Fractional Vegetation Cover Estimation Algorithm for FY-3B Reflectance Data Based on Random Forest Regression Method
Abstract
:1. Introduction
2. Data and Preprocessing
2.1. FY-3B Reflectance Data
2.2. Reference FVC Data from EOLAB
3. Methods Development
3.1. Training Samples Generation and Refinement
3.2. FVC Estimation Algorithm Based on Random Forest Regression
3.3. Postprocessing Operations and Validation for the Estimated FVC Data
4. Results
4.1. Samples of Refinement and Theoretical Validation
4.2. Spatial–Temporal Validation
4.3. Accuracy Validation over Reference FVC Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sens. Environ. 2013, 137, 299–309. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F.; Myneni, R.B.; Pragnère, A.; Knyazikhin, Y. Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data. Agronomie 2000, 20, 3–22. [Google Scholar] [CrossRef]
- Tu, Y.; Jia, K.; Wei, X.; Yao, Y.; Xia, M.; Zhang, X.; Jiang, B. A Time-Efficient Fractional Vegetation Cover Estimation Method Using the Dynamic Vegetation Growth Information from Time Series GLASS FVC Product. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1672–1676. [Google Scholar] [CrossRef]
- Zeng, X.; Dickinson, R.E.; Walker, A.; Shaikh, M.; DeFries, R.S.; Qi, J. Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. J. Appl. Meteorol. 2000, 39, 826–839. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Roujean, J.; Lacaze, R. Global mapping of vegetation parameters from POLDER multiangular measurements for studies of surface-atmosphere interactions: A pragmatic method and its validation. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Jia, K.; Yang, L.; Liang, S.; Xiao, Z.; Zhao, X.; Yao, Y.; Zhang, X.; Jiang, B.; Liu, D. Long-term Global Land Surface Satellite (GLASS) fractional vegetation cover product derived from MODIS and AVHRR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 508–518. [Google Scholar] [CrossRef]
- Liu, D.; Jia, K.; Wei, X.; Xia, M.; Zhang, X.; Yao, Y.; Zhang, X.; Wang, B. Spatiotemporal Comparison and Validation of Three Global-Scale Fractional Vegetation Cover Products. Remote Sens. 2019, 11, 2524. [Google Scholar] [CrossRef] [Green Version]
- García-Haro, F.; Camacho, F.; Verger, A.; Meliá, J. Current status and potential applications of the LSA SAF suite of vegetation products. In Proceedings of the 29th EARSeL Symposium, Chania, Greece, 15–18 June 2009; pp. 15–18. [Google Scholar]
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Niño, F.; Weiss, M.; Samain, O. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm. Remote Sens. Environ. 2007, 110, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Jia, K.; Liang, S.; Zhang, Y. Fractional Vegetation Cover Estimation Method Through Dynamic Bayesian Network Combining Radiative Transfer Model and Crop Growth Model. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7442–7450. [Google Scholar] [CrossRef]
- Mu, X.; Huang, S.; Ren, H.; Yan, G.; Song, W.; Ruan, G. Validating GEOV1 fractional vegetation cover derived from coarse-resolution remote sensing images over croplands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 8, 439–446. [Google Scholar] [CrossRef]
- Baret, F.; Pavageau, K.; Béal, D.; Weiss, M.; Berthelot, B.; Regner, P. Algorithm Theoretical Basis Document for MERIS Top of Atmosphere Land Products (TOA_VEG); INRA-CSE: Avignon, France, 2006. [Google Scholar]
- Verger, A.; Baret, F.; Weiss, M. GEOV2/VGT: Near real time estimation of global biophysical variables from VEGETATION-P data. In Proceedings of the MultiTemp 7th International Workshop on the Analysis of Multi-temporal Remote Sensing Images, Banff, AB, Canada, 25–27 June 2013; pp. 1–4. [Google Scholar]
- Baret, F.; Weiss, M.; Verger, A.; Smets, B. ATBD for LAI, FAPAR and FCOVER From PROBA-V Products at 300M Resolution (GEOV3). IMAGINES_RP2. 1_ATBD-LAI300M. 2016. Available online: http://www.fp7-imagines.eu/media/Documents/ImagineS_RP2.1_ATBD-LAI300m_I1.73.pdf (accessed on 14 May 2021).
