequence are shown in Figure 3, from
which it can be seen that, even if the IGS reference station is in a good location environment,
the influence of low elevation on the pseudorange measurement error is still large.

3.1.2. High-Voltage Transmission Lines Environment

The measured data of the GPS receiver at station TB06, which is located directly under
high-voltage transmission lines and is closest to the transmission tower (see Figure 4), were
selected for testing. The data were taken on 2 June 2016 with a sampling rate of 1 s. G03 is
a low elevation satellite; its elevation and pseudorange measurement error sequence are
shown in Figure 5.
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3.1.3. Dynamic Environment in the Sea Area

The measured kinematic data of GPS receiver installed on a buoy in a sea region of
Indonesia were selected for testing. The GPS trajectory on the buoy is shown in Figure 6.
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The data were taken on 3 March 2010 with a sampling rate of 5 s. G10 is a low elevation
satellite; the corresponding elevation and pseudorange measurement error sequence are
shown in Figure 7.
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3.1.4. Ionospheric Disturbance Environment

Cai et al. [18] show that the solar flare intensity on 15 April 2001 was 14.4, which was
the highest flare intensity in the last maximum solar activity cycle from the year 2000 to
2002. The ionosphere was thus in a period of strong disturbance. The actual measurement
data of IGS reference station AMC2 in this environment were used for testing, and its
sampling rate was 30 s. G26 is a low elevation satellite; the corresponding elevation and
pseudorange measurement error sequence are shown in Figure 8.

It can be seen from Figures 3, 5, 7 and 8 that the pseudorange measurement error of
each low elevation satellite varies greatly in the different special environmental conditions,
which will inevitably affect the accuracy of conventional MW and GF combination cycle
slip detection.
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3.2. Validation of Cycle Slip Detection and Repair Results

To test the feasibility of the cycle slip detection and repair algorithm developed in
this study, large cycle slips, small cycle slips, and special cycle slip pairs were added into
the simulation at different epochs of the low elevation measured data sequence under the
above four different environmental conditions. The cycle slip pairs are shown in Table 1.

Table 1. Cycle slip pairs in carrier phase data of each low elevation satellite.

Environment and
Satellite Number Sampling Rate Epoch Cycle Slip Pairs

Normal, G09 15 s

50th (1, 1)
100th (0, 2)
150th (0, 1)
200th (9, 7)
250th (−10, 10)
300th (50, −50)
350th (77, 60)

High-voltage power
lines, G03 1 s

100th (1, 1)
150th (0, 2)
200th (9, 7)
250th (−5, 5)
300th (1, 0)
350th (77, 60)
400th (−5, −4)
450th (10, −10)

Dynamic sea
environment, G10 5 s

100th (1, 1)
200th (0, 2)
300th (9, 7)
400th (−5, 5)
500th (1, 0)
600th (77, 60)
700th (−4, −5)

Ionospheric
disturbance, G26 30 s

50th (1, 1)
100th (0, 2)
150th (5, 4)
200th (9, 7)
250th (−77, −60)
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The corresponding data of each low elevation in the above four different environmen-
tal conditions are used to test the cycle slip detection and repair method proposed in this
paper. The cycle slip detection results are shown in Figures 9–12.
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It can be seen from Figures 9–12 that the cycle slip combination detection algorithm
proposed in this paper accurately detects the epoch position in which the cycle slips occur,
and is not affected by the sampling rate of the observation data. Thus, this algorithm is
feasible for cycle slip detection of low elevation dual-frequency undifferenced GPS phase
data in different special environments, and it is easy to implement.

At the same time, to evaluate the cycle slip repair method based on the spatial search
and objective function minimization criterion proposed in this paper, Table 2 shows the
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cycle slip repair results of each low elevation under the aforementioned four different
environments. The statistics of the difference between the float solution and its respective
true value are shown in Figure 13.

Table 2. Cycle slip repair results.

Environment and
Satellite Number Epoch Float Solution Objective

Function Value

Cycle Slip
Search
Results

Normal, G09

50th (1.038, 1.038) 3.719 × 10−3 (1, 1)
100th (−0.021, 1.979) 6.897 × 10−2 (0, 2)
150th (0.035, 1.035) 4.656 × 10−2 (0, 1)
200th (9.022, 7.022) 5.780 × 10−3 (9, 7)
250th (−9.743, 10.257) 6.176 × 10−2 (−10, 10)
300th (49.439, −50.561) 9.803 × 10−2 (50, −50)
350th (77.334, 60.334) 9.281 × 10−2 (77, 60)

High-voltage power
lines, G03

100th (1.024, 1.024) 1.022 × 10−4 (1, 1)
150th (−0.020, 1.979) 6.975 × 10−2 (0, 2)
200th (9.066, 7.066) 6.292 × 10−2 (9, 7)
250th (−5.042, 4.958) 4.904 × 10−1 (−5, 5)
300th (0.978, −0.022) 3.560 × 10−2 (1, 0)
350th (77.020, 60.020) 3.144 × 10−2 (77, 60)
400th (−4.996, −3.996) 1.784 × 10−2 (−5, −4)
450th (10.013, −9.987) 2.059 × 10−2 (10, −10)

