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Abstract: Atmospheric aerosols and dust have become a challenge for urban air quality. The
presented study quantified seasonal spatio-temporal variations of aerosols, tropospheric ozone,
and dust over the Middle East (ME) for the year 2012 by using the HTAP emission inventory in
the WRF-Chem model. Simulated gaseous pollutants, aerosols and dust were evaluated against
satellite measurements and reanalysis datasets. Meteorological parameters, temperature, and wind
vector were evaluated against MERRA2. The model showed high spatio-temporal variability in
meteorological parameters during summer and low variability in winter. The correlation coefficients
for all the parameters are estimated to be 0.92, 0.93, 0.98, and 0.89 for January, April, July, and October
respectively, indicating that the WRF-Chem model reproduced results very well. Simulated monthly
mean AOD values were maximum in July (1.0–1.5) and minimum in January (0.1–0.4) while April
and October were in the range of 0.6–1.0 and 0.3–0.7 respectively. Simulated dust concentrations
were high in April and July. The monthly average aerosol concentration was highest over Bahrain,
Kuwait, Qatar, and the United Arab Emirates and Jeddah, Makkah. The contributions to urban air
pollution were highest over Makkah city with more than 25% from anthropogenic sources.

Keywords: particulate matter; aerosols; Middle East; anthropogenic emission; mega cities

1. Introduction

Atmospheric aerosols are mixture of solid or liquid particles suspended in air. Aerosols
can be found in ample quantity in air and are visible as haze, smoke, and dust. Natural
and anthropogenic activities are responsible for higher concentrations of aerosol [1,2]. An-
thropogenic emissions have increased dramatically over the past century [3]. Aerosols are
key air pollutants that have harmful impacts on health, including asthma, diminished lung
function, cardiorespiratory sickness, and reductions in visibility (Intergovernmental Panel
on Climate Change (IPCC) [4]. According to the World Health Organization (WHO) reports
that globally around 7 million premature deaths were an indicator of air pollution during
2012 [5]. There are a limited number of observational and modeling studies conducted
for the Arabian Peninsula; however, some available studies have reported high aerosol
concentrations over the Arabian Peninsula [6–14] These high concentrations in the region
are mainly due to natural dust and anthropogenic activities such as industrial and road
transportation in the region.

While many monitoring methods are available, however, modeling studies, ground-
based in-situ measurements, satellite measurements, and aircraft campaigns also has
advanced air-quality monitoring and improved geospatial distribution analysis [15,16].
Remote sensing data and reanalysis datasets are widely used to assess the spatio-temporal
distribution of aerosols from local to global scales. Modeling studies of air pollutants
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are extensively used to identify atmospheric distributions, to quantify surface precursor
emissions, and to evaluate local air quality [15–22]. Urban air pollution in ME countries,
especially in the Kingdom of Saudi Arabia (KSA), Qatar and United Arabic Emirates (UAE)
has become a severe problem in megacities. Rapid industrialization, heavy traffic on the
roads, and increasing population are responsible for poor air quality in the megacities in
the Middle East region. Sulfate aerosols have adverse effects and are a major source of low
visibility in the atmosphere and widely analyzed and discussed in different regions, e.g.,
United States, China, Australia, South Asia, and Europe [18–20,23–28].

Sulfates have also impacted the radiation balance of Earth’s systems and contribute
to regional and global climate change [4,29–31]. Photochemical reactions are responsible
for diurnal variability of sulfate aerosols. The transformation of sulfur dioxide to sulfate
can take place through several liquid and gas phase oxidation processes. The liquid-phase
oxidations play a vital role in formation of sulfate within clouds [32–34]. Tropospheric
ozone is also an important air pollutant in the atmosphere. Near the surface, concentrations
of ozone are contingent on both meteorological conditions and emissions precursors.
Meteorological parameters affect ozone concentrations by changing cross-tropopause (from
the stratosphere to troposphere) movement of ozone [35–37], volatile organic compounds
emissions from biogenic activities [38], removal and production by chemical reactions,
and deposition of ozone [39–41]. Change in water vapor concentration and temperature
in the atmosphere can impact the formation and loss of ozone. The important processes
that affect the concentrations of ozone include vertical and horizontal transport, dry and
wet deposition, and chemical formation and loss. Despite domestic air quality issues,
transboundary air pollution transport from Africa also worsens air quality in ME. The
anthropogenic sources that contribute to urban air pollution mainly consist of construction
activities and fossil fuel usage in industries, power plants and the transport sector [42,43].
Natural factors also contribute to regional pollution. such as mineral dust transport being
an important source of regional pollution in Asia [44]. Earlier studies for the ME were
mainly concentrated on dust [45–49]. However, especially in the cities, dust mixing with
anthropogenic aerosols produces the most adverse effect on air quality.