- Jia, K.; Liang, S.; Liu, S.; Li, Y.; Xiao, Z.; Yao, Y.; Jiang, B.; Zhao, X.; Wang, X.; Xu, S. Global land surface fractional vegetation cover estimation using general regression neural networks from MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4787–4796. [Google Scholar] [CrossRef]
- Yang, L.; Jia, K.; Liang, S.; Liu, J.; Wang, X. Comparison of four machine learning methods for generating the GLASS fractional vegetation cover product from MODIS data. Remote Sens. 2016, 8, 682. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Sun, J.; Barnes, W.; Salomonson, V.; Esposito, J.; Erives, H.; Guenther, B. Multiyear on-orbit calibration and performance of Terra MODIS reflective solar bands. IEEE Trans. Geosci. Remote Sens. 2007, 45, 879–889. [Google Scholar] [CrossRef]
- Zhang, W. Status and development of FY series of meteorological satellites. Aerosp. Shanghai 2001, 2, 8–13. [Google Scholar]
- Yang, J. Development and applications of China’s Fengyun (FY) meteorological satellite. Spacecr. Eng. 2008, 17, 23–28. [Google Scholar]
- Dong, C.; Yang, J.; Zhang, W.; Yang, Z.; Lu, N.; Shi, J.; Zhang, P.; Liu, Y.; Cai, B. An overview of a new Chinese weather satellite FY-3A. Bull. Am. Meteorol. Soc. 2009, 90, 1531–1544. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, X.; Wang, S.; Zhang, L. Advances in spaceborne hyperspectral remote sensing in China. Geo. Spat. Inf. Sci. 2021, 24, 1–26. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, P.; Lu, N.; Yang, Z.; Shi, J.; Dong, C. Improvements on global meteorological observations from the current Fengyun 3 satellites and beyond. Int. J. Digit. Earth 2012, 5, 251–265. [Google Scholar] [CrossRef]
- Yang, J.; Dong, C.-h.; Lu, N.-m.; Yang, Z.; Shi, J.; Zhang, P.; Liu, Y.; Cai, B. FY-3A: The new generation polar-orbiting meteorological satellite of China. Acta Meteorol. Sin. 2009, 67, 501–509. [Google Scholar]
- García-Haro, F.J.; Camacho-de Coca, F.; Miralles, J.M. Inter-comparison of SEVIRI/MSG and MERIS/ENVISAT biophysical products over Europe and Africa. In Proceedings of Proceedings of the 2nd MERIS/(A) ATSR User Workshop, Frascati, Italy, 22–26 September 200; pp. 22–26.
- Wang, Z.; Deng, R.; Ma, P.; Zhang, Y.; Liang, Y.; Chen, H.; Zhao, S.; Chen, L. 250-m Aerosol Retrieval from FY-3 Satellite in Guangzhou. Remote Sens. 2021, 13, 920. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, N.; Shi, J.; Zhang, P.; Dong, C.; Yang, J. Overview of FY-3 Payload and Ground Application System. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4846–4853. [Google Scholar] [CrossRef]
- Jiapaer, G.; Chen, X.; Bao, A. A comparison of methods for estimating fractional vegetation cover in arid regions. Agric. For. Meteorol. 2011, 151, 1698–1710. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Lyu, D.; Liu, B.; Zhang, X.; Yang, X.; He, L.; He, J.; Guo, J.; Wang, J.; Cao, Q. An Experimental Study on Field Spectral Measurements to Determine Appropriate Daily Time for Distinguishing Fractional Vegetation Cover. Remote Sens. 2020, 12, 2942. [Google Scholar] [CrossRef]
- Liu, D.; Yang, L.; Jia, K.; Liang, S.; Xiao, Z.; Wei, X.; Yao, Y.; Xia, M.; Li, Y. Global fractional vegetation cover estimation algorithm for VIIRS reflectance data based on machine learning methods. Remote Sens. 2018, 10, 1648. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Hu, X.; Xu, N.; Liu, J.; Zhang, L.; Rong, Z. Postlaunch calibration of FengYun-3B MERSI reflective solar bands. IEEE Trans. Geosci. Remote Sens. 2012, 51, 1383–1392. [Google Scholar]
- Sun, L.; Hu, X.; Chen, L. Long-term calibration monitoring of medium resolution spectral imager (MERSI) solar bands onboard FY-3. In Proceedings of the Earth Observing Missions and Sensors: Development, Implementation, and Characterization II, Kyoto, Japan, 29 October–1 November 2012; p. 852808. [Google Scholar]