Dynamic sea
environment, G10

100th (1.046, 1.046) 9.862 × 10−4 (1, 1)
200th (−0.004, 1.996) 5.427 × 10−3 (0, 2)
300th (8.992, 6.992) 3.087 × 10−2 (9, 7)
400th (−4.965, 5.035) 7.906 × 10−3 (−5, 5)
500th (1.063, 0.063) 3.188 × 10−3 (1, 0)
600th (77.084, 60.084) 2.363 × 10−2 (77, 60)
700th (−4.051, −5.051) 6.672 × 10−2 (−4, −5)

Ionospheric
disturbance, G26

50th (1.017, 1.017) 1.358 × 10−4 (1, 1)
100th (−0.114, 1.886) 6.133 × 10−2 (0, 2)
150th (4.995, 3.995) 2.241 × 10−1 (5, 4)
200th (9.080, 7.080) 1.196 × 10−1 (9, 7)
250th (−77.006, −60.006) 2.114 × 10−1 (−77, −60)
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It can be seen from Table 2 and Figure 13 that, when the cycle slip repair method
proposed in this paper is used to obtain the initial float solution, the difference between
the float solution and the true value for the cycle slip does not exceed 0.5 cycles, and the
differences obey the normal distribution overall. This indicates that the float solution has
high accuracy, and the cycle slip results obtained through spatial search and objective
function minimization criterion are accurate and reliable, which further demonstrates the
effectiveness of the cycle slip repair method.

4. Discussion

According to the experimental results in Section 3.2, for different sampling rates of
low elevation GPS phase data, it is necessary to effectively combine the two cycle slip
detection methods proposed in this paper to achieve accurate cycle slip detection and
repair in four different environments. Only at the 500th epoch in Figure 11, the cycle
slip detection method with the fused Kalman filter and hypothesis testing based on MW
combination cannot detect the small cycle slip of one cycle. The reason is that the acquisition
environment of the dynamic data is located in the sea, which is one of the main error sources
of multipath error, and as there is no P1 code observation in the data, the observation noise
is large when the C/A code is used to replace the P code for MW combination. However,
the cycle slip is accurately detected by the second-order differential GF method considering
the elevation, and the correct cycle slip value is finally found. Therefore, for small cycle
slips such as (1,0), if the observation data contains P code, the performance of the combined
cycle slip detection algorithm proposed in this paper will be perfect.

To further evaluate and analyze the performance of the cycle slip detection algorithm,
satellite G10 was used under the dynamic environment in the sea area, and satellite G26 in
the ionospheric disturbance environment as examples to give the ambiguity sequence after
separating the pseudorange multipath based on Kalman filter, and the second-order differ-
ence GF combination sequence taking into account the satellite elevation; the corresponding
results are shown in Figures 14 and 15, respectively.
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Figure 15. Wide-lane ambiguity and second-order difference GF combination sequence of satellite G26 in ionospheric
disturbance environment.

It can be seen from Figures 14 and 15 that the wide-lane ambiguity in the MW combi-
nation estimated by the Kalman filter is smoother than the wide-lane ambiguity sequence
determined by the conventional MW combination, which indicated that the Kalman fil-
ter method used in this paper can effectively separate the pseudorange multipath error,
improve the reliability of the wide-lane ambiguity estimation, and improve the cycle slip
detection capability of the MW combination. At the same time, the second-order difference
GF combination method that considers the satellite elevation is more stable than the con-
ventional first-order difference GF combination. In particular, in the case of ionospheric
disturbance, the second-order difference GF combination that takes into account the low
satellite elevation is better in reducing the effect of ionospheric error on the cycle slip testing
quantities, and further improves the GF combination cycle slip detection capability under
special environments.

Analysis of experimental results further shows that, on the basis of MW combination,
the wide-lane ambiguity can be separated from the pseudorange multipath through the
Kalman filter, thereby improving the accuracy of float solutions of wide-lane ambiguity
and providing a reference data processing method for subsequent ambiguity fixes. At
the same time, the second-order difference GF combination taking into account the low
elevation can effectively reduce the ionospheric residual error, and has the advantage of
being immune to the strong ionospheric disturbance observation environment.

5. Conclusions

In this study, for the cycle slip detection problem in GPS undifferenced carrier phase
data at low elevation in different environments, on the basis of MW combination, cycle
slip detection is carried out by constructing cycle slip test quantities, fused Kalman filter,
hypothesis testing, and a second-order difference GF combination is proposed that takes
into account the elevation factor. The experimental test results of data with different
sampling rates at various low elevation under four special environments show that the
cycle slip combination detection algorithm proposed in this paper can detect the epoch
positions of small and large cycle slips accurately in real time, and it is feasible for cycle
slip detection and easy to implement.

After the cycle slips are accurately detected, the experimental results of cycle slip
repair show that the proposed method based on spatial search and objective function
minimization criterion can achieve accurate results for the cycle slip integer solution. This
method is effective for repairing cycle slips of GPS low elevation satellite data.
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