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Abstract: An attempt was made to evaluate the impact of assimilating Doppler Weather Radar (DWR)
reflectivity together with Global Telecommunication System (GTS) data in the three-dimensional
variational data assimilation (3DVAR) system of the Weather Research Forecast (WRF) model on
rain storm prediction in Daqinghe basin of northern China. The aim of this study was to explore the
potential effects of data assimilation frequency and to evaluate the outputs from different domain
resolutions in improving the meso-scale NWP rainfall products. In this study, four numerical
experiments (no assimilation, 1 and 6 h assimilation time interval with DWR and GTS at 1 km
horizontal resolution, 6 h assimilation time interval with radar reflectivity, and GTS data at 3 km
horizontal resolution) are carried out to evaluate the impact of data assimilation on prediction of
convective rain storms. The results show that the assimilation of radar reflectivity and GTS data
collectively enhanced the performance of the WRF-3DVAR system over the Beijing-Tianjin-Hebei
region of northern China. It is indicated by the experimental results that the rapid update assimilation
has a positive impact on the prediction of the location, tendency, and development of rain storms
associated with the study area. In order to explore the influence of data assimilation in the outer
domain on the output of the inner domain, the rainfall outputs of 3 and 1 km resolution are compared.
The results show that the data assimilation in the outer domain has a positive effect on the output of
the inner domain. Since the 3DVAR system is able to analyze certain small-scale and convective-scale
features through the incorporation of radar observations, hourly assimilation time interval does
not always significantly improve precipitation forecasts because of the inaccurate radar reflectivity
observations. Therefore, before data assimilation, the validity of assimilation data should be judged
as far as possible in advance, which can not only improve the prediction accuracy, but also improve
the assimilation efficiency.

Keywords: assimilation frequency; data assimilation; WRF-3DAVR; radar reflectivity; rainfall forecast

1. Introduction

There have been higher requirements put forward for the prediction of convective
systems precipitation and its related disasters in recent years. Improving the accuracy of
precipitation forecast has long been a challenge for Numerical Weather Prediction (NWP)
model researchers and operational communities [1,2]. Kryza and Werner et al. [3] forecasted
several short and intensive rainfalls over the SW area of Poland using the Weather Research
and Forecasting Model (WRF) with different parameterization and spatial resolution. The
results show that none of the experimented model configurations was able to reproduce
a local intensive rainfall properly. Hamill and Thomas [4] applied ensemble prediction
systems to describe the performance of the WRF precipitation forecasts. Although ensemble
forecast can reflect the predictability or reliability of real atmosphere to some extent, it
cannot improve the physical mechanism of the model. Among many considerable causes
that could lead to the inherent low predictability of convective precipitation forecasting
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using an NWP system, ambiguous description of the atmosphere initial state is one of
them. Rainfall features are always generated in an inaccurate manner, regarding location,
initiation, timing, and intensity, especially of convective storms [5]. As a result, accurately
obtaining the initial state of a storm for the regional model is the key issue for a successful
prediction of the convective system.

Several studies have confirmed it is possible to remedy defects through data assim-
ilation into the NWP model. Among the numerous data assimilation methods, those
commonly used by researchers include the optimal interpolation methods, the three-
dimensional variational (3DVAR) [6,7], the four-dimensional variational (4DVAR) [8,9],
and the Kalman filter [10] approaches. Thereinto, 3DVAR is practicable in terms of compu-
tational efficiency, thus is adopted the most frequently [5]. Variational data analysis system
was first developed by Sun and Juanzhen et al. [11], which is called Variational Doppler
Radar Analysis System (VDRAS) and began this pioneering work. Subsequently, it was
expanded by Sun and Crook [12] to use for short-term forecast initialization during con-
vective precipitation. Yang and Duan et al. [13] discussed if 3DVar data assimilation could
potentially improve the rainfall forecast in the WRF model, an obvious improvement of the
event with even rainfall in temporal distribution was found regarding the northeastern
Tibetan Plateau area. Physical initialization combined with the three-dimensional varia-
tional data assimilation method (PI3DVAR_rh) was designed by Gan and Yang et al. [14],
through which the spatial pattern forecasting of radar reflectivity and precipitation were
improved based on WRF. Vedrasco and Sun et al. [15] certified that the 3DVAR analysis
with the constraint introduced into WRF could improve the initial state of the model and
guide the convective characteristics exhibited by six summer convection cases across Brazil.
These studies show that 3DAVR plays a positive role in rainfall forecast, and this system,
which is widely used in data assimilation, is also adopted in this study.

With high-resolution observation data becoming increasingly rich, it has been a hot
research topic worldwide in recent years to improve the short-term quantitative precipita-
tion prediction level by using high-resolution observation. High-resolution observations
like Doppler radar and GTS data, can provide huge amounts of detailed information
with high spatial and temporal resolution, which makes it possible to further improve
the convective rainstorm forecast. Doppler radar can make millions of measurements of
precipitation with a spatial resolution of a few kilometers and a temporal resolution of a
few minutes [5]. Compared with existing meso-scale measure platforms, such a significant
advantage of spatial and temporal resolution has great potential for improving small-scale
and short-term rainfall prediction.

Many researchers combine high-resolution observational data with numerical models,
which plays a positive role in promoting the development of convective rainfall prediction,
improving the initial state of numerical models, as well as alleviating the imbalance caused
by interpolation [16–19]. Routray and Mohanty [20] believed that the assimilation of radar
data (radial velocity and reflectivity factor) has a positive impact on enhancing performance
of the WRF-3DVAR (WRF-three-dimensional variational) system for the Indian region.
Gvindankutty and Chandrasekar et al. [21] investigated how the 3DVAR assimilation of
DWR radial wind and GTS data positively affected the precipitation intensity as well as
spatial distribution. Abhilash and Sahai et al. [22] demonstrated improvement in spatial
pattern of rainfall of convective systems precipitation by assimilating relevant parameter
obtained by the WRF-3DVAR system, including DWR radial velocity and reflectivity as
well as GTS data. Osuri and Mohanty et al. [23] used the WRF-3DVAR system to assimilate
DWR with GTS, thus conducting 24 cases to predict tropical cyclones of Bay of Bengal,
and the results show that this method helps to provide a positive impact on the credibility
of prediction. Sugimoto and Crook et al. [5] indicated that in the 3DVAR framework and
the storm case, assimilating the radial velocity as well as reflectivity can achieve the best
performance, applied on short-range precipitation forecasting. A cycling data assimilation
improves the regional models’ initial state on the one hand, and meanwhile introduces
observation data to mitigate the imbalance caused by interpolation of prediction on the
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other hand [24]. The data assimilation system allows higher-resolution observations to be
used as the background through update-cycling procedure [25,26], which makes the data
assimilation system rely on a specified combination of error statistics to obtain the optimal
short-term forecast analysis.

