Effects of Day/Night Factor on the Detection Performance of FY4A Lightning Mapping Imager in Hainan, China
Abstract
:1. Introduction
2. Datasets
2.1. Low-Frequency H-Field Lightning Location System (LLS) (L3D) Data
2.2. FY4A Lightning Mapping Imager (LMI) Group (LMIG) Data
2.3. FY4A Cloud-Top Temperature (CTT) Data
3. Analysis Method
3.1. Selection of Research Region
3.2. Calculation of Detection Efficiency (DE) Using Bayesian Theorem
3.3. Calculation of the Conditional Probability
4. Results
4.1. A Case Study (Storm0821)
4.2. Statistical Analysis
4.3. LMI Radiative Energy Density
5. Discussion
5.1. Overestimation of DE Due to Assuming P (L3D∪LMI) Equals 1
5.2. Uncertainty Due to Mismatch between the Two LLSs
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AGRI | Advanced Geosynchronous Radiation Imager |
CAPE | Convective Available Potential Energy |
CCD | Charge-Coupled Device |
CP | Coupled Percentage |
CTT | Cloud-Top Temperature |
DE | Detection Efficiency |
DELMI | Detection Efficiency of Lightning Mapping Imager |
ENTLN | Earth Networks Total Lightning Network |
FDTD | Finite Difference Time Domain |
FY4A | FengYun 4A meteorological satellite |
GLM | Geostationary Lightning Mapper |
GOES | Geostationary Operational Environmental Satellite |
GPS | Global Position System |
L3D | Low-frequency H-field Lightning Location System |
LIS | Lightning Imaging Sensors |
LLS | Lightning Location System |
LMI | Lightning Mapping Imager |
LMIG | Lightning Mapping Imager Group |
NCEP | National Centers for Environmental Prediction |
NL3D | Number of L3D impulses |
NLMI | Number of LMI groups |
OTD | Optical Transient Detectors |
RED | Radiative Energy Density |
RTEP | Real-Time Event Processor |
TOA | Time of Arrival |
VLF/LF | Very Low Frequency/Low Frequency |
WGS84 | World Geodetic System 1984 |
WWLLN | World Wide Lightning Location Network |
References
- Wolfe, W.L.; Nagler, M. Conceptual design of a space-borne lightning sensor. In Proceedings of the SPIE—The International Society for Optical Engineering, San Diego, CA, USA, 3 December 1980; Volume 246, pp. 22–33. [Google Scholar]
- Thomson, L.W.; Krider, E.P. The Effects of Clouds on the Light Produced by Lightning. J. Atmos. Sci. 1982, 39, 2051–2065. [Google Scholar] [CrossRef] [Green Version]
- Christian, H.J.; Blakeslee, R.J.; Goodman, S.J. The detection of lightning from geostationary orbit. J. Geophys. Res. Atmos. 1989, 94, 13329–13337. [Google Scholar] [CrossRef]
- Christian, H.J.; Blakeslee, R.J.; Goodman, S.J.; Mach, D.A.; Boccippio, D.J. The Lightning Imaging Sensor. In Proceedings of the 11th International Conference on Atmospheric Electricity, Washington, DC, USA, 1 June 1999. [Google Scholar]
- Thomas, R.J.; Krehbiel, P.R.; Rison, W.; Hamlin, T.; Boccippio, D.J.; Goodman, S.J.; Christian, H.J. Comparison of ground-based 3-dimensional lightning mapping observations with satellite-based LIS observations in Oklahoma. Geophys. Res. Lett. 2000, 27, 1703–1706. [Google Scholar] [CrossRef] [Green Version]
- Boccippio, D.J.; Koshak, W.J.; Blakeslee, R.J. Performance Assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted Diurnal Variability. J. Atmos. Ocean. Technol. 2002, 19, 1318–1332. [Google Scholar] [CrossRef]
- Thompson, K.B.; Bateman, M.G.; Carey, L.D. A Comparison of Two Ground-Based Lightning Detection Networks against the Satellite-Based Lightning Imaging Sensor (LIS). J. Atmos. Ocean. Technol. 2014, 31, 2191–2205. [Google Scholar] [CrossRef]
- Bitzer, P.M.; Burchfield, J.C.; Christian, H.J. A Bayesian Approach to Assess the Performance of Lightning Detection Systems. J. Atmos. Ocean. Technol. 2016, 33, 563–578. [Google Scholar] [CrossRef]
- Goodman, S.J.; Blakeslee, R.J.; Koshak, W.J.; Mach, D.; Bailey, J.; Buechler, D.; Carey, L.; Schultz, C.; Bateman, M.; McCaul, E.; et al. The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res. 2013, 125-126, 34–49. [Google Scholar] [CrossRef] [Green Version]
- Rudlosky, S.D.; Goodman, S.J.; Koshak, W.J.; Blakeslee, R.J.; Buechler, D.E.; Mach, D.M.; Bateman, M. Characterizing the GOES-R (GOES-16) Geostationary Lightning Mapper (GLM) on-orbit performance. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 23 July 2017; pp. 279–282. [Google Scholar] [CrossRef] [Green Version]
- Rudlosky, S.D.; Goodman, S.J.; Virts, K.S.; Bruning, E.C. Initial Geostationary Lightning Mapper Observations. Geophys. Res. Lett. 2019, 46, 1097–1104. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the New Generation of Chinese Geostationary Weather Satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Liu, R.; Liu, T.; Pessi, A.; Hui, W.; Cheng, W.; Huang, F. Preliminary study on the influence of FY-4 lightning data assimilation on precipitation predictions. J. Trop. Meteorol. 2019, 25, 528–541. (In Chinese) [Google Scholar]
- Chan, Y.W.; So, C.K. The applications of Feng Yun 4 A satellite products for weather monitoring over the asian regions. In Proceedings of the 99th American Meteorological Society Annual Meeting, Phoenix, AZ, USA, 10 January 2019. [Google Scholar]
- Peterson, M. Research Applications for the Geostationary Lightning Mapper Operational Lightning Flash Data Product. J. Geophys. Res. Atmos. 2019, 124, 10205–10231. [Google Scholar] [CrossRef]
- Marchand, M.; Hilburn, K.; Miller, S.D. Geostationary Lightning Mapper and Earth Networks Lightning Detection Over the Contiguous United States and Dependence on Flash Characteristics. J. Geophys. Res. Atmos. 2019, 124, 11552–11567. [Google Scholar] [CrossRef]
- Zhang, D. Inter-Comparison of Space-and Ground-Based Observations of Lightning. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 2019. [Google Scholar]
- Zhang, D.; Cummins, K.L. Time Evolution of Satellite-Based Optical Properties in Lightning Flashes, and its Impact on GLM Flash Detection. J. Geophys. Res. Atmos. 2020, 125. [Google Scholar] [CrossRef] [Green Version]
- Rutledge, S.A.; Hilburn, K.A.; Clayton, A.; Fuchs, B.; Miller, S.D. Evaluating Geostationary Lightning Mapper Flash Rates within Intense Convective Storms. J. Geophys. Res. Atmos. 2020, 125. [Google Scholar] [CrossRef]
- Hui, W.; Zhang, W.; Lyu, W.; Li, P. Preliminary Observations from the China Fengyun-4A Lightning Mapping Imager and Its Optical Radiation Characteristics. Remote Sens. 2020, 12, 2622. [Google Scholar] [CrossRef]
- Liu, R.X.; Lu, Q.F.; Min, C.; Zhang, Y.; Li, X.Q. Quality Assessment of FY-4A Lightning Data in Inland China. J. Trop. Meteorol. 2020, 26, 286–299. [Google Scholar]
- Jing, X.; Geerts, B.; Wang, Y.; Liu, C. Evaluating Seasonal Orographic Precipitation in the Interior Western United States Using Gauge Data, Gridded Precipitation Estimates, and a Regional Climate Simulation. J. Hydrometeorol. 2017, 18, 2541–2558. [Google Scholar] [CrossRef]
- Lyu, F.; Cummer, S.A.; Solanki, R.; Weinert, J.; McTague, L.; Katko, A.; Barrett, J.; Zigoneanu, L.; Xie, Y.; Wang, W. A low-frequency near-field interferometric-TOA 3-D Lightning Mapping Array. Geophys. Res. Lett. 2014, 41, 7777–7784. [Google Scholar] [CrossRef]
- Lyu, F.; Cummer, S.A.; Lu, G.; Zhou, X.; Weinert, J. Imaging lightning intracloud initial stepped leaders by low-frequency interferometric lightning mapping array. Geophys. Res. Lett. 2016, 43, 5516–5523. [Google Scholar] [CrossRef]
- Yoshida, S.; Wu, T.; Ushio, T.; Kusunoki, K.; Nakamura, Y. Initial results of LF sensor network for lightning observation and characteristics of lightning emission in LF band. J. Geophys. Res. Atmos. 2014, 119, 12034–12051. [Google Scholar] [CrossRef]
- Zhang, X.H. 3-D Lightning Location Based on Low Frequency Magnetic Field and Preliminary Detection Performance Assessment of Lightning Mapping Imager on FY-4A Geostationary Meteorological Satellite. Master’s Thesis, Nanjing University of Information Science & Technology, Nanjing, China, 2019. (In Chinese). [Google Scholar]
- Liu, C. Development and Application of Multi-Gain Lightning Electromagnetic Pulse Sensor. Master’s Thesis, Nanjing University of Information Science & Technology, Nanjing, China, 2019. (In Chinese). [Google Scholar]
- Mach, D.M.; Bateman, M.G.; Blakeslee, R.J.; Boldi, R.A.; Buechler, D.E.; Carey, L.D.; Goodman, S.J.; Koshak, W.J.; McCaul, E.W.; Peterson, W.A. GOESR Geostationary Lightning Mapper performance specifications and algorithms. In Proceedings of the 2008 NOAA STAR GOES-R AWG Review, Madison, WI, USA, 24 August 2008. [Google Scholar]
- Boccippio, D.J.; Driscoll, K.; Hall, J.; Buechler, D. LIS/OTD Software Guide; Technical Report; NASA: Washington, DC, USA, 1998.
- Ushio, T.; Driscoll, K.; Heckman, S.; Boccippio, D.; Koshak, W.; Christian, H. Initial comparison of the Lightning Imaging Sensor (LIS) with Lightning Detection and Ranging (LDAR). In Proceedings of the 11th International Conference on Atmospheric Electricity, Washington, DC, USA, 1 June 1999. [Google Scholar]
- Mach, D.M.; Christian, H.J.; Blakeslee, R.J.; Boccippio, D.J.; Goodman, S.J.; Boeck, W.L. Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Min, M.; Chunqiang, W.; Chuan, L.; Hui, L.; Na, X.; Xiao, W.; Lin, C.; Fu, W. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J. Meteorol. Res. 2017, 31, 708–719. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, L.; Tang, S.; Gao, L.; Chen, L.; Zheng, W.; Han, X.; Chen, J.; Shao, J. General Comparison of FY-4A/AGRI with Other GEO/LEO Instruments and Its Potential and Challenges in Non-meteorological Applications. Front. Earth Sci. 2019, 6, 224. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wang, Z.; Heymsfield, A.J.; DeMott, P.J.; Twohy, C.H.; Suski, K.J.; Toohey, D.W. High Ice Concentration Observed in Tropical Maritime Stratiform Mixed-Phase Clouds with Top Temperatures Warmer than −8 °C. Atmos. Res. 2020, 233, 104719. [Google Scholar] [CrossRef]
Index | Case | Daytime | Night | DE Diurnal Difference of LMI | ||||
---|---|---|---|---|---|---|---|---|
Detection Ratio between LMI and L3D | DE (%) | Detection Ratio between LMI and L3D | DE (%) | |||||
L3D | LMI | L3D | LMI | |||||
1 | 20190816 | 0.15 | 85.09 | 22.65 | 1.26 | 52.50 | 56.08 | 33.42 |
2 | 20190818 | 0.15 | 84.06 | 21.10 | 1.11 | 50.98 | 56.42 | 35.31 |
3 | 20190819 | 0.15 | 86.32 | 18.60 | 1.09 | 52.09 | 52.75 | 34.15 |
4 | 20190821 | 0.14 | 91.98 | 15.46 | 0.95 | 55.62 | 50.82 | 35.37 |
5 | 20190827 | 0.06 | 96.87 | 7.53 | 0.63 | 62.91 | 42.01 | 34.48 |
6 | 20190828 | \ | \ | \ | 0.62 | 61.30 | 43.96 | \ |
7 | 20190829 | 0.07 | 96.07 | 8.06 | 0.87 | 61.28 | 42.75 | 34.69 |
8 | 20190830 | 0.07 | 94.73 | 11.97 | 0.47 | 70.05 | 37.82 | 25.85 |
9 | 20190905 | 0.12 | 85.27 | 19.21 | 1.18 | 52.16 | 54.73 | 35.52 |
10 | 20190910 | \ | \ | \ | 0.51 | 70.85 | 36.88 | \ |
11 | 20190915 | 0.07 | 97.23 | 5.12 | 0.41 | 82.53 | 25.99 | 20.87 |
12 | 20190917 | 0.22 | 90.08 | 12.17 | 0.83 | 61.04 | 40.25 | 28.08 |
13 | 20190925 | \ | \ | \ | 1.20 | 50.84 | 57.26 | \ |
14 | 20200601 | 0.04 | 97.90 | 7.89 | \ | \ | \ | \ |
15 | 20200604 | 0.11 | 97.18 | 5.49 | \ | \ | \ | \ |
16 | 20200607 | 0.15 | 90.62 | 15.00 | 0.87 | 51.35 | 50.53 | 35.53 |
17 | 20200614 | 0.13 | 88.11 | 17.18 | 0.46 | 70.71 | 37.59 | 20.41 |
18 | 20200616 | \ | \ | \ | 0.52 | 66.39 | 39.86 | \ |
19 | 20200617 | 0.04 | 95.99 | 9.47 | 0.60 | 66.78 | 40.76 | 31.29 |
20 | 20200629 | 0.09 | 90.64 | 13.62 | \ | \ | \ | \ |
21 | 20200630 | 0.13 | 89.47 | 16.18 | \ | \ | \ | \ |
22 | 20200701 | 0.09 | 95.47 | 8.93 | \ | \ | \ | \ |
23 | 20200702 | 0.07 | 93.92 | 12.94 | \ | \ | \ | \ |
24 | 20200703 | 0.08 | 96.23 | 5.76 | 0.45 | 75.51 | 31.45 | 25.69 |
25 | 20200713 | 0.06 | 98.38 | 2.29 | 0.35 | 83.44 | 23.34 | 21.05 |
26 | 20200719 | \ | \ | \ | 0.75 | 63.27 | 43.27 | \ |
Mean | 0.104 | 92.45 | 12.22 | 0.76 | 63.08 | 43.23 | 30.11 |
Index | Case | REDDaytime (μJ sr−1 m−2 nm−1) | REDNighttime (μJ sr−1 m−2 nm−1) | REDDaytime–REDNighttime(μJ sr−1 m−2 nm−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | 5th | Median | 95th | Min | 5th | Median | 95th | Min | 5th | Median | 95th | ||
1 | 20190816 | 84.07 | 229.04 | 726.57 | 5554.27 | 8.38 | 10.36 | 31.76 | 272.84 | 75.69 | 218.68 | 694.82 | 5281.43 |
2 | 20190818 | 177.63 | 244.84 | 864.60 | 4772.22 | 9.32 | 10.95 | 39.85 | 720.69 | 168.31 | 233.89 | 824.75 | 4051.53 |
3 | 20190819 | 161.58 | 199.59 | 606.49 | 3841.92 | 8.75 | 10.18 | 33.67 | 261.78 | 152.83 | 189.41 | 572.82 | 3580.14 |
4 | 20190821 | 77.12 | 177.00 | 549.99 | 3598.11 | 8.67 | 10.53 | 35.81 | 343.38 | 68.45 | 166.47 | 514.19 | 3254.73 |
5 | 20190827 | 256.87 | 320.37 | 1477.73 | 8973.44 | 10.49 | 11.67 | 47.50 | 936.12 | 246.38 | 308.70 | 1430.23 | 8037.32 |
6 | 20190828 | \ | \ | \ | \ | 10.00 | 11.47 | 43.60 | 527.93 | \ | \ | \ | \ |
7 | 20190829 | 90.93 | 172.91 | 474.86 | 1789.65 | 8.87 | 10.68 | 30.74 | 266.62 | 82.06 | 162.23 | 444.12 | 1523.03 |
8 | 20190830 | 150.07 | 160.65 | 574.44 | 2730.94 | 8.54 | 10.41 | 30.64 | 199.62 | 141.46 | 150.24 | 543.80 | 2531.32 |
9 | 20190905 | 165.63 | 240.03 | 709.31 | 3019.41 | 8.88 | 11.00 | 35.47 | 247.01 | 156.75 | 229.03 | 673.84 | 2772.40 |
10 | 20190910 | \ | \ | \ | \ | 9.32 | 10.71 | 27.01 | 375.49 | \ | \ | \ | \ |
11 | 20190915 | 219.31 | 321.57 | 481.22 | 1195.18 | 9.42 | 10.28 | 26.88 | 109.04 | 209.89 | 311.29 | 454.34 | 1086.14 |
12 | 20190917 | 279.71 | 304.89 | 1314.59 | 6393.03 | 9.76 | 10.74 | 36.86 | 395.65 | 269.95 | 294.15 | 1277.74 | 5997.38 |
13 | 20190925 | \ | \ | \ | \ | 8.86 | 10.87 | 34.04 | 275.47 | \ | \ | \ | \ |
14 | 20200601 | 165.13 | 176.83 | 1099.03 | 4989.28 | \ | \ | \ | \ | \ | \ | \ | \ |
15 | 20200604 | 159.71 | 342.61 | 1118.27 | 4373.02 | \ | \ | \ | \ | \ | \ | \ | \ |
16 | 20200607 | 233.77 | 264.51 | 468.84 | 1644.43 | 9.80 | 10.90 | 28.42 | 198.20 | 223.97 | 253.61 | 440.42 | 1446.23 |
17 | 20200614 | 248.39 | 255.71 | 533.46 | 1537.10 | 9.53 | 10.66 | 28.39 | 179.67 | 238.86 | 245.05 | 505.07 | 1357.43 |
18 | 20200616 | \ | \ | \ | \ | 9.17 | 11.56 | 32.38 | 130.74 | \ | \ | \ | \ |
19 | 20200617 | 310.25 | 329.46 | 721.18 | 4454.33 | 10.63 | 10.88 | 24.17 | 63.29 | 299.62 | 318.58 | 697.02 | 4391.04 |
20 | 20200629 | 145.67 | 171.97 | 535.38 | 3607.83 | \ | \ | \ | \ | \ | \ | \ | \ |
21 | 20200630 | 157.21 | 182.24 | 712.36 | 5401.11 | \ | \ | \ | \ | \ | \ | \ | \ |
22 | 20200701 | 200.25 | 237.33 | 1206.81 | 5389.85 | \ | \ | \ | \ | \ | \ | \ | \ |
23 | 20200702 | 234.19 | 243.53 | 1418.37 | 4492.33 | \ | \ | \ | \ | \ | \ | \ | \ |
24 | 20200703 | 218.60 | 221.69 | 552.74 | 3792.69 | 9.14 | 9.99 | 27.55 | 210.74 | 209.46 | 211.70 | 525.19 | 3581.95 |
25 | 20200713 | 149.00 | 167.13 | 587.17 | 1301.79 | 9.13 | 10.35 | 27.50 | 131.67 | 139.87 | 156.78 | 559.67 | 1170.12 |
26 | 20200719 | \ | \ | \ | \ | 8.89 | 10.17 | 27.84 | 150.80 | \ | \ | \ | \ |
Mean | 185.00 | 236.38 | 796.83 | 3945.76 | 9.28 | 10.72 | 32.50 | 299.84 | 178.90 | 229.99 | 677.20 | 3337.48 |
Case | Case | Case | |||
---|---|---|---|---|---|
20190816 | 0.99 | 20190829 | 2.06 | 20200607 | 2.20 |
20190818 | 1.45 | 20190830 | 2.12 | 20200614 | 1.07 |
20190819 | 1.65 | 20190905 | 1.39 | 20200617 | 1.05 |
20190821 | 0.96 | 20190915 | 0.96 | 20200703 | 2.44 |
20190827 | 1.49 | 20190917 | 1.14 | 20200713 | 1.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Yang, J.; Zhang, Q.; Song, L.; Gao, H.; Jing, X.; Lin, G.; Yang, K. Effects of Day/Night Factor on the Detection Performance of FY4A Lightning Mapping Imager in Hainan, China. Remote Sens. 2021, 13, 2200. https://doi.org/10.3390/rs13112200
Sun H, Yang J, Zhang Q, Song L, Gao H, Jing X, Lin G, Yang K. Effects of Day/Night Factor on the Detection Performance of FY4A Lightning Mapping Imager in Hainan, China. Remote Sensing. 2021; 13(11):2200. https://doi.org/10.3390/rs13112200
Chicago/Turabian StyleSun, Hao, Jing Yang, Qilin Zhang, Lin Song, Haiyang Gao, Xiaoqin Jing, Guo Lin, and Kang Yang. 2021. "Effects of Day/Night Factor on the Detection Performance of FY4A Lightning Mapping Imager in Hainan, China" Remote Sensing 13, no. 11: 2200. https://doi.org/10.3390/rs13112200
APA StyleSun, H., Yang, J., Zhang, Q., Song, L., Gao, H., Jing, X., Lin, G., & Yang, K. (2021). Effects of Day/Night Factor on the Detection Performance of FY4A Lightning Mapping Imager in Hainan, China. Remote Sensing, 13(11), 2200. https://doi.org/10.3390/rs13112200