- Zhang, X.; Zhu, L.; Sun, H.; Chu, S. Validation and inter-comparison of the FY-3B/MERSI LAI product with GLOBMAP and MYD15A2H. Int. J. Remote Sens. 2020, 41, 9256–9282. [Google Scholar] [CrossRef]
- Li, W.; Baret, F.; Weiss, M.; Buis, S.; Lacaze, R.; Demarez, V.; Dejoux, J.-f.; Battude, M.; Camacho, F. Combining hectometric and decametric satellite observations to provide near real time decametric FAPAR product. Remote Sens. Environ. 2017, 200, 250–262. [Google Scholar] [CrossRef]
- Mu, X.; Zhao, T.; Ruan, G.; Song, J.; Wang, J.; Yan, G.; Mcvicar, T.R.; Yan, K.; Gao, Z.; Liu, Y. High Spatial Resolution and High Temporal Frequency (30-m/15-day) Fractional Vegetation Cover Estimation over China Using Multiple Remote Sensing Datasets: Method Development and Validation. J. Meteorol. Res. 2021, 35, 128–147. [Google Scholar] [CrossRef]
- Morisette, J.T.; Baret, F.; Privette, J.L.; Myneni, R.B.; Nickeson, J.E.; Garrigues, S.; Shabanov, N.V.; Weiss, M.; Fernandes, R.A.; Leblanc, S.G. Validation of global moderate-resolution LAI products: A framework proposed within the CEOS land product validation subgroup. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1804–1817. [Google Scholar] [CrossRef] [Green Version]
- Camacho, F.; Lacaze, R.; Latorre, C.; Baret, F.; De la Cruz, F.; Demarez, V.; Di Bella, C.; García-Haro, J.; González-Dugo, M.P.; Kussul, N.; et al. Collection of Ground Biophysical Measurements in support of Copernicus Global Land Product Validation: The ImagineS database. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 12–17 April 2015; p. 2209. [Google Scholar]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+ SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Allen, W.A.; Gausman, H.W.; Richardson, A.J.; Thomas, J.R. Interaction of isotropic light with a compact plant leaf. Josa 1969, 59, 1376–1379. [Google Scholar] [CrossRef]
- Yang, L.; Deng, S.; Zhang, Z. New spectral model for estimating leaf area index based on gene expression programming. Comput. Electr. Eng. 2020, 83, 106604. [Google Scholar] [CrossRef]
- Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Nilson, T. A theoretical analysis of the frequency of gaps in plant stands. Agric. Meteorol. 1971, 8, 25–38. [Google Scholar] [CrossRef]
- Yang, L.; Jia, K.; Liang, S.; Wei, X.; Yao, Y.; Zhang, X. A robust algorithm for estimating surface fractional vegetation cover from landsat data. Remote Sens. 2017, 9, 857. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, K.D.; Palm, C.A.; Gachengo, C.N.; Vanlauwe, B. Rapid characterization of organic resource quality for soil and livestock management in tropical agroecosystems using near-infrared spectroscopy. Agron. J. 2003, 95, 1314–1322. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Liao, Z.; Quan, X.; Li, X.; Hu, J. A global Grassland Drought Index (GDI) product: Algorithm and validation. Remote Sens. 2015, 7, 12704–12736. [Google Scholar] [CrossRef] [Green Version]
- Dennison, P.E.; Halligan, K.Q.; Roberts, D.A. A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper. Remote Sens. Environ. 2004, 93, 359–367. [Google Scholar] [CrossRef]
- Jia, K.; Li, Q.-Z.; Tian, Y.-C.; Wu, B.-F.; Zhang, F.-F.; Meng, J.-H. Accuracy improvement of spectral classification of crop using microwave backscatter data. Spectrosc. Spectr. Anal. 2011, 31, 483–487. [Google Scholar]
- Jia, K.; Liang, S.; Gu, X.; Baret, F.; Wei, X.; Wang, X.; Yao, Y.; Yang, L.; Li, Y. Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data. Remote Sens. Environ. 2016, 177, 184–191. [Google Scholar] [CrossRef]