Although data assimilation is capable of improving the NWP (i.e., WRF) convective
precipitation in an effectively manner, the quality of data assimilation creates uncertainty
about results. Some studies have shown that the quality of assimilated data is critical to
forecast results. Liu and Tian et al. [27] indicated that data assimilation via WRF-3DVar
could potentially improve the rainfall forecasting in northern China, with GTS data, radar
reflectivity, and radial velocity assimilated every 6 h. From their study, it is concluded
that it is the effective information in the assimilated data that exhibited more significant
results rather than the volume of data. Tian and Liu et al. [28] further explored the
effect of assimilating radar data from different height layers on the improvement of the
NWP rainfall accuracy. The results showed that the accuracy of the forecasted rainfall
deteriorated with the rise of the height of the assimilated radar reflectivity. In the process
of data assimilation, the frequency of assimilation determines the amount of effective
data assimilated. Considering the time cost, most operation departments choose a 6 h
assimilation interval [3,27,29]. In later developments, many researchers and principal
operational centers upgraded the regional NWP systems with a 3 h assimilation time
interval [30]. For highly convective storms, more frequent data assimilation with a shorter
time interval is found to be more effective to produce reliable predictions [31]. Li and
Wang et al. [32] demonstrated that the assimilation of radial velocity every half an hour
could enhance the intensity analyses and forecasts of rainfall compared to results without
assimilating radar data. Kawabata and Seko et al. [33] applied four-dimensional variational
(4DVAR) with a horizontal resolution of 2 km and 1 h length of the assimilation window
to forecast heavy rainfall at the central part of Tokyo. In most cases, researchers tend to
assimilate observations as they are originally obtained, rather than choose an appropriate
assimilation frequency or time interval.

Despite the wide application of data assimilation in enhancing precipitation forecasts,
the sensitivity of data assimilation frequency has not yet gained enough attention. This
study mainly aims at evaluating how the WRF-3DVAR with different assimilation fre-
quencies affects the accuracy of the forecast precipitation. Four typical rain storms that
occurred in semi-humid and semi-arid area of northern China were chosen as study objects.
Doppler radar and GTS data were assimilated in four designed experiments with the time
intervals of 6 and 1 h by WRF-3DVAR. The results would be helpful to improving data
assimilation efficiency with WRF-3DVAR, and provide guidance for the development of a
similar basin rainstorm forecast system. At the same time, in order to study the sensitivity
of data assimilation to rainfall forecast, the quality of radar data is also analyzed.

2. Methodology

To explore the data assimilation frequency of the short-range precipitation forecasting,
the numerical model WRF is chosen for this study [7] and its assimilating extension
WRF-3DAVR is used. WRF version 3.7 is used for all experiments. The WRF model is a
fully compressible, non-hydrostatic, mesoscale NWP, and atmospheric simulation system.
In addition, WRF-3DAVR can further influence the initial state of the WRF model by
assimilating different high-resolution observations. A brief overview of the basic model
settings and the system description can be found in the following sections.

2.1. A Brief Description of WRF-3DVAR

The fundamental objective of the 3DVAR system is to seek an optimal estimate of
initialization at parsing time through an iterative solution of a pre-determined function,
including observations, background forecast from the NWP system, etc. [34].

J(x) = Jb+Jo =
1
2

(
x− xb

)T
B−1

(
x− xb

)
+

1
2
(y− yo)T(E + F)−1(y− yo) (1)
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Iterative solutions to Equation (1) can summarize the Dimensional Variational As-
similation problem, to seek the analysis state variable x to minimize J(x). In the formula,
x is the variable that represents the surface and atmospheric surface state, xb is the first
guess (or background) acquired from the previous forecast, and y0 is the assimilated ob-
servation. Y = H(x) is the model-derived observation space, which is transformed from
gridded analysis x by the observation operator H for comparison against y0. The individual
data points are fitted by the weight of its error estimate: B, E, and F are the background
error covariance matrix, observation error covariance matrix, and representativity error
covariance matrices, respectively. This solution represents a minimum variance estimate of
the true state of the atmosphere given the two sources of a priori data: the first guess xb

and the observation y0 [35].
The WRF-3DVar is a variational data assimilation system designed and built in the

WRF model, and is used to assimilate radar reflectivity and GTS in this study [6,36]. The
background error covariance CV3 created by the National Meteorological Center (NMC)
was employed, which has the advantage of wide applicability [37].

