Inter-Annual Variability in the Antarctic Ice Sheets Using Geodetic Observations and a Climate Model
Abstract
:1. Introduction
2. Data
2.1. Altimetry Data
2.2. GRACE
2.3. Climate Models
2.4. Climate Indices
3. Estimation of Height Changes
3.1. From Space-Borne Observations
3.2. From Modeling
3.3. Inter-Comparison between Height Change Estimates
4. Extraction of Inter-Annual Signals
4.1. Empirical Mode Decomposition
4.2. Characterizing Inter-Annual Changes
4.3. Principal Component Analysis
5. Discussion
5.1. Influence of El Niño Southern Oscillation
5.2. Influence of Southern Annular Mode
5.3. Influence of Antarctic Circumpolar Wave
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIS | Antarctic Ice Sheet |
GRACE | Gravity Recovery And Climate Experiment |
SEH | Snow Equivalent Height |
FCM | Firn Compaction Model |
CL | Coats Land |
DML | Dronning Maud Land |
WL | Wilkes Land |
PIG | Pine Island Glacier |
EMD | Empirical Mode Decomposition |
RMS | Root Mean Square |
PCA | Principal Component Analysis |
ENSO | El Niño Southern Oscillation |
SOI | Southern Oscillation Index |
ONI | Oceanic Niño Index |
SAM | Southern Annular Mode |
ASL | Amundsen Sea Low |
ACW | Antarctic Circumpolar Wave |
References
- Fretwell, P.; Pritchard, H.D.; Vaughan, D.G.; Bamber, J.L.; Barrand, N.E.; Bell, R.; Bianchi, C.; Bingham, R.G.; Blankenship, D.D.; Casassa, G.; et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 2013, 7, 375–393. [Google Scholar] [CrossRef] [Green Version]
- Steig, E.J.; Schneider, D.P.; Rutherford, S.D.; Mann, M.E.; Comiso, J.C.; Shindell, D.T. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 2009, 457, 459–462. [Google Scholar] [CrossRef] [PubMed]
- DeConto, R.M.; Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 2016, 531, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5). 2013. Available online: https://boris.unibe.ch/71452/ (accessed on 6 May 2021). [CrossRef] [Green Version]
- Shepherd, A.; Ivins, E.R.; Geruo, A.; Barletta, V.R.; Bentley, M.J.; Bettadpur, S.; Briggs, K.H.; Bromwich, D.H.; Forsberg, R.; Galin, N.; et al. A reconciled estimate of ice-sheet mass balance. Science 2012, 338, 1183–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horwath, M.; Legresy, B.; Remy, F.; Blarel, F.; Lemoine, J.M. Consistent patterns of Antarctic ice sheet interannual variations from ENVISAT radar altimetry and GRACE satellite gravimetry. Geophys. J. Int. 2012, 189, 863–876. [Google Scholar] [CrossRef] [Green Version]
- Massom, R.A.; Stammerjohn, S.E. Antarctic sea ice change and variability—Physical and ecological implications. Polar Sci. 2010, 4, 149–186. [Google Scholar] [CrossRef] [Green Version]
- Schneider, D.P.; Okumura, Y.; Deser, C. Observed Antarctic interannual climate variability and tropical linkages. J. Clim. 2012, 25, 4048–4066. [Google Scholar] [CrossRef] [Green Version]
- Boening, C.; Lebsock, M.; Landerer, F.; Stephens, G. Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Kwok, R.; Comiso, J.C.; Lee, T.; Holland, P.R. Linked trends in the South Pacific sea ice edge and Southern Oscillation Index. Geophys. Res. Lett. 2016, 43, 10295–10302. [Google Scholar] [CrossRef] [Green Version]
- Deb, P.; Orr, A.; Bromwich, D.H.; Nicolas, J.P.; Turner, J.; Hosking, J.S. Summer drivers of atmospheric variability affecting ice shelf thinning in the Amundsen Sea Embayment, West Antarctica. Geophys. Res. Lett. 2018, 45, 4124–4133. [Google Scholar] [CrossRef]
- Bodart, J.A.; Bingham, R.J. The Impact of the Extreme 2015–2016 El Niño on the Mass Balance of the Antarctic Ice Sheet. Geophys. Res. Lett. 2019, 46, 13862–13871. [Google Scholar] [CrossRef]
- Sasgen, I.; Dobslaw, H.; Martinec, Z.; Thomas, M. Satellite gravimetry observation of Antarctic snow accumulation related to ENSO. Earth Planet. Sci. Lett. 2010, 299, 352–358. [Google Scholar] [CrossRef]
- Mémin, A.; Flament, T.; Alizier, B.; Watson, C.; Remy, F. Interannual variation of the Antarctic Ice Sheet from a combined analysis of satellite gravimetry and altimetry data. Earth Planet. Sci. Lett. 2015, 422, 150–156. [Google Scholar] [CrossRef]
- White, W.B.; Peterson, R.G. An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent. Nature 1996, 380, 699–702. [Google Scholar] [CrossRef]
- Peterson, R.G.; White, W.B. Slow oceanic teleconnections linking the Antarctic circumpolar wave with the tropical El Niño-Southern Oscillation. J. Geophys. Res. Ocean. 1998, 103, 24573–24583. [Google Scholar] [CrossRef]
- White, W.B.; Simmonds, I. Sea surface temperature–induced cyclogenesis in the Antarctic circumpolar wave. J. Geophys. Res. Ocean. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Kerr, A. Topography, climate and ice masses: A review. Terra Nova 1993, 5, 332–342. [Google Scholar] [CrossRef]
- Rémy, F.; Parouty, S. Antarctic ice sheet and radar altimetry: A review. Remote. Sens. 2009, 1, 1212–1239. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, A.; Ivins, E.; Rignot, E.; Smith, B.; Van Den Broeke, M.; Velicogna, I.; Whitehouse, P.; Briggs, K.; Joughin, I.; Krinner, G.; et al. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 2018, 558, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Cazenave, A.; Dominh, K.; Guinehut, S.; Berthier, E.; Llovel, W.; Ramillien, G.; Ablain, M.; Larnicol, G. Sea level budget over 2003–2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Glob. Planet. Chang. 2009, 65, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Bettadpur, S.V.; Byun, S.H.; Dahle, C.; Dobslaw, H.; et al. Extending the global mass change data record: GRACE Follow-On instrument and science data performance. Geophys. Res. Lett 2020, 47. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE measurements of mass variability in the Earth system. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mémin, A.; Flament, T.; Remy, F.; Llubes, M. Snow-and ice-height change in Antarctica from satellite gravimetry and altimetry data. Earth Planet. Sci. Lett. 2014, 404, 344–353. [Google Scholar] [CrossRef]
- Ramillien, G.; Lombard, A.; Cazenave, A.; Ivins, E.R.; Llubes, M.; Remy, F.; Biancale, R. Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Glob. Planet. Chang. 2006, 53, 198–208. [Google Scholar] [CrossRef]
- Tapley, B.D.; Watkins, M.M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.; Landerer, F.W.; Chambers, D.P.; et al. Contributions of GRACE to understanding climate change. Nat. Clim. Chang. 2019, 9.5, 358–369. [Google Scholar] [CrossRef]
- Nagler, T. Comprehensive Error Characterisation Report (CECR). Antarctic Ice Sheet CCI Project ESA’s Climate Change Initiative. 2017. Available online: http://www.esa-icesheets-antarctica-cci.org/ (accessed on 6 May 2021).
- Thorvaldsen, A. Product User Guide (PUG) for the Antarctic Ice Sheet CCI Project of ESA’s Climate Change Initiative. Version 1.4. 2018. Available online: http://esa-icesheets-antarctica-cci.org/ (accessed on 6 May 2021).
- Van Wessem, J.M.; Berg, W.J.V.D.; Noel, B.P.; Meijgaard, E.V.; Amory, C.; Birnbaum, G.; Jakobs, C.L.; Kruger, K.; Lenaerts, J.; Lhermitte, S.; et al. Modelling the climate and surface mass balance of polar ice sheets using racmo2: Part 2: Antarctica (1979–2016). Cryosphere 2018, 12, 1479–1498. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Lu, Y.; Zhang, Z.; Shi, H. A joint inversion estimate of antarctic ice sheet mass balance using multi-geodetic data sets. Remote. Sens. 2019, 11, 653. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Yao, Y.; Liu, L.; Yang, Y. Interannual ice mass variations over the Antarctic ice sheet from 2003 to 2017 were linked to El Niño-Southern Oscillation. Earth Planet. Sci. Lett. 2021, 560, 116796. [Google Scholar] [CrossRef]
- Wingham, D.J.; Shepherd, A.; Muir, A.; Marshall, G.J. Mass balance of the Antarctic ice sheet. Philos. Trans. R. Soc. A 2006, 364, 1627–1635. [Google Scholar] [CrossRef]
- Flament, T.; Rémy, F. Dynamic thinning of Antarctic glaciers from along-track repeat radar altimetry. J. Glaciol. 2012, 58, 830–840. [Google Scholar] [CrossRef] [Green Version]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Peltier, W.R. Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 2004, 32, 111–149. [Google Scholar] [CrossRef]
- Zwally, H.J.; Li, J. Seasonal and interannual variations of firn densification and ice-sheet surface elevation at the Greenland summit. J. Glaciol. 2002, 48, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Legresy, B.; Papa, F.; Remy, F.; Vinay, G.; Van den Bosch, M.; Zanife, O.Z. ENVISAT radar altimeter measurements over continental surfaces and ice caps using the ICE-2 retracking algorithm. Remote. Sens. Environ. 2005, 95, 150–163. [Google Scholar] [CrossRef]
- Lacroix, P.; Dechambre, M.; Legresy, B.; Blarel, F.; Remy, F. On the use of the dual-frequency ENVISAT altimeter to determine snowpack properties of the Antarctic ice sheet. Remote. Sens. Environ. 2008, 112, 1712–1729. [Google Scholar] [CrossRef]
- Rémy, F.; Mémin, A.; Velicogna, I. Applications of satellite altimetry to study the Antarctic ice sheet. In Altimetry Over Oceans and Land Surfaces (15), 1st ed.; CRC Press: Boca Raton, FL, USA, 2017; p. 670. ISBN 978-1-4987-4345-7. [Google Scholar]
- Cullen, M.J.P. The unified forecast/climate model. Meteorol. Mag. 1993, 122, 81–94. [Google Scholar]
- Undén, P.; Rontu, L.; Jarvinen, H.; Lynch, P.; Calvo Sanchez, F.J.; Cats, G.; Cuxart, J.; Eerola, K.; Fortelius, C.; Garcia-Moya, J.A.; et al. HIRLAM-5 Scientific Documentation; Swedish Meteorological and Hydrological Institute: Norrkoping, Sweden, 2002. [Google Scholar]
- ECMWF. IFS Documentation CY33R1—Part IV: Physical Processes. In IFS Documentation CY33R1; ECMWF: Reading, UK, 2008. [Google Scholar] [CrossRef]
- Rignot, E.; Mouginot, J.; Scheuchl, B.; Van Den Broeke, M.; Van Wessem, M.J.; Morlighem, M. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl. Acad. Sci. USA 2019, 116, 1095–1103. [Google Scholar] [CrossRef] [Green Version]
- Ropelewski, C.F.; Jones, P.D. An extension of the Tahiti–Darwin southern oscillation index. Mon. Weather. Rev. 1987, 115, 2161–2165. [Google Scholar] [CrossRef] [Green Version]
- Parker, D.E. Documentation of a Southern Oscillation index. Meteorol. Mag. 1983, 112, 184–188. [Google Scholar]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.M. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Sakumura, C.; Bettadpur, S.; Bruinsma, S. Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models. Geophys. Res. Lett. 2014, 41, 1389–1397. [Google Scholar] [CrossRef]
- Sasgen, I.; Martinec, Z.; Fleming, K. Regional ice-mass changes and glacial-isostatic adjustment in Antarctica from GRACE. Earth Planet. Sci. Lett. 2007, 264, 391–401. [Google Scholar] [CrossRef] [Green Version]
- Herron, M.M.; Langway, C.C. Firn densification: An empirical model. J. Glaciol. 1980, 25, 373–385. [Google Scholar] [CrossRef]
- Ligtenberg, S.R.M.; Helsen, M.M.; Van den Broeke, M.R. An improved semi-empirical model for the densification of Antarctic firn. Cryosphere 2011, 5, 809–819. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zwally, H.J. Response times of ice-sheet surface heights to changes in the rate of Antarctic firn compaction caused by accumulation and temperature variations. J. Glaciol. 2015, 61, 1037–1047. [Google Scholar] [CrossRef] [Green Version]
- Rémy, F.; Parrenin, F. Snow accumulation variability and random walk: How to interpret changes of surface elevation in Antarctica. Earth Planet. Sci. Lett. 2004, 227, 273–280. [Google Scholar] [CrossRef]
- Stevens, C.M.; Verjans, V.; Lundin, J.; Kahle, E.C.; Horlings, A.N.; Horlings, B.I.; Waddington, E.D. The Community Firn Model (CFM) v1.0. Geosci. Model Dev. 2020, 13, 4355–4377. [Google Scholar] [CrossRef]
- Verjans, V.; Leeson, A.A.; Nemeth, C.; Stevens, C.M.; Kuipers Munneke, P.; Noel, B.; van Wessem, J.M. Bayesian calibration of firn densification models. Cryosphere 2020, 14, 3017–3032. [Google Scholar] [CrossRef]
- Cerrone, D.; Fusco, G.; Cotroneo, Y.; Simmonds, I.; Budillon, G. The antarctic circumpolar wave: Its presence and interdecadal changes during the last 142 years. J. Clim. 2017, 30, 6371–6389. [Google Scholar] [CrossRef]
- Autret, G.; Rémy, F.; Roques, S. Multiscale analysis of Antarctic surface temperature series by empirical mode decomposition. J. Atmos. Ocean. Technol. 2013, 30, 649–654. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Wei, W.W. Multivariate Time Series Analysis and Applications; John Wiley and Sons: Hoboken, NJ, USA, 2018; pp. 139–161. [Google Scholar]
- Paolo, F.S.; Padman, L.; Fricker, H.A.; Adusumilli, S.; Howard, S.; Siegfried, M.R. Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern oscillation. Nature Geosci. 2018, 11, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Shi, H.; Wang, Y.; Yao, Y. Complex Principal Component Analysis of Antarctic Ice Sheet Mass Balance. Remote Sens. 2021, 13, 480. [Google Scholar] [CrossRef]
- Raphael, M.N.; Marshall, G.J.; Turner, J.; Fogt, R.L.; Schneider, D.; Dixon, D.A.; Hosking, J.S.; Jones, J.; Hobbs, W.R. The Amundsen sea low: Variability, change, and impact on Antarctic climate. Bull. Am. Meteorol. Soc. 2016, 97, 111–121. [Google Scholar] [CrossRef]
- Hosking, J.S.; Orr, A.; Marshall, G.J.; Turner, J.; Phillips, T. The influence of the Amundsen–Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Clim. 2013, 26, 6633–6648. [Google Scholar] [CrossRef] [Green Version]
- Marshall, G.J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 2003, 16, 4134–4143. [Google Scholar] [CrossRef]
- Fogt, R.L.; Bromwich, D.H.; Hines, K.M. Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim. Dyn. 2011, 36, 1555–1576. [Google Scholar] [CrossRef] [Green Version]
- Christoph, M.; Barnett, T.P.; Roeckner, E. The Antarctic Circumpolar Wave in a coupled ocean-atmosphere GCM. J. Clim. 1998, 11, 1659–1672. [Google Scholar] [CrossRef]
- Mo, K.C.; White, G.H. Teleconnections in the southern hemisphere. Mon. Weather. Rev. 1985, 113, 22–37. [Google Scholar] [CrossRef] [Green Version]
- White, W.B.; Cherry, N.J. Influence of the Antarctic circumpolar wave upon New Zealand temperature and precipitation during autumn–winter. J. Clim. 1999, 12, 960–976. [Google Scholar] [CrossRef]
- White, W.B. Influence of the Antarctic Circumpolar Wave on Australian precipitation from 1958 to 1997. J. Clim. 2000, 13, 2125–2141. [Google Scholar] [CrossRef]
- Connolley, W.M. Long-term variation of the Antarctic Circumpolar Wave. J. Geophys. Res. Ocean. 2002, 107. [Google Scholar] [CrossRef]
- Fischer, H.; Traufetter, F.; Oerter, H.; Weller, R.; Miller, H. Prevalence of the Antarctic Circumpolar Wave over the last two millenia recorded in Dronning Maud Land ice. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Baines, P.G. Forcing of the Antarctic Circumpolar Wave by El Niño-Southern Oscillation teleconnections. J. Geophys. Res. Ocean. 2001, 106, 9019–9038. [Google Scholar] [CrossRef]
- Bian, L.; Lin, X. Interdecadal change in the Antarctic Circumpolar Wave during 1951–2010. Adv. Atmos. Sci. 2012, 29, 464–470. [Google Scholar] [CrossRef]
- White, W.B.; Annis, J. Influence of the Antarctic Circumpolar Wave on El Niño and its multidecadal changes from 1950 to 2001. J. Geophys. Res. Ocean. 2004, 109. [Google Scholar] [CrossRef]
- Nuncio, M.; Luis, A.J.; Yuan, X. Topographic meandering of Antarctic Circumpolar Current and Antarctic Circumpolar Wave in the ice-ocean-atmosphere system. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
Site | Envisat and GRACE | Envisat and RACMO | GRACE and RACMO |
---|---|---|---|
PIG [76 S 100 W] | 1.08 (0.29) | 0.87 (0.08) | 1.16 (0.24) |
CL [80 S 28 W] | 1.39 (0.92) | 1.66 (0.80) | 0.74 (0.20) |
DML [71 S 30 E] | 1.57 (0.84) | 1.56 (0.48) | 0.81 (0.16) |
WL [70 S 120 W] | 0.96 (0.36) | 1.04 (0.02) | 0.86 (0.24) |
Site | Envisat and GRACE | Envisat and RACMO | GRACE and RACMO |
---|---|---|---|
PIG | 0.61 | 0.90 | 0.74 |
CL | 0.29 | 0.38 | 0.60 |
DML | 0.35 | 0.56 | 0.70 |
WL | 0.63 | 0.77 | 0.67 |
Site | Envisat and GRACE | Envisat and RACMO | GRACE and RACMO |
---|---|---|---|
PIG | 0.26 | 0.91 | 0.28 |
CL | 0.86 | 0.43 | 0.67 |
DML | 0.71 | 0.70 | 0.91 |
WL | 0.67 | 0.82 | 0.73 |
Class A (<4 Years) | Class B (4–6 Years) | Class C (>6 Years) | |
---|---|---|---|
Envisat | 45.25 | 44.32 | 10.42 |
GRACE | 46.57 | 45.18 | 8.25 |
RACMO | 39.82 | 52.13 | 8.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaitheri, A.; Mémin, A.; Rémy, F. Inter-Annual Variability in the Antarctic Ice Sheets Using Geodetic Observations and a Climate Model. Remote Sens. 2021, 13, 2199. https://doi.org/10.3390/rs13112199
Kaitheri A, Mémin A, Rémy F. Inter-Annual Variability in the Antarctic Ice Sheets Using Geodetic Observations and a Climate Model. Remote Sensing. 2021; 13(11):2199. https://doi.org/10.3390/rs13112199
Chicago/Turabian StyleKaitheri, Athul, Anthony Mémin, and Frédérique Rémy. 2021. "Inter-Annual Variability in the Antarctic Ice Sheets Using Geodetic Observations and a Climate Model" Remote Sensing 13, no. 11: 2199. https://doi.org/10.3390/rs13112199
APA StyleKaitheri, A., Mémin, A., & Rémy, F. (2021). Inter-Annual Variability in the Antarctic Ice Sheets Using Geodetic Observations and a Climate Model. Remote Sensing, 13(11), 2199. https://doi.org/10.3390/rs13112199