- Tu, Y.; Jia, K.; Liang, S.; Wei, X.; Yao, Y.; Zhang, X. Fractional vegetation cover estimation in heterogeneous areas by combining a radiative transfer model and a dynamic vegetation model. Int. J. Digit. Earth 2020, 13, 487–503. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Verrelst, J.; Calvo, L.; Suárez-Seoane, S. Hybrid inversion of radiative transfer models based on high spatial resolution satellite reflectance data improves fractional vegetation cover retrieval in heterogeneous ecological systems after fire. Remote Sens. Environ. 2021, 255, 112304. [Google Scholar] [CrossRef]
- Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Izquierdo-Verdiguier, E.; Zurita-Milla, R. An evaluation of Guided Regularized Random Forest for classification and regression tasks in remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102051. [Google Scholar] [CrossRef]
- Zhang, X.; He, G.; Zhang, Z.; Peng, Y.; Long, T. Spectral-spatial multi-feature classification of remote sensing big data based on a random forest classifier for land cover mapping. Clust. Comput. 2017, 20, 2311–2321. [Google Scholar] [CrossRef]
- Jin, X.-l.; Diao, W.-y.; Xiao, C.-h.; Wang, F.-y.; Chen, B.; Wang, K.-r.; Li, S.-k. Estimation of wheat agronomic parameters using new spectral indices. PLoS ONE 2013, 8, e72736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Zhu, X.; Dong, Z.; Guo, W. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. Crop J. 2016, 4, 212–219. [Google Scholar]
- Wang, B.; Jia, K.; Liang, S.; Xie, X.; Wei, X.; Zhao, X.; Yao, Y.; Zhang, X. Assessment of Sentinel-2 MSI spectral band reflectances for estimating fractional vegetation cover. Remote Sens. 2018, 10, 1927. [Google Scholar] [CrossRef] [Green Version]
- Ben Ishak, A. Variable selection using support vector regression and random forests: A comparative study. Intell. Data Anal. 2016, 20, 83–104. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, C.; Pan, X.; Li, X.; Zhu, X. Downscaling land surface temperature in an arid area by using multiple remote sensing indices with random forest regression. Remote Sens. 2017, 9, 789. [Google Scholar] [CrossRef] [Green Version]
- Nieto, P.G.; Garcia-Gonzalo, E.; Paredes-Sánchez, J.P.; Sánchez, A.B.; Fernández, M.M. Predictive modelling of the higher heating value in biomass torrefaction for the energy treatment process using machine-learning techniques. Neural Comput. Appl. 2019, 31, 8823–8836. [Google Scholar] [CrossRef]
- Yuan, Q.; Li, S.; Yue, L.; Li, T.; Shen, H.; Zhang, L. Monitoring the Variation of Vegetation Water Content with Machine Learning Methods: Point–Surface Fusion of MODIS Products and GNSS-IR Observations. Remote Sens. 2019, 11, 1440. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Jia, K.; Wei, X.; Xia, M.; Yao, Y.; Zhang, X.; Liu, D.; Tao, G. Generating spatiotemporally consistent fractional vegetation cover at different scales using spatiotemporal fusion and multiresolution tree methods. ISPRS J. Photogramm. Remote Sens. 2020, 167, 214–229. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Kim, S.-R.; Prasad, A.K.; El-Askary, H.; Lee, W.-K.; Kwak, D.-A.; Lee, S.-H.; Kafatos, M. Application of the Savitzky-Golay filter to land cover classification using temporal MODIS vegetation indices. Photogramm. Eng. Remote Sens. 2014, 80, 675–685. [Google Scholar] [CrossRef]
- Fang, H.; Liang, S.; Hoogenboom, G. Integration of MODIS LAI and vegetation index products with the CSM–CERES–Maize model for corn yield estimation. Int. J. Remote Sens. 2011, 32, 1039–1065. [Google Scholar] [CrossRef]
- Sanchez, A. Scatplot. Available online: https://www.mathworks.com/matlabcentral/fileexchange/8577-scatplot (accessed on 14 May 2021).
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Tuia, D.; Verrelst, J.; Alonso, L.; Pérez-Cruz, F.; Camps-Valls, G. Multioutput support vector regression for remote sensing biophysical parameter estimation. IEEE Geosci. Remote Sens. Lett. 2011, 8, 804–808. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Gutiérrez, J.M.; Valero, F.; Jerez, S.; Montávez, J.P. Impacts of green vegetation fraction derivation methods on regional climate simulations. Atmosphere 2019, 10, 281. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Muñoz, J.; Sobrino, J.; Guanter, L.; Moreno, J.; Plaza, A.; Martínez, P. Fractional vegetation cover estimation from PROBA/CHRIS data: Methods, analysis of angular effects and application to the land surface emissivity retrieval. In Proceedings of the 3rd Workshop CHRIS/Proba Workshop, Frascati, Italy, 21–23 March 2005. [Google Scholar]
Products | Sensor | Method | Spatial Resolution | Temporal Resolution | Spatial Coverage | Temporal Coverage |
---|---|---|---|---|---|---|
CNES/POLDER | POLDER | Empirical model | 6 km | 10 days | Global | 1996–1997, 2003 |
LSA SAF | SEVIRI | The pixel unmixing model | 3 km | Daily | Europe, Africa, South American | 2005–present |
CYCLOPES | SPOT VGT | Machine learning method | 1/112° | 10 days | Global | 1998–2007 |
ESA/MERIS | MERIS | Machine learning method | 300 m | Month/10 days | Global | 2002–2012 |
GEOV1 FVC | SPOT-VEGETATION | Machine learning method | 1/112° | 10 days | Global | 1999–present |
GEOV2 FVC | SPOT-VEGETATION, PROBA-V | Machine learning method | 1/112° | 10 days | Global | 1999–present |
GEOV3 FVC | PROBA-V | Machine learning method | 300 m | 10 days | Global | 2014–present |
GLASS FVC | MODIS | Machine learning method | 500m | 8 days | Global | 2000-present |
Band Number | Central Wavelengths (μm) | Band Widths (μm) | Instantaneous Field of View (IFOV/m) |
---|---|---|---|
1 | 0.470 | 0.05 | 250 |
2 | 0.550 | 0.05 | 250 |
3 | 0.650 | 0.05 | 250 |
4 | 0.865 | 0.05 | 250 |
5 | 11.250 | 2.50 | 250 |
6 | 1.640 | 0.05 | 1000 |
7 | 2.130 | 0.05 | 1000 |
8 | 0.412 | 0.02 | 1000 |
9 | 0.443 | 0.02 | 1000 |
10 | 0.490 | 0.02 | 1000 |
11 | 0.520 | 0.02 | 1000 |
12 | 0.565 | 0.02 | 1000 |
13 | 0.650 | 0.02 | 1000 |
14 | 0.685 | 0.02 | 1000 |
15 | 0.765 | 0.02 | 1000 |
16 | 0.865 | 0.02 | 1000 |
17 | 0.905 | 0.02 | 1000 |
18 | 0.940 | 0.02 | 1000 |
19 | 0.980 | 0.02 | 1000 |
20 | 1.030 | 0.02 | 1000 |
Number | Name | Latitude (°) | Longitude (°) | Year | Day of Year | FVC |
---|---|---|---|---|---|---|
1 | SanFernando | −34.7228 | −71.0019 | 2015 | 19 | 0.44 |