2.2. WRF Model Configuration

The primary focus of this study is Fuping and Zijingguan catchments covered by the
innermost domain of a three nested domain. For the study area, the center of the domain
is at 39◦26′00′′N and 114◦46′00′′E, and from the outermost to the innermost the nested
domain sizes are 1260 × 1260, 450 × 360, and 145 × 115 km2. Considering the diversity in
assimilation variables, the horizontal grid spacing of the outermost domain is set at 9 km
and the grid size of the innermost layer is set to be 1 km, where the downscaling radio is
set to be 1:3 [38,39]. The locations of the nested domain and radar coverage are shown in
Figure 1. Forty vertical pressure levels are considered for the three nested domains with a
model top at 50 hPa [40,41].
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The 1◦×1◦ spatial resolution of Global Forecast System (GFS) forecast data provide
the initial and lateral boundary conditions for the simulations. Considering the resolution
of the GFS data, it would be more reasonable to add another domain with 27 km horizontal
grid spacing as the outermost one. Unfortunately, experimental runs are carried out and
the effects of data assimilation are found to be similar with the current domain settings.
Since rainstorm forecasting has a high requirement of effectiveness for a given period of
time, in practical application it is beneficial to obtain the forecasting information as soon as
possible. Therefore, the 27 km grid is not applied in this study. The integration time-step
of the WRF model and WRF-3DAVR system is 6 s and the time interval for the output
is set to be 1 h. The GFS data, which is updated every six hours, is a real-time product
provided by National Centers for Environmental Prediction (NCEP). Because GFS has not
been processed by assimilation analysis, it has been used in many studies to forecast the
storm events in WRF model and WRF-3DAVR [3,5,31].

The performance of the model is highly dependent on the parameterized scheme, and
the scheme selected in the study may be suitable for one storm event in one region, but
not necessarily for others [42]. Since it is difficult to judge which scheme is most suitable
for future storm events, parameterized schemes are usually determined in advance for
practical application [43]. Based on relevant experimental research on the selection of
sensitive parameterization schemes for ensemble rainfall forecasting [44,45], the physical
parameters with the best applicability in the study area were adopted in this study. Details
of the parameterizations that have significant impacts on the generation of rainfall used
in the assimilation experiments are shown in Table 1. It is worth noting that the cumulus
scheme is switched off for the 3 and 1 km domain.

Table 1. Details of the parameterizations used in the assimilation experiments.

Parameterization Chosen Option Reference

Microphysics scheme WSM6 [46]
Longwave radiation Rapid Radiative Transfer Model (RRTM) [47]
Shortwave radiation Dudhia [48]
Land surface scheme Noah [49]

Planetary boundary layer Mellor-Yama-da-Janjic (MYJ) [50]
Cumulus convection Kain-Fritsch (KF) [51]

3. Case Study and Data
3.1. Study Area and Storm Events

The main focus of this study is the Fuping and Zijingguan watershed covered by
Domain 2 and Domain 3 of the WRF model. According to the temporal and spatial
distribution characteristics of rainfall and the representatives of rainfall-runoff generation
characteristics, the case used in this study is four 24-h rainstorm events, which occurred in
Fuping and Zijingguan watershed. Fuping catchment is located at 39◦22′N~38◦47′N and
113◦40′E~114◦18′E with a drainage area of 2210 km2 and Zijingguan catchment is located at
39◦13′~39◦40′N and 114◦28′~115◦11′E with a drainage area of 1760 km2. They belong to the
south and the north branch of the Daqinghe basin respectively, located in northern China,
having a warm temperate continental monsoon climate. Terrain elevation of the study area
varies from 2286 m in the northwest part to 200 m in the southeast mountains. The average
annual rainfall in the study catchments is approximately 600 mm, the short episodes of
intensive precipitation are more frequent in late May and early September. The steep
terrain leads to a short confluence time of the flood, which together with high-intensity,
short-duration precipitation is prone to cause severe flood disasters. They are concentrated
in areas with thin soil layer and low vegetation coverage especially. In particular, on 21 July
2012, the 24 h rainstorm event occurred in the Beijing-Tianjin-Hebei region, which has been
widely concerned because of the heavy rainfall intensity and large losses. The duration
of the four storm events and the accumulative rainfall amounts are shown in Table 2.
Among the four storms, event 4 is the heaviest one trigged by a severe convective system,
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concentrated in a small area of the watershed and with high rainfall intensity in a short
time period. The other three storms are typical stratiform rains with moderate intensity but
various distributions in space and time. The measured rainfall data are rainfall stations and
the time interval is 1 h. The 24 h rainfall accumulation is computed by Thiessen polygon
method, which averages the observations from the rain gauges. Figure 2 demonstrates a
detailed map of the study area, such as the rain gauges, watershed boundary, catchment
outlets topography, and major rivers.

Table 2. Duration, accumulated rainfall, and maximum stream flow of the four selected 24 h storm events.

Event ID Catchment Storm Start Time Storm End Time Accumulated Rainfall (mm)

I Fuping 29/07/2007 20:00 30/07/2007 20:00 63.38
II Fuping 30/07/2012 10:00 31/07/2012 10:00 50.48
III Fuping 11/08/2013 07:00 12/08/2013 07:00 30.82
IV Zijingguan 21/07/2012 04:00 22/07/2012 04:00 155.43Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 20 
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Figure 2. Location map and two study sites in the Daqinghe catchment.

In reality, the precipitation in northern China is not absolutely even in time and space,
which is different from that in southern China. To study the spatial and temporal evenness
of the precipitation in study catchments, both spatial and temporal variation coefficient (Cv)
of four storm events from 1985 to 2015 are calculated. A threshold of 5% was employed
to separate even and uneven rainfall events. The evenness of the rainstorm events is
quantitatively evaluated in the spatial and temporal dimensions by variation coefficient
Cv in this study. The lower Cv is, the more even the rainfall is. Based on the thresholds
selected, we found two critical values: 0.4 for spatial Cv and 0.6 for temporal Cv. When the
rainfall Cv values were less than the threshold Cv values, storm events have a relatively
even distribution of rainfall over the respective catchment. Table 3 shows the Cv values
of the four storm events in the both spatial and temporal dimensions. It can be found
that the rainfall is more uneven in time than in space, which is helpful to analyze the
spatiotemporal distribution of rainfall forecast results. It can be seen from Table 3 that the
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four rainstorms have different spatial and temporal evenness, and the selection of rainfall
events can provide reference for different types of rainfall in northern China.

Cv =

√√√√∑N
j=1

( xj
x − 1

)2

N
(2)

In the spatial dimension, xj is the accumulated 24 h rainfall at the rain gauge j, and x is
the average of xj. N is the number of rain gauges. In the temporal dimension, xj is average
hourly rainfall from all the rain gauges at time j, and N is the number of hours. The higher
Cv is, the more uneven the rainfall distribution is.