Air pollution levels in the ME region are several times higher than the safe limits
regulated by WHO. Khan Alam et al., [50] reported contrasting variation in aerosol optical
properties during dust episodes in the Middle East and Southwest Asia by comparing
model results and ground measurement and observed significant variation in AOD over
Middle East during dusty and non-dusty days. Robabeh et al. [51] reported aerosol trends
during the dusty season over Iran using MERRA-2 and MODIS data sets and concluded
that the amount of aerosol has decreased in the recent decade in response to significant
anomalies in large-scale atmospheric pressure. A recent study [52] analyzed near-cloud
changes in atmospheric aerosols using satellite observations and global model simulations.
The study used MERRA-2, MODIS and CALIOP datasets and explored an important
aspect of aerosol-cloud interactions and the impact of clouds and cloud-related processes
on nearby aerosols. Rehana et al. [53] used MERRA-2 data sets to study interdecadal
changes in aerosol optical depth over Pakistan during 1980–2018. This study aims to
understand the air pollution levels, seasonal variations of aerosols, optical properties of
aerosols, tropospheric ozone, model validation against satellite measurements, and ground-
based observations, by using a high spatial-resolution modeling approach and the latest
emissions inventories. This study also aims to develop a tool for better evaluating the
effectiveness of short-term and prolonged air quality control strategies.

2. Modelling Setup

The Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem) [54],
developed by the National Oceanic and Atmospheric Administration (NOAA) and National
Center for Atmospheric Research (NCAR), is used to simulate aerosol concentrations over the
ME during the months (allowing a one-week spinup) of January, April, July, and October of the
year 2012 to represent four different seasons. This study uses version 7.1 of the WRF-Chem.
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The CBM-Z mechanism has been used for the gas-phase chemistry scheme [55] and
Fast-J scheme for calculation of photolysis rates [56]. The aerosol module is the Model
for Simulating Aerosol Interactions and Chemistry (MOSAIC) [57] with different size
bins (0.039–0.078, 0.078–0.156, 0.156–0.3125, 0.3125–0.625, 0.625–1.25, 1.25–2.5, 2.5–5.0,
5.0–10 µm). Simulated aerosol species in MOSAIC include SO2−

4 , NO−3 , NH+
4 , OC and BC.

The GOCART dust scheme is used for calculating the dust generation and transport in this
study. The aerosol direct radiative effects (both Shortwave and Longwave spectral bands)
have been calculated using the RRTMG Radiation scheme.

2.1. Observations

Meteorological parameters and aerosol mixing ratios are evaluated against MERRA2
reanalysis datasets. The satellite data can provide sufficient temporal and spatial coverage.
The simulated aerosols can be evaluated by using satellite of aerosol optical depth. In this
study AOD retrieved from Aerosol Robotic Network (AERONET) AOD at 500 nm and
Moderate-resolution Imaging Spectroradiometer (MODIS) Terra satellite at the wavelength
of 550 nm have been used.