2 | Barrax-LasTiesas | 39.05437 | −2.10068 | 2015 | 145 | 0.268 |
3 | Pshenichne | 50.07657 | 30.23224 | 2015 | 174 | 0.46 |
4 | Pshenichne | 50.07657 | 30.23224 | 2015 | 188 | 0.619 |
5 | Pshenichne | 50.07657 | 30.23224 | 2015 | 204 | 0.528 |
6 | AHSPECT-Meteopol | 43.5728 | 1.3745 | 2015 | 173 | 0.26 |
7 | AHSPECT-Peyrousse | 43.6662 | 0.2195 | 2015 | 174 | 0.38 |
8 | AHSPECT-Urgons | 43.6397 | −0.4340 | 2015 | 174 | 0.55 |
9 | AHSPECT-Creón d’Armagnac | 43.9936 | −0.0469 | 2015 | 175 | 0.59 |
10 | AHSPECT-Condom | 43.9743 | 0.3360 | 2015 | 176 | 0.331 |
11 | AHSPECT-Savenès | 43.8242 | 1.1749 | 2015 | 176 | 0.286 |
12 | Collelongo | 41.85 | 13.59 | 2015 | 189 | 0.84 |
13 | Collelongo | 41.85 | 13.59 | 2015 | 266 | 0.86 |
Model | Parameters | Range or Fixed Value | |
---|---|---|---|
PROSPECT | Leaf structure parameter (N) | 1~2.5 | (1.5, 1) |
Chlorophyll content (Cab, μg/cm 2) | 30~100 | (50, 30) | |
Brown pigment (Cbrown) | 0~1.5 | (0.1, 0.2) | |
Dry matter content (Cm, g/cm 2) | 0.002~0.02 | (0.0075, 0.0075) | |
Relative water content | 0.65~0.90 | (0.8, 0.05) | |
SAIL | Fractional vegetation coverage (FVC) | 0~0.95 | (0.5, 0.4) |
Average leaf angle (ALA,°) | 30~70 | (50, 15) | |
Hot spot parameter (hspot) | 0.001~1 | (0.1, 0.3) | |
Sun zenith angle (SAZ, ◦) | 30 | - | |
Observer zenith angle (OZA, ◦) | 0 | - | |
Relative azimuth angle(RAA, ◦) | 0 | - | |
Soil reflectance | id:1~20 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Jia, K.; Jiang, H.; Xia, M.; Tao, G.; Wang, B.; Chen, Z.; Yuan, B.; Li, J. Fractional Vegetation Cover Estimation Algorithm for FY-3B Reflectance Data Based on Random Forest Regression Method. Remote Sens. 2021, 13, 2165. https://doi.org/10.3390/rs13112165
Liu D, Jia K, Jiang H, Xia M, Tao G, Wang B, Chen Z, Yuan B, Li J. Fractional Vegetation Cover Estimation Algorithm for FY-3B Reflectance Data Based on Random Forest Regression Method. Remote Sensing. 2021; 13(11):2165. https://doi.org/10.3390/rs13112165
Chicago/Turabian StyleLiu, Duanyang, Kun Jia, Haiying Jiang, Mu Xia, Guofeng Tao, Bing Wang, Zhulin Chen, Bo Yuan, and Jie Li. 2021. "Fractional Vegetation Cover Estimation Algorithm for FY-3B Reflectance Data Based on Random Forest Regression Method" Remote Sensing 13, no. 11: 2165. https://doi.org/10.3390/rs13112165
APA StyleLiu, D., Jia, K., Jiang, H., Xia, M., Tao, G., Wang, B., Chen, Z., Yuan, B., & Li, J. (2021). Fractional Vegetation Cover Estimation Algorithm for FY-3B Reflectance Data Based on Random Forest Regression Method. Remote Sensing, 13(11), 2165. https://doi.org/10.3390/rs13112165