Table 3. Rainfall evenness of the four selected 24-h storm events in space and time.

Event ID I II III IV

Spatial Cv 0.3975 0.1927 0.7400 0.6098
Temporal Cv 0.6011 1.0823 2.3925 1.8865

3.2. Data Assimilation Experiments

In this study the radar reflectivity and GTS data observations forecasting are assimi-
lated into WRF and WRF-3DVAR system for 24 h typical storm events.

3.2.1. Weather Radar Data

The Doppler radar used in this study is the S-band radar located at Shijiazhuang city,
which is provided by the National Meteorological Administration and covers a radius of
250 km and can completely cover the two study areas. The radar completed a volume
sweep every 6 min, with 9 beam angles. By using a data format conversion program, the
binary base data file of Shijiazhuang Doppler radar is directly written into “ob.radar” file
as the observation field input file of wrfvar.exe. The format of the ob.radar file can be found
in the WRFDA user guide. The ob.radar file includes the latitude and longitude of the pixel
center and the height of the radar beam above that pixel. The technique details of the radar
data are provided in Table 4.

Table 4. Basic parameters of S-band radar in Shijiazhuang.

Parameters Information

Location 38.5◦, 114.68◦

Administrative location Shijiazhuang
Antenna diameter 1.3 m

Emission frequency 2.7~3.0 GHz
Observation radius 250 km

Effective radius of observation 230 km
Spatial resolution 1km

Sweep time 6 min
Beam angles 0.5◦, 1.5◦, 2.4◦, 3.4◦, 4.3◦, 6.0◦, 9.9◦, 14.6◦, 19.5◦

The radar reflectivity is conducted through the quality control chain to improve the
quality of the measurements before importing the assimilation process [52]. Therefore,
before being assimilated by WRF-3DVAR, radar data are supported by China Integrated
Meteorological Information Service System (CIMISS) of China Meteorological Administra-
tion to remove artefacts such as ground clutter, radial interference echo, speckles through
quality control. For convenience, dBZ is often used to represent radar reflectivity:

dBZ = 10 lgZ/Z0 (3)

where, Z0 = 1 mm6/m3, is a constant, and Z is reflectivity.
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According to Sun and Crook [12], the radar data are assimilated through an obser-
vational operator that describes the relationship between radar reflectivity and rainwater
mixing ratio by

Z = 43.1+17.5log (ρq r) (4)

where Z is the reflectivity, ρ is the air density in kg/m3, and qr is the rainwater mixing
ratio. This relation is derived analytically by assuming the Marshall–Palmer distribution of
raindrop size. At the same time, the pixel-based radar reflectivity is assimilated directly in
WRF-3DVar, by stating the latitude and longitude of the pixel center and the height of the
radar beam above that pixel.

3.2.2. GTS Data

The downloaded GTS data is a collection of all kinds of meteorological observation
data, including surface weather station, ship, buoy, pilot balloon, sonde, aircraft, and
satellite observations, and its format is easily recognized by WRF-3DVAR. The decoded
data is converted into a suitable Little_R format by shell script, which is used for data
assimilation of WRF-3DVAR. Five GTS datasets, including Sound, Synop, Pilot, AIREP,
and Metar, were incorporated into the WRF model at 6 h assimilation time interval in
this study, the number of observations were 2718, 4217, 733, 201, 612, respectively. The
assimilated GTS data was directly interpolated into the background field of the model, and
the background field was corrected by a certain algorithm.

GTS data has the characteristics of wide coverage and small spatial density, which
is suitable for assimilation on a large scale. On the other hand, radar data coverage is
relatively restricted, but the data spatial density is intense, and therefore is more suitable
for assimilation in small scale. Since the scanning radius of the radar is 250 km, thus the
coverage range is similar to that of Domain 2, which is much smaller than that of the outer
domain and larger than the innermost domain. Therefore, in this study the radar data is
assimilated only in Domain 2, whereas the GTS data is assimilated in the outer domain
(Domain 1). Since the GTS data is released every six hours, in the hourly assimilation
scheme, GTS is only assimilated at the 6th, 12th, 18th, and 24th hour from the start of
the storm.

Four experiments were conducted at different horizontal resolutions while keeping all
physical settings the same. In scheme “NA_1km”, Global Forecast System (GFS) forecast
data is interpolated to the model grid as the initial conditions for the 24 h forecast without
data assimilation in all the three nested domains. In scheme “DA_1h_1km”, 1 h data
assimilation is carried out with rainfall forecasts output from the 1 km domain (Domain 3).
The settings of Scheme “DA_1h_3km” are the same as DA_1h_1km, except that rainfall
forecasts are output from the 3 km domain (Domain 2). In the scheme “DA_6h_3km”, the
1 km innermost domain is removed with only Domain 1 and Domain 2 left. Radar and GTS
data are assimilated every 6 h and rainfall forecasts are output from Domain 2. Detailed
explanations of the experimental design and the settings of the four schemes are shown in
Table 5. Before the data assimilation cycle starts, the WRF model spins up for 30 h in all
schemes with the initial condition from GFS. For cycling data assimilation, the prediction
of the previous assimilation run serves as the background for the next run.

The root mean square error (RMSE), the mean bias error (MBE), and the critical success
index (CSI) are used to evaluate the simulated precipitation of the WRF and WRF-3DAVR
model. After the analysis of indices, CSI/RMSE is used as the comprehensive evaluation
index to explore the more intuitive response of different rainfall types to forecast errors in
temporal and spatial scales.
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Table 5. Experiment description.

Experiments Domain
Resolutions Data Assimilation

Radar Data
Assimilation
Time Interval

GTS Data
Assimilation
Time Interval

Output
Resolutions

NA_1km
(=no assimilation)

Domain 1 (9 km)
Domain 2 (3 km)
Domain 3 (1 km)

no no no 1 km
(Domain 3)

DA_1h_1km
(=data assimilation with

1 h interval and output from
1 km domain)

Domain 1 (9 km)
Domain 2 (3 km)
Domain 3 (1 km)

Radar reflectivity
in Domain 2 + GTS

in Domain 1
1 h 6 h 1 km

(Domain 3)

DA_1h_3km
(=data assimilation with

1 h interval and output from
3 km domain)

Domain 1 (9 km)
Domain 2 (3 km)
Domain 3 (1 km)

Radar reflectivity
in Domain 2 + GTS

in Domain 1
1 h 6 h 3 km

(Domain 2)

DA_6h_3km
(=data assimilation with

6 h interval and output from
3 km domain)

Domain 1 (9 km)
Domain 2 (3 km)

Radar reflectivity
in Domain 2 + GTS

in Domain 1
6 h 6 h 3 km

(Domain 2)

CSI [53] denotes the percentage of correct simulation between the forecast and ob-
servations, and the perfect score is 1. According to Equation (6), the calculation of CSI
depends on whether it rains or not. Since the essence of WRF model simulation is to solve
equations, it is inevitable that the rainfall calculation result is close to 0. In order to avoid
the light rain in the prediction being included in H or R, hourly rain rate less than 0.01 mm
is considered as no rain, and CSI is based on the method in Table 6 to classify the rainfall
simulation results.

Table 6. Rain/no rain contingency table for the WRF simulation against observation.

Prediction/Observation Yes (>0.01 mm) No

Yes hits (H) misreports (R)
No misses (S) /

Classified variables H, R and S represent whether the predicted and observed values in
a certain observation period or observation position are greater than 0.01. If both predicted
and observed values are greater than 0.01, that is, rainfall is captured in model, H+1; If the
predicted value is greater than 0.01 and the observed value is less than or equal to 0.01,
that is, the model misreports rainfall, then R+1; If the predicted value is less than or equal
to 0.01 and the observed value is greater than 0.01, that is, the rainfall is missed in model,
then S+1. If both the predicted value and the observed value are equal to 0.01, that is, the
model accurately predicts the scenario without rainfall.

RMSE =

√√√√ 1
M

M

∑
i=1

(Q ′i − Qi

)2
(5)

CSI =
1
M

M

∑
i=1

Hi
Hi+Si+Ri

(6)

MBE =
1
M

M

∑
i=1

(
Q′i − Qi

)
(7)

For the spatial dimension, Qi
′ and Qi denote the observation and prediction of 24 h

rainfall accumulations at each rain gauge i. M is the number of the rain gauges, which is 8
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for the Fuping catchment and 11 for the Zijingguan catchment. For the temporal dimension,
Qi
′ and Qi are the average areal rainfall of observation and prediction at each time step i.

This time M is 24, which represents the number of the time steps. The specific meaning can
be seen in Table 7.

Table 7. The meaning of letter in formulas, including Qi
′, Qi, i, and M.

Letter For the Spatial Dimension For the Temporal Dimension

Qi
′ Observation of 24 h rainfall accumulations

at each rain gauge
average areal rainfall

of observation

Qi
Prediction of 24 h rainfall accumulations at

each rain gauge
average areal rainfall

of prediction
i Rain gauge ID each time step

M Total numbers of rain gauges 24 h

The calculation of CSI is based on the rain or no rain contingency table (Table 7). For
the spatial dimension, the predicted rainfall was compared with observations at rain gauge
locations to calculate the indices of H, R, and S at the time i, and then the values of the
indices at all times are averaged to obtain CSI according to Equation (6). M is the number
of total times. In this study, the time i is consistent with output frequency of the model,
which is 1 h. That is, CSI is the average value of the H/(H + R + S) for each hour of the
24 h rainfall duration. Similarly, for the temporal dimension, the indices in Table 7 are
calculated based on the time series data obtained for the simulated and observed areal
rainfall at the rain gauge i. The values of the indices at all rain gauges are then averaged to
produce the final CSI value based on Equation (6). In this case, M refers to the total number
of rain gauges rather than the simulation time.

4. Results
4.1. Effect of Data Assimilation on Temporal Rainfall Distributions

As illustrated by Figure 3, it shows the results of different assimilation frequencies.
The first guess file generated from the previous run will provide the initial conditions for
the next run. “DA_1h_1km” and “DA_1h_3km” are assimilated data with an interval of
1 h, and “DA_6h_3km” is 6 h. The forecasted accumulative rainfall is calculated from the
average value of rainfall at each grid point in the study area. When the area of the grid
within the watershed boundary accounts for more than 50% of the grid area, the rainfall
value of the grid point participates in the calculation of the rainfall accumulations. As for
the observations, the observed accumulative rainfall is calculated by averaging rain gauge
observations using the Thiessen polygon method.

When the different assimilation frequencies are chosen in the model, the curve struc-
ture in the rainfall forecasting is significantly altered (“DA_1h_3km” and “DA_6h_3km”).
The evolution of “DA_1h_3km” and “DA_6h_3km” in WRF-3DAVR system shows similar
patterns with higher differences in the rainfall peak. The improvement of assimilation
frequency led to a significant increase in precipitation. In WRF-3DVAR system, the opera-
tion with high assimilation frequency will produce incremental adjustment, which makes
the prediction closer to the observation. In addition, through evaluating the outputs from
different domain resolution on rainfall prediction, the improvement of WRF-3DVAR sys-
tem domain output resolution is less obvious on the accumulative rainfall (“DA_1h_1km”
and “DA_1h_3km”). In other words, the data assimilation of the outer domain has a
positive effect on the output of the inner domain, but the improvement is not obvious.
This may be due to the fact that no data is assimilated on the 1 km horizontal resolution
domain. The larger the volume of assimilation data import to model, the longer time it
will take to forecast the rainstorm. However, rainstorm forecasting has a high requirement
for effectiveness for a given period of time, so in practical application it is beneficial to
obtain the effective information of rainfall as soon as possible. In order to balance the
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accuracy and timeliness of rainstorm forecasting, data assimilation is not carried out in the
innermost domain.
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4.2. Effect of Data Assimilation on Spatial Rainfall Distributions

The spatial distributions of predicted precipitation with and without assimilation
are shown in Figure 4. It is not difficult to see that after the data assimilation, the spatial
temporal distribution of rainfall forecast has been improved in varying degrees compared
with without assimilation. “DA_1h_1km”, “DA_1h_3km”, and “DA_6h_3km” performed
much better as rainfall forecasts, respectively, than “NA_1km” in spatial distributions. The
results show that the WRF-3DAVR system can obtain the major rain band located around
the east and south border of the study area while the same rain band is disorganized in
the WRF model. That is, the improvements to certain extents in spatial distributions after
data assimilation.

Figure 4 shows spatial distributions of the 24 h accumulative rainfall for the four
storm events in the Fuping and Zijingguan catchment. It can be intuitively seen from
the spatial variations in Event II-IV that the rainfall forecast after data assimilation is
significantly larger in numerical value than before assimilation. The storm centers of events
were captured relatively well by WRF-3DAVR; however, some parts of the catchments with
high rainfall accumulations were missed by WRF-3DAVR, such as the northern rainband
of Event III and the western rainband of Event IV. By analyzing the evenness of storm
events, the temporal and spatial distribution of Event I is more even, Event II is uneven
in time, and Event III-IV is uneven in space and time. The results show that the rainfall
with even spatial distribution has the best predicted results on the spatial scale, while the
rainfall with uneven spatial distribution has the worst predicted results on the spatial scale.
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WRF-3DAVR is easier to accurately simulate or forecast rainfall with more uniform spatial
distribution, while WRF-3DAVR is more difficult to accurately forecast rainfall area with
uneven spatial distribution. It can also be obtained from the index analysis of each rainfall
forecast result in Table 8. In addition, whether the rainfall is evenly distributed on the
time scale has a certain influence on the forecast results of rainfall on the spatial scale but
does not play a decisive role. From “DA_1h_1km” and “DA_1h_3km”, simply increasing
the resolution of domain has no significant improvement in the spatial dimension of the
rainfall simulations, this is probably because the innermost domain does not assimilate
data. Furtherly, Table 8 in Section 4.3 provides the root mean square error (RMSE), mean
bias error (MBE), critical success index (CSI), and CSI/RMSE of 24 h rainfall accumulation
values using WRF and the different WRF-3DAVR schemes.
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Figure 4. Spatial rainfall distributions of gauge observations and forecasts from four data assimilation schemes for Event I,
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4.3. Evaluation on the Storm Process Improvements

The evaluation scores for the four 24-h rainstorm forecasts from 1 and 6 h time
intervals with and without assimilation are shown in Table 8. In evaluations in the spatial
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scale, the model forecasts are interpolated to the rain gauge locations for comparisons
with the observations. Firstly, compared with “NA_1km”, the rainfall forecasts at different
assimilation schemes are improved significantly. For example, RMSE of “NA_1km” without
assimilation in Event I on the temporal dimension was 2.3393, while the highest RMSE with
data assimilation is 2.1320 (DA_6h_3km) and the lowest RMSE is 1.7816 (DA_1h_1km).
Possibly it is because Event I has a relatively even distribution in both time and space
(0.3975 for spatial Cv and 0.6011 for temporal Cv), and data assimilation has no large
improvement on the rainfall forecasting with even spatial-temporal distribution. Similarly,
on the spatial dimension, RMSE of the assimilated schemes is better than that without
assimilation. In the spatial dimension, for example, RMSE of “NA_1km” in Event III is
2.8849, which is no assimilation, while the worst RMSE with data assimilation in Event III
is 1.4068 (DA_6h_3km). Therefore, the good performance for selected typical precipitation
events shown by the cycling data assimilation gradually improves not only temporal but
also spatial variability.

Secondly, the performance of the 1 h assimilation time interval with respect to its
6 h counterpart with data assimilation is examined. It is shown (Table 8) that experiment
hourly assimilation time interval has lower RMSE than its 6-hourly counterpart in most
events in both the temporal and spatial dimension, indicating the potential for a better
forecast. Event I, Event III, and Event IV show positive effect in rapid update assimilation,
and much precipitation rises in WRF-3DAVR compared to low assimilation frequency
(“DA_1h_3km” and “DA_6h_3km”). In the case of Event IV in the spatial dimension, for
example, a decrease in RMSE from 12.6979 after 6 h assimilation time interval to 8.7782
occurred after hourly assimilation frequency; a similar trend was noted during Event
I and Event III. In the meantime, hourly assimilation frequency has a lower MBE than
6-hourly assimilation time interval for most events. This might be the result that the
regional approach with higher-resolution observations and closing to actual atmospheric
boundary conditions may improve the assimilation effect and help offset temporal and
spatial information lost by WRF. For the study area with small-scale, the assimilation time
interval of 6 h is too long, and the model background field is not corrected in time. As time
goes on, the observation error of radar is constantly amplified in the model background
field, which reduces the effect of rainfall forecast.

However, WRF-3DAVR and high assimilation frequency are mixed. In Event II,
experiment hourly cycled configuration had slightly lower scores than those of the 6-hourly
counterpart in the both time dimension and spatial distribution for Event II. Although
the low assimilation frequency appears to be slightly better than the high assimilation
frequency for Event II, this does not seem to pose a threat to the hourly assimilation
frequency. But it also reflects the disadvantages of spreading too much radar information
to places where the radar data are not available.

In addition, the influence of data assimilation of outer domain on the output of inner
domain is discussed, and the precipitation outputs of 3 and 1 km domain are compared.
The results show that although the data assimilation of outside domain has a positive
impact on the output of the inside domain, inside domain generated very small helpful
increments, especially in the time scale.

All the schemes show different amounts of false precipitation in study areas from CSI.
The high CSI are Event I and II, indicating that the model basically captures the occurrence
time and rainstorm area of Event I and II, the low CSI are Event III and IV, and the lowest
is Event III, indicating that the simulation results of these rainfall fields are poor in terms of
time and space. In order to further evaluate the forecasting results of WRF-3DAVR system
for each rainfall type on the temporal scale, CSI/RMSE was taken as a comprehensive index
to evaluate the forecasting results. In the temporal dimension, the forecasting results of
Event I and Event II are the best, with the value range of four schemes of CSI/RMSE being
0.2412 to 0.4538, while the forecasting results of Event III and Event IV are the worst, value
range of four schemes of CSI/RMSE being 0.0345 to 0.0948. In the spatial distribution,
the same law is presented, that is, WRF-3DAVR system is easier to accurately simulate
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or forecast rainfall with more uniform time distribution, but more difficult to simulate
or forecast rainfall with short duration and concentrated rainfall. Combined with the
calculation of the spatiotemporal variation coefficient (Cv) of precipitation events, it shows
that Event II–IV are more uneven in time and space than Event I. In Event III, for example,
the temporal Cv value of 2.3925 and the spatial Cv value of 0.7400 are much higher than
those of Event I (0.6011 and 0.3975). This may explain the increased bias in assimilation,
since the improved effectiveness of the rainfall forecast after assimilation is determined by
the amount of effective information contained in the data. It is easier for radar reflectivity
and GTS data to capture data during periods of rainfall that is homogeneously distributed
in space and time.

Table 8. Temporal and spatial values of the four assessment indices for Event I, II, III, IV with four schemes.

Events Experience
Scheme

Temporal Dimension Spatial Dimension

RMSE MBE CSI CSI/RMSE RMSE MBE CSI CSI/RMSE

I

NA_1km 2.3393 −1.9322 0.7519 0.3214 1.7908 −1.7003 0.7478 0.4176
DA_1h_1km 1.7816 −1.4615 0.6820 0.3828 1.1295 −1.0476 0.7835 0.6936
DA_1h_3km 1.7967 −1.4837 0.8153 0.4538 1.1343 −0.9890 0.8155 0.7189
DA_6h_3km 2.1320 −1.6189 0.7872 0.3692 1.7171 −1.6280 0.6719 0.3913

II

NA_1km 2.3752 −1.5909 0.5729 0.2412 2.5884 −2.5600 0.5729 0.2213
DA_1h_1km 1.9468 1.3097 0.5791 0.2974 0.9473 0.9425 0.5744 0.6063
DA_1h_3km 1.9584 1.3263 0.5759 0.2940 0.9523 0.8136 0.5729 0.6016
DA_6h_3km 1.9360 1.2940 0.5791 0.2991 0.9047 0.6404 0.5744 0.6349

III

NA_1km 3.4189 −1.7446 0.1180 0.0345 2.8849 −2.4168 0.1910 0.0662
DA_1h_1km 2.0987 −1.0273 0.1038 0.0495 1.0594 −1.0353 0.1875 0.1770
DA_1h_3km 2.1185 −1.0381 0.1676 0.0791 1.2250 −1.1401 0.1667 0.1361
DA_6h_3km 2.2778 −1.2869 0.2004 0.0880 1.4068 −1.2895 0.1806 0.1283

IV

NA_1km 8.5700 −5.8656 0.6601 0.0770 12.6979 −10.4946 0.5524 0.0435
DA_1h_1km 5.9530 −4.0378 0.5449 0.0915 8.7782 −3.5646 0.5524 0.0629
DA_1h_3km 5.9566 −4.0304 0.5648 0.0948 8.8033 −3.6767 0.5131 0.0583
DA_6h_3km 6.6525 −4.3429 0.6601 0.0992 9.3979 −5.4607 0.4270 0.0454

Assimilation of all possible data with high assimilation frequency may not be the
most effective method in precipitation forecasting. Especially, the influence of assimilation
frequency on rainfall forecast is rather small in Event II; the precipitation forecasts with 1 h
cycle do not have much difference from those with 6 h cycle. That may indicate the impact
of false rainfall forecasting fields is enlarged because of the inaccurate radar observed data.
One may wonder whether the results of assimilation have anything to do with the quality
of the assimilated data, such as radar data. To answer that question, the ability of Doppler
radar to retrieve precipitation is plotted (Figure 5). In each single subfigure, the black bars
and yellow solid curve indicate measure rainfall and accumulative rainfall from rain gauge,
respectively. Green bars and pink curve indicate rainfall and accumulative rainfall from
radar observed reflectivity inverse calculation. The left y-axis is the cumulative rainfall
value, corresponding to the curve, and the y-axis on the right is the value of hourly rainfall,
which corresponds to the bar graph.

As can be seen from Figure 5, the radar precipitation estimation of Event I was closer to
the observation accumulation curve, and at the same time, assimilation effect of Event I was
also the best in all events. In addition, there was substantial rainfall growth during the first
nine hours of the rainfall after the radar data assimilation for Event III, and the accumulated
rainfall increased abruptly. Additionally, we found that the radar measures rainfall from
the 1st hour to the 9th hour as much larger than the observed rainfall (Figure 5), as revealed
in many previous studies [54]. Therefore, in our storm events selected, the accuracy of
radar reflectivity is of primary importance in improving the quality of precipitation forecast
within the time range of forecasting [5].

When WRF-3DVAR technology is applied, a matter of effective radar data assimilation
could be tackled by using shorter assimilation time interval to achieve greater informa-
tion assimilation. Although the assimilated radar data can help WRF model to forecast
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precipitation effectively, it increases the conflict between radar data and domain. In the
process of data assimilation, the validity of assimilated data should be judged as far as
possible in advance, which can not only improve the prediction accuracy of WRF model,
but also improve the assimilation efficiency. There are many factors affecting assimilation,
and radar data may be only a part of them, and more factors need to be further explored,
such as the resolution of GFS data, nested boundary conditions, the dynamic structure of
the model, numerical discretization, etc.
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5. Discussion

By carrying out a comparative analysis on the output results of different assimilation
frequencies, it can be proved that by reducing the length of the assimilation window, the
rainfall forecasting can be closer to the observations and can better present storm center.
The hourly data assimilation frequency in the WRF-3DVAR allows for the addition of useful
information and results in improved performance of the rainfall forecasting. However,
misestimates may be caused when applying high assimilation frequency.