2.2. Emissions

In this study, anthropogenic emissions of NOx, non-methane, volatile organic com-
pounds (NMVOCs), CO, SO2, BC, NH3, and OC are taken from the Hemispheric Transport
of Air Pollution (HTAP) emissions for 2010 (http://www.htap.org, accessed on 3 February
2016, HTAP_v2 datasets are defined according to international merit and emissions are
gridded with global proxy data. This gives a set of high spatial-resolution emission grid
maps with global coverage (Janssens-Maenhout et al., 2015). HTAP_v2 dataset is compiled
using different regional gridded inventories, which incorporate the Environment Canada
is for Canada, United States Environmental Protection Agency (US-EPA) for the USA, the
European Monitoring and Evaluation Programme (EMEP), and Netherlands Organisation
for Applied Scientific Research (TNO) is for Europe. The Model Inter Comparison Study
in Asia (MICS-Asia) is for India, China, and other Asian countries. For the rest of the
world (mainly Africa, South America, Russia, and Oceania) Emissions Database for Global
Atmospheric Research (EDGARv4.3) is used. The HTAP datasets provides gridded data of
0.1◦ × 0.1◦ resolution and covers all sectors such as agriculture, power, industries, transport
and residential. Simulations of SO2−

4 , NO−3 , NH+
4 , OC, BC, dust and ozone for 4 months

(i.e., January, April, July, and October) of the year 2012.

2.3. Numerical Simulations

WRF-Chem simulations were made to analyze variations in aerosols in different
seasons for aerosol optical properties, ozone and dust over the ME region:

The control simulations were performed for the SO2−
4 , NO−3 , NH+

4 , OC, BC, and dust
for 4 months (i.e., January, April, July, and October) of the year 2012. The model was spun
up for seven days for simulation of the four months of the year 2012. The meteorological
and boundary conditions data is attained from NCEP FNL. This data has a temporal
resolution of 6 h and horizontal resolution of 1 degree (http://rda.ucar.edu/datasets/ds0
83.2/, accessed on 22 January 2016). For chemical species, boundary conditions and initial
conditions were taken from the Model for Ozone and Related Chemical Tracers-version 4
(MOZART-4) [58].

3. Results and Discussions
3.1. Evaluation of Meteorological Parameters

The atmospheric circulation variability is the vital factor for measuring changes in the
spatial distribution of aerosols and chemical tracers. Clearly, the accuracy of the parameters
used to build weather models is strongly influenced by predictions of aerosol distribution.
Because emission, deposition, and chemical transformation are mainly controlled by atmo-
spheric parameters, simulations of meteorological fields are evaluated against reanalysis

http://www.htap.org
http://rda.ucar.edu/datasets/ds083.2/
http://rda.ucar.edu/datasets/ds083.2/
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data. The monthly mean surface-air temperature was compared with the modeled mean
at a two-meter height, and zonal and meridional wind vector components at 10 m with
MERRA2 reanalysis. To provide the spatial statistical characteristics between the WRF
model and reanalysis, both WRF-Chem outputs and MERRA2 reanalysis were interpolated
into a new lat-long grid with 0.1 × 0.1-degree resolution using bilinear interpolation. Fol-
lowing statistical parameters, BIAS (Equation (1)), mean absolute error (MAE; Equation (2)),
root mean square error (RMSE; Equation (3)), and Pearson correlation coefficient (CORR;
Equation (4)) to evaluate the model outputs. These parameters can be defined as:

BIAS =
1
N

N

∑
i=1

(Fi −Oi) (1)

MAE =
1
N

N

∑
i=1
|Fi −Oi| (2)

RMSE =

√√√√ 1
N

N

∑
i=1

(Fi −Oi)
2 (3)

CORR =
cov(Fi −Oi)

σFiσOi
(4)

where Fi represents the simulated values and Oi—MERRA2 reanalysis gridded observation,
and N is the number of observations.

Simulated monthly mean air temperature at a two-meter height for January, April, July,
and October of 2012 were analyzed with MERRA2 (Figure 1). In January, air temperatures
were higher in eastern and southern South Arabia than in the western regions during these
months, and the maximum temperatures were above 35 ◦C in July.

The comparisons of monthly mean wind vector components of simulated and MERRA2
at a 10-m height are shown in Figure 2. The simulated wind magnitude is generally high
(>10 m/s) in July and at a minimum in January over the Arabian Sea. In comparison with
MERRA2 wind magnitude and wind vectors, the model captures magnitudes and spatial
distributions well.



