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Abstract: Sentinel-2 (S2) multi-spectral instrument (MSI) images are used in an automated approach
built on fuzzy set theory and a region growing (RG) algorithm to identify areas affected by fires
in Mediterranean regions. S2 spectral bands and their post- and pre-fire date (∆post-pre) difference
are interpreted as evidence of burn through soft constraints of membership functions defined from
statistics of burned/unburned training regions; evidence of burn brought by the S2 spectral bands
(partial evidence) is integrated using ordered weighted averaging (OWA) operators that provide
synthetic score layers of likelihood of burn (global evidence of burn) that are combined in an RG
algorithm. The algorithm is defined over a training site located in Italy, Vesuvius National Park,
where membership functions are defined and OWA and RG algorithms are first tested. Over this
site, validation is carried out by comparison with reference fire perimeters derived from supervised
classification of very high-resolution (VHR) PlanetScope images leading to more than satisfactory
results with Dice coefficient > 0.84, commission error < 0.22 and omission error < 0.15. The algorithm
is tested for exportability over five sites in Portugal (1), Spain (2) and Greece (2) to evaluate the
performance by comparison with fire reference perimeters derived from the Copernicus Emergency
Management Service (EMS) database. In these sites, we estimate commission error < 0.15, omission
error < 0.1 and Dice coefficient > 0.9 with accuracy in some cases greater than values obtained in
the training site. Regression analysis confirmed the satisfactory accuracy levels achieved over all
sites. The algorithm proposed offers the advantages of being least dependent on a priori/supervised
selection for input bands (by building on the integration of redundant partial burn evidence) and for
criteria/threshold to obtain segmentation into burned/unburned areas.

Keywords: Mediterranean ecosystems; convergence of evidence; accuracy assessment

1. Introduction

Wildfires are the largest contributor to global biomass burning (BB) and represent
a significant dynamic component of ecosystems, affecting terrestrial and atmosphere
systems [1,2]. In vegetated areas of Southern Europe, fire is a major damaging agent
and recent years (2017–2018) have witnessed unprecedented fire seasons with countries
suffering large forest fires as a consequence of drought and heatwaves. Global warming
has been affecting fires with increased frequency and severity, as observed in both real and
simulated data [3,4]; this effect is particularly true in Mediterranean ecosystems (object of
this work) where, according to models’ forecasting, warming and a precipitation deficit
will exacerbate fire weather conditions [5].

Fires impact on atmospheric chemistry, with aerosols and greenhouse gas emis-
sions [6], the carbon budgets [7], hydrological cycles, soils and vegetation components of
ecosystems [8,9]. In this framework, the extent of the area affected by fires is critical to
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investigate trends and patterns of fire occurrence and identify drivers of fire occurrence as
well as for modeling future fire patterns and fire regimes; this information can therefore
support the assessments of fire impacts on both natural and social systems. Several studies
can be mentioned on the use of remote sensing (RS) to map burned areas at a regional to
global scale [10–12]. Coarse-resolution RS data have been proved to be the most suitable
source for depicting fire distribution over large areas and one primary image source for
burned area (BA) products is the Moderate Resolution Imaging Spectrometer (MODIS) [13].
To the aim of improving accuracy of global estimates by detecting smaller fires (<50 ha),
higher-resolution sensors have been exploited, such as 300 m Medium Resolution Imaging
Spectrometer (MERIS) and 100 m Project for On-Board Autonomy–Vegetation (PROBA-
V) [10,14,15], although the results were not always more accurate compared to coarser
spatial resolution products [16].

At a regional scale and in heterogeneous environments, such as the Mediterranean
ecosystems of Southern Europe, coarse-resolution data do not provide enough spatial detail
and medium/high- and very high-resolution satellite images are preferable for accurately
mapping burned areas. Indeed, small fires could significantly contribute to global effects
of fires [15,17]. The greatest challenge in the RS community is the development of a global
algorithm for mapping burned areas from decametric satellite images (e.g., Sentinel-2
and Landsat missions) [18–20], although important steps forward are shown by recent
works [21,22]. In order to achieve this objective, some issues are yet to be addressed; among
them a significant variability, across the ecosystems, of burned area spectral response as a
function of pre-fire vegetation conditions and characteristics, fire behavior and intensity as
well as time since the fire event. The lower revisiting time of medium spatial resolution
satellites reduces the likelihood of observing burned surfaces immediately after the fire
when spectral separability is greatest; yet Sentinel-2 (S2) revisiting time, obtained with the
combined use of A&B missions, offers unprecedent opportunity with an average revisiting
time of about five days [23].

Several algorithms have been proposed for mapping burned areas in the diverse
ecosystems of the globe [12] and some key elements can be pointed out as providing the
most robust approaches: supervised self-adaptive algorithms that can fit local conditions
and contextual, multi-source (combining active fires) and multi-temporal approaches that
can reduce the likelihood of commission errors due to spectral confusion with low albedo
surfaces and highlight changes induced by fire on the surface [16,24,25].