First, the quality of the output analysis depends on the error in the model initializa-
tion when inaccurate boundary field and background information is inputted into the
assimilation system. As is widely understood, accurate initial condition is crucial to data
assimilation and prediction of numerical weather prediction (NWP) system. Data assimila-
tion system can combine all useful information about atmospheric conditions in the given
time window, and obtain estimated value of the valid atmospheric conditions in given anal-
ysis time. Where, information used for model calculations is sourced from the observations,
background, previous estimate of the atmospheric state, as well as their specific inherent
errors. Compared with other error sources (e.g., physical parameterization, boundary
conditions, and predicting dynamics), the relative importance of prediction errors caused
by initial condition errors depend on many factors, including resolution, domain, data
density, orography as well as the forecast product of interest [55]. The assimilation data of
the WRF-3DVAR system is dedicated to providing initial conditions and further improving
the WRF predictions, and then applied to creating forecasting of regional climates in the
future, which is excitingly possible.

Especially, the radar data as one of the assimilation data sources, which represent the
small-scale and rapid evolution in the boundary layer, are often unsatisfactory, especially
in the events of extreme rainfall intensity. This is because the rainfall estimate of radar is
not directly measured, but is indirectly obtained by the measured radar reflectivity. The
measurement of radar reflectivity and the conversion process from reflectivity to intensity
are affected by many error sources. In order to improve the accuracy of the radar data used
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for initial conditions of mode, it can be adjusted according to the rain gauge measurements.
In this way, it can combine the advantages of the precise measurement of rainfall by the
rain gauge at the point and the better performance of the radar in the spatial distribution,
and overcome the disadvantages of the rainfall deviation caused by the uncertainty of the
radar in the rain measurement. Studies are being conducted to find the optimal technique
for radar observations to improve the initial state of the model.

Second, the error in the actual numerical prediction system may be highly non-linear,
although the variational method includes linearized dynamic and physical processes, which
limits the practicability of variational data assimilation in highly non-linear regions (such
as convective scale or tropical region). Therefore, it is necessary to develop a more objective
method, such as a method based on ensemble prediction for estimating the uncertainty
of a flow-related prediction background [5]. Nevertheless, despite these limitations, this
study provides a prototype for short-term practical prediction of a local convective weather
system. It is hoped that these research topics can be discussed in the future research and
application of the 3DVAR system.

Furthermore, it is shown that the WRF model can reasonably predict a low-intensity
and long-lasting rainfall event. However, the result from this study indicates that this model
often leaves out rare small-scale and short-term rainfall prediction events or underestimates
the precipitation intensity, because small-scale interference is filtered when large-scale
analysis keeps a better balance [15]. The main reason for this is that convection is a small-
scale phenomenon, and false estimates may be caused if the increment in diffusion spreads
too far. This is exactly what should be improved in the predictions, by applying different
model parameterization technology [56] or data assimilation technology for instance [3].

For mesoscale catchments, the spatial distribution of rainfall is also important due
to its significant impact on the flood volume, flood peak, and time to peak [28]. In addi-
tion, approaches to improve the spatial accuracy of precipitation predictions after data
assimilation are also worth exploring. It is necessary to analyze more storm events in
different survey regions in order to find more general radar data assimilation criteria and
thus facilitate numerical prediction.

6. Conclusions

This study explores the effect of radar reflectivity and GTS data assimilation from
assimilation frequency using WRF-3DVar for rainfall forecasting. Four heavy storm events
at the Daqinghe catchment in the Beijing Tianjin Hebei region of northern China are selected
to be regenerated by the WRF model. We employed three nested domains, and adopted
the GFS data for driving the WRF model. From two aspects of cumulative rainfall and
spatial distribution of rainfall, two observational data types (radar reflectivity and GTS
data) assisted in investigating how WRF rainfall forecasts were potentially improved in
space and time through data assimilation. We designed four data assimilation schemes
considering various possible combinations of the two data assimilation frequency types
in the three nested domains. We compared the analysis with data assimilation and that
without data assimilation, finding that the assimilation results partly fit observations in
the case and that WRF-3DAVR with radar reflectivity and GTS data better represents the
rainfall forecasts in space and time.

Precipitation simulated by the WRF model is always much lower than observed
rainfall, but assimilation systems can increase rainfall. The improved initial conditions
in WRF-3DVAR system via radar data assimilation and GTS data achieved better short-
term and convective strong precipitation in the both temporal dimension and spatial
dimension. The high assimilation frequency significantly helps to trigger and maintain the
convective activities in the 3DVAR framework as well as the storm case applied. Forecasts
of events indicate that the temporal rainfall distributions of convective storms can be much
better predicted with high assimilation frequency, compared with the 6 h assimilation
time interval run. At the same time, employing the high assimilation frequency to the
assimilation showed improved skill of precipitation forecasting in WRF-3DVAR on spatial
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rainfall distributions. The only exception happened in Event II. In this case, the impact of
false rainfall forecasting fields is enlarged because of the inaccurate radar observed data,
so that the negative impact was found after assimilation. However, this does not seem
to pose a threat to the hourly assimilation frequency. In addition, the data assimilation
of outside domain has small impact on output of inside domain in not only temporal but
also spatial dimension. In general, the hourly data assimilation frequency together with
strict outputs from domain resolutions is closer to actual precipitation. In this study, the
assimilation by combining the radar reflectivity and Global Tele-communication System
(GTS) data with high assimilation frequency is helpful for further enhancing the temporal
and spatial distribution of the short-term precipitation forecast. The results can be used as
a reference for areas with similar climatic conditions as well as rainfall characteristics. The
methodology is of guiding significance for WRF-3DAVR rainfall forecasting. In this case, in
order to explore universally applicable data assimilation guidelines for rainfall forecasting,
research should be conducted over more storm events in different study areas.
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