Remote Sens. 2021, 13, 2112 5 of 17
Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 1. Comparison between simulated (left column) and MERRA2 (right column), monthly 
mean air temperature at 2 m (Celsius) during January, April, July and October of 2012. 
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Figure 1. Comparison between simulated (left column) and MERRA2 (right column), monthly mean air temperature at 2 m
(Celsius) during January, April, July and October of 2012.
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Figure 2. Comparison between simulated and MERRA2, monthly mean Zonal & Meridional wind component (m/s) at
10 m height during January, April, July, and October of 2012.

Statistical comparison of simulation with the MERRA2 reanalysis is presented in
Table 1 and the Taylor diagrams for 2 m, temperature, zonal and meridional components
are shown in Figure 3.
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Table 1. Statistical evaluation of model meteorological parameters.

Months
T2M U10M V10M

BIAS MAE RMSE CORR BIAS MAE RMSE CORR BIAS MAE RMSE CORR

January −0.27 0.89 1.25 0.99 −0.18 0.65 0.91 0.93 −0.05 0.75 0.97 0.92
April −0.33 0.94 1.31 0.97 −0.25 0.66 0.86 0.89 0.09 0.62 0.82 0.93
July −0.25 0.99 1.40 0.96 −0.08 1.02 1.29 0.90 0.17 0.95 1.28 0.98

October −0.48 0.91 1.29 0.97 −0.07 0.73 0.95 0.80 −0.04 0.61 0.83 0.89

Figure 3. Spatial distribution of 2 m temperature bias (Left) and Taylor diagram for 2 m temperature (plus sign), 10 m zonal
wind component (filled circle), and 10 m meridional wind component (x sign). Green dashed lines show RMSE, blue dashed
lines show standard deviation and black solid lines are corresponding to the correlation coefficient. (a) for January; (b) for
April; (c) for July and (d) for October (right).

The model reproduced the magnitudes and spatial distributions of 2 m temperatures
and wind vector components at 10 m. The temperature and zonal components of the wind
have a negative bias in the entire period of simulation. The meridional component of wind
shows the bias of seasonal dependence, the negative in the cold period of a year, and the
positive and warm period. The RMSE of 2 m temperature ranges from 1.25 ◦C in January
to 1.40 ◦C in July. As shown in Table 1, the RMSE of wind vector components takes values
of 0.82 m/s in April to 1.29 m/s in July. The correlation coefficient between model output
and the MERRA2 reanalyzed observation shows values between 0.80 and 0.99. A slight
increase in the correlation coefficient was observed for 2 m temperature in comparison with
other variables. Statistical evaluation of the average values of the model domain shows a
high agreement with observations, the spatial distribution of model error strongly depends
on the complexity of relief. Figure 3 demonstrates the 2 m temperature bias; the maximum
bias was around 3 ◦C over the area with complex terrain and the area near the coastline.
Conversely, areas with flat (smooth) terrain are associated with low bias (around ±1 ◦C).
This statistical analysis allows us to conclude that the experiment is well-tuned for the
region and that the selected set of physical parameterizations describe both the large-scale
and mesoscale atmospheric processes in this region.
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3.2. Evaluation of Aerosol Optical Depth (AOD)

The MODIS Terra AOD at the wavelength of 550 nm was compared with Modelled
AOD for months of January, April, July, and October in 2012. The MODIS monthly product
of level 3 datasets was taken from the NASA Giovanni website (http://disc.sci.gsfc.nasa.
gov/giovanni, accessed on 19 May 2016). Ground-based AOD was retrieved from Aerosol
Robotic NETwork (AERONET) [59]). Figure 4 shows the simulated monthly mean AOD
from the CTRL simulations, and MODIS retrieved AOD for 2012.

Figure 4. Comparisons of simulated monthly mean AOD (first row) with and MODIS Land & Ocean mean AOD (second
row) for January, April, July, and October 2012.

Simulated monthly mean AOD values were maximum in July and at a minimum in
January over the eastern ME region i.e., Kuwait, Dammam KSA, Bahrain, Qatar, United
Arabic Emirates, Oman, and eastern Yemen. Maximum values were in the range of 1.0–1.5
in July and minimum in the range of 0.1–0.4. AOD values were in the range of 0.6–1.0
in April which is higher than January but lower than those the values were in July. In
October, AOD values were in the range of 0.3–0.7 and completed the seasonal cycle. In
general, simulated AOD values were in the western ME region (along the Red Sea), which
includes Sana’a, Jazan, Jeddah, Makkah, Madina, Tabuk, generally lower than those of
AOD in eastern ME, and AOD values show strong seasonal variations. The magnitudes of
AOD agree and simulated seasonal variations were found to be in good agreement with
the MODIS measurements.

Simulated aerosol optical properties in the WRF-Chem model are at the wavelengths
of 300, 400, 600, and 999 nm. Since retrieved AOD from AERONET are at the wave-
lengths of 500 nm, WRF-Chem simulated AOD values are interpolated to 500 nm follow-
ing the Angström power law (http://disc.sci.gsfc.nasa.gov/data-holdings/PIP/aerosol_
angstrom_exponent.shtml, accessed on 21 May 2016). Simulated and AERONET AOD
values at 500 nm over Kuwait University (29◦N, 47◦E), Karachi (24.8◦N, 67◦E) for January,
and Mezaira (23.1◦N, 53.7◦E), KAUST (22.18◦N, 39◦E) and Karachi for April while Kuwait,
Solar Village (24.5◦N, 46.23◦E) and KAUST for July and Masdar (24.2◦N, 54.3◦E), Solar
Village and KAUST for October are shown in Figure 5.

http://disc.sci.gsfc.nasa.gov/giovanni
http://disc.sci.gsfc.nasa.gov/giovanni
http://disc.sci.gsfc.nasa.gov/data-holdings/PIP/aerosol_angstrom_exponent.shtml
http://disc.sci.gsfc.nasa.gov/data-holdings/PIP/aerosol_angstrom_exponent.shtml
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Figure 5. Comparison of daily simulated AOD and daily AERONET retrieved AOD at 500 nm during January, April, July,
and October 2012 over Kuwait, Karachi, Mezaira, KAUST, Solar Village, and Masdar stations.

Overall, in January, simulated and AERONET values for Kuwait University and
Karachi were in the range of 0.08–0.71, and 0.05–0.56, respectively. Simulated and AERONET
values for Mezaira, KAUST, and Karachi in April, were in the range of 0.3–0.96, 0.13–1.0,
and 0.33–0.90, respectively. During July, simulated and AERONET values for Solar Village,
Kuwait University, and KAUST were in the range of 0.3–1.0, 0.37–1.02, and 0.20–1.2 respec-
tively. In October, simulated and AERONET values for Solar Village, KAUST, and Masdar
Institute were in the range of 0.11–0.50, 0.09–0.58, and 0.14–0.72, respectively. Overall,
modeled AOD values were found within range of AERONET retrievals in January, July,
and October and slightly lower in April. This underestimation may be associated with
large uncertainties reported in modeled meteorology, parametrization, and anthropogenic
emissions [60–62]. The results of this study are in agreement with previously reported
studies in the region that have also shown an underestimation of the dust events [62–65].
A recent study by Parajauli et al. [66] reported that the WRF-Chem model underestimated
the AOD at KAUST by about 35% during the dust event compared to AERONET AOD.
Another study over North African region also reported that WRF-Chem model underesti-
mate the AOD peaks in the middle of June in Banizoumbou as compared to the AERONET
station [62–64]. Ukhov et al. [63] reported that the WRF-Chem model and assimilation
products struggle to fit the retrieved AERONET aerosol volume size distribution, failing to
correctly reproduce the fine mode in the sub-micron range. The WRF-Chem AOD have
low bias values as compared to AERONET, especially during the severe dust events and
exhibits the relatively high positive BIAS. Shahid et al. [18] reported that the WRF-Chem
AOD values underestimate as compared to AERONET AOD values during dense haze
events over North-eastern Pakistan using the WRF-Chem model and remote sensing. Ku-
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mar et al. [65] reported that the WRF-Chem model reproduced the spatial and temporal
distributions of dust plumes and aerosol optical properties but generally underestimated
the AOD.

4. Seasonal Aerosol Variations

The Figure 6 represents the monthly mean concentrations of aerosol distributions
simulated for January, April, July, and October over the greater region of ME. Over the
northeastern ME region, SO2−

4 aerosol shows maximum concentrations of 10–20 µg m−3

in July and October, especially higher over Kuwait, Bahrain, Qatar, UAE, and over south-
western ME region, SO2−

4 concentrations of 3–10 µg m−3 prevail during January, April,
July, and October, and specifically higher over the western (Jeddah-Makkah) Region. The
high sulfate concentration during summertime is associated with photo-chemical reactions
almost all over the ME region that led to conversion of SO2 to SO2−

4 [67–70]. Simulated
concentrations NO−3 are generally lower than those SO2−

4 in the northeastern ME region.
NO−3 maximum concentrations of 5–10 µg m−3 were simulated in January, over Dubai
UAE and Doha Qatar. NO−3 concentrations of 1–4 µg m−3 were simulated mostly along
the Red Sea and Arabian Gulf during all months.

Figure 6. Simulated monthly mean surface-layer concentrations (µg m−3) of SO2−
4 , NO−3 , NH+

4 , BC, OC and dust for
January, April, July and October of the year 2012.
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Simulated AOD is composite of all variables including sulfate, nitrate, ammonium,
black carbon, organic carbon, and dust. As shown in Figure 6, simulated dust, sulfate,
and nitrate aerosols have high concentrations in July leading to high simulated AOD
values during summer over northeastern part of Middle East. Overall, the model predicts
AOD within the range of MODIS retrievals during all seasons except in July. During
July, modeled AOD is within range of MODIS AOD over south western region (southern
Red Sea) but is overestimated in northeastern part of middle east (United Arabic Emi-
rates). Such inaccuracy in AOD might be due to inaccurate wind threshold velocity in the
WRF-Chem model which has possibly influenced the simulation of dust emission, and
transport [71–74].

Our results agree with findings from previous regional studies that have also shown
an underestimation and overestimation of AOD [75–77]. Colarco et al. [75] reported the
notable differences between the model which underestimates the aerosol loading in the
western United States and in the biomass-burning-dominated regions in South America
and southern Africa, where the model overestimates the aerosol loading in the northern
Atlantic and northern Pacific, and the model overestimates the aerosol loading.

Lower concentrations of NO−3 are due to high temperatures during all seasons,
which are not favorable for NO−3 formation. Simulated ammonium concentrations are
0.5−3 µg m−3 during January, April, July, and October. Simulated BC concentrations are
0.5 µg m−3 during all seasons, which might be due to no or low emissions. Simulated OC
concentrations are 0.5−2 µg m−3 in April and July which is attributed to transport from
Sudan and Ethiopia. Simulated dust shows maximum concentrations of 1000−1500 µg
m−3, especially higher in Oman, UAE, Qatar, Kuwait, south-eastern ME, and 300−800 µg
m−3 in the western ME region, along the Red Sea in April and July. In January and October,
simulated dust concentrations were 300−900 µg m−3 over Qatar, Kuwait, and Oman and
100−300 µg m−3 over the western ME region. High aerosol concentration was observed
over the eastern and western ME region in January, while aerosol levels in April increased
as compared to January over the northeastern and western ME region. In July and October,
pollutants start to build up over the central region along with the eastern and western
ME region. Simulated dust concentrations indicate good seasonal variations from January
to April and maximum in July to its seasonal peak. In October, aerosol concentrations
decrease and reach a minimum in January.

5. Seasonal Ozone Variations

Figure 7 shows the simulated seasonal monthly mean surface-layer concentrations
of ozone from the CTRL simulation during January, April, July, and October 2012. Over
the northeastern ME region, monthly mean ozone concentrations are the lowest in January
and October with values of 30 to 45 ppbv due to weak photochemistry. The maximum
ozone concentrations of 35 to 55 ppbv are simulated in April and July, prevailing over the
whole ME region, especially higher over the Red Sea and Arabian Gulf. Simulated ozone
concentrations show strong seasonal variations; compared to the concentrations in January,
ozone levels in April show an increase and reach a maximum in July at their seasonal peak,
and in October, ozone concentrations decrease again, with concentrations as low as those
in January.

Ozone concentrations are higher over the Red Sea, Arabian Gulf, and the Mediter-
ranean Sea during all months but reach a maximum in July, which is attributed to ship
emissions and low ozone uptake by sea surface. Ship emissions mostly affect marine
and coastal areas due to the marine boundary layer height, but the ship emissions could
contribute to the ozone budget above the boundary layer, where they may have an impact
on the regional radiation budget.
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Figure 7. Simulated surface-layer concentrations (ppbv) of Ozone during January, April, July and October of 2012.

6. Urban Air Pollution

In the ME region, dust is a major contribution to air pollution, but urban air pollution
has become a severe problem in megacities due to anthropogenic emissions. Therefore, we
quantify the aerosol-to-dust ratio to quantify the anthropogenic aerosol contribution in
comparison with dust. The aerosol-to-dust ratio is quantified using Equation (5):

((SO 2−
4 + NO−3 + NH+

4 )/Dust)× 100% (5)

Figure 8 shows the simulated dust concentrations time series and aerosols (sum of
sulfate, nitrate, and ammonium) to dust ratio (%) over Makkah city during January, April,
July and October of 2012.

In January, aerosols’ contributions in Makkah accounted for about 5–10% and 10–20%
during April. Aerosols have the largest contributions in Makkah during July and October
accounting for 10–25%. The largest aerosol contributions in Makkah are due to anthro-
pogenic emissions from the transport sector, millions of people visited the Makkah city
for religious activities, the industrial emissions play a secondary role within the Makkah
region, facilitate the largest formation of sulfate.
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Figure 8. Simulated daily average dust concentrations and daily average ratio of aerosols (sum of sulfate, nitrate and
ammonium) to dust ratio (%), over Makkah during January, April, July, and October of 2012.

7. Summary and Conclusions

This article presents spatial distribution and temporal variation of aerosol concen-
trations over the ME region using the WRF-Chem Model with a spatial resolution of
10 km × 10 km. The pollutant concentrations were simulated for the year 2012 by using
anthropogenic emissions from the HTAP emissions inventory. These pollutants include
BC, OC, SO4, NH4, NO3, ozone, and dust. The seasonal variations of aerosols and ozone
were analyzed to study the impact of their cross-boundary transport and quantified the
aerosol-to-dust ratio over Makkah City. We used six AERONET stations and MODIS to
study observed AOD. The main findings of this research are summarized as follows.

• The simulated AOD obtained from the high-resolution WRF-Chem model is reason-
ably consistent over the study sites across observational datasets, including AERONET
and MODIS. The simulated seasonal variations and magnitudes of AOD is also con-
sistent with the MODIS measurements.

• The model successfully reproduced the general features of the Middle East meteorol-
ogy such as the seasonal changes in wind patterns along with the seasonal cycle of
temperature. The errors in model-simulated meteorological parameters are within the
proposed benchmark values.

• Meteorological parameters are predicted well by the model, and the correlation coeffi-
cient is 0.92, 0.93, 0.98 and 0.89 for January, April, July, and October respectively. The
meridional component of wind shows the bias of seasonal dependency, negative in
winter, and positive in summer.

• The RMSE of 2 m temperature ranges from 1.25 ◦C in January to 1.40 ◦C in July. RMSE
of wind vector components takes values of 0.82 m/s in April to 1.29 m/s in July.
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• Sulfate aerosol shows maximum concentrations over Kuwait, Bahrain, Qatar, UAE
during July, and October. Simulated concentrations nitrate is generally lower than
those sulfate in the northeastern ME region.

• The analysis shows that the aerosol concentrations are highest over urban regions,
and monthly average sulfate, nitrate, ammonium, and dust aerosols are highest over
Bahrain, Kuwait, Qatar, and the United Arab Emirates and Jeddah, Makkah Region in
the Kingdom of Saudi Arabia.

• The aerosol-to-dust ratio over Makkah city was quantified for January, April, July, and
October 2012. Aerosol’s contributions in Makkah accounting for about 5–10% and
10–20% during January and April, respectively. Aerosols have the largest contributions
in Makkah during July and October accounting for about 10–25%.

We believe that with improvement in WRF-Chem model sensitivities, physical pa-
rameterizations and development of coupled aerosol modules can further increase model
capacity to capture extreme dust and pollution events.
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