The algorithm proposed here exploits the abovementioned key elements to deliver a
semi-automatic robust and self-adaptive classification algorithm for S2 imagery exploiting
pre-fire and post-fire acquisitions to maximize mapping accuracy. The algorithm inherits
from the conceptual framework of the multi-criteria soft aggregation approach of burn
evidence proposed by Stroppiana et al. (2012) [26] for burned area mapping and also
applied for flooding mapping [27].

Major improvements with respect to the previous algorithm characteristics are (i) the
use of S2 band reflectance in post-fire images and of their temporal difference between
post- and pre-fire acquisitions and (ii) the definition of soft constraints by membership
functions of fuzzy sets based on statistics (percentiles) of reflectance as derived from
training areas. These improvements build on (i) the exploitation of a greater frequency
of acquisition of S2 data (nominal five days when A and B constellations are combined),
that allows the implementation of a robust change detection approach and (ii) a more
automatic way for defining membership functions based on frequency distribution of
training pixels over burned and unburned surfaces [19]. In particular, the algorithm
aggregates partial evidence of burn, extracted from the information provided by S2 bands
through the membership functions, into a synthetic score of global evidence by means
of an ordered weighted averaging (OWA) operator [28]. Each S2 band could potentially
and independently be used as a source of evidence of burn for the identification of areas
affected by fires, hereafter named ‘partial evidence’ since it is given by a single input
feature. However, the concurrent aggregation of multiple spectral bands can provide a
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more reliable evaluation of the occurrence of fires by modeling a convergence of evidence
provided by redundant information, hereafter named ‘global evidence’ since it is given by
multiple input features. This multi-criteria soft aggregation computes distinct pixel-based
global evidence obtained with different OWAs (e.g., ranging from extreme conditions of
minimum and maximum operators) that are exploited as input to a region growing (RG)
algorithm.

The algorithm is trained over a large fire occurred in the Vesuvius National Park, Italy;
this site is characterized by a complex and fragmented forest ecosystem and, in 2017, was
affected by fires that generated different degrees of severity, providing a wide range of
burn spectral conditions. After the training phase, the algorithm was automatically applied
(with no need of repeating training) to five sites located in Southern Europe to assess
exportability (i.e., robustness of membership functions, seed and growing layer selection
strategy and map accuracy with respect to local characteristics). Copernicus Emergency
Management Service (EMS) products (https://emergency.copernicus.eu/, last access 1
May 2021) from major events in the 2017 summer fire season were used as reference data
for assessing the accuracy of burned area mapping over these sites.

The major novelty of this work with respect to our previous work was to assess the
robustness and exportability of the multi-criteria soft aggregation algorithm developed
for post-fire Landsat data to multi-temporal S2 data. Indeed, a specific novel aspect was
the full exploitation of the temporal component as information for burned area mapping
together with improvement of automatization of the algorithm to reduce the dependence
on expert knowledge in the definition of the membership functions.

2. Study Areas and Datasets

In Southern Europe, 2017 was characterized by abnormal droughts and heatwaves [29].
Summer was the second warmest on record, with temperatures over 1.7 ◦C above the
1981–2010 average; the warmest being 2003 at more than 2.0 ◦C above average (https:
//climate.copernicus.eu/node/358, last access 1 May 2021). Extreme weather conditions
led to severe fires affecting, in particular, Portugal, Spain, Southern France, Greece and
Italy [30]. In this framework, we selected sites for algorithm training and testing that are
described in the sections below.

2.1. Training and Exportability Sites

Six sites situated in Mediterranean ecosystems were selected in this work among
the regions most affected by forest fires in 2017 (Figure 1). Vesuvius National Park, Italy,
was used for algorithm training (development, tuning and thematic accuracy assessment)
and the other five sites (Spain, Greece and Portugal) were exploited for testing algorithm
exportability. The Corine Land Cover map (CLC2012, https://land.copernicus.eu/pan-
european/corine-land-cover, last access 1 May 2021) was used to extract information on
major land covers that are summarized in Table 1. Most of the sites are mainly covered
by natural vegetation (forest and shrub/grasslands), with the exception of Kalamos and
Zakynthos where croplands are predominant, covering approximately 40% and 52%,
respectively; in the Vesuvius site, forest and croplands cover similar proportions (38.7%
and 36.5%). Table 1 also shows the proportion of area burned within fire polygons of the
Copernicus EMS dataset among the land cover classes: in all sites, fires affected mainly
forested areas, except for Kalamos, Greece, where fires affected mostly shrub/grassland
(~36%).

https://emergency.copernicus.eu/
https://climate.copernicus.eu/node/358
https://climate.copernicus.eu/node/358
https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
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Figure 1. The CLC2012 land cover classes over the six sites located in Southern Europe (a): Vesuvius, Italy (b), Leiria, 
Portugal (c), Calar, Spain (d), Huelva, Spain (e), Kalamos, Greece (f), Zakynthos, Greece (g). 

Table 1. CLC2012 land cover classes over the entire site and within fire perimeter identified by EMS. In the last column, 
the proportions of fire damage levels in the burned area according to EMS fire grading products (CD = Completely De-
stroyed, HD = Highly Damaged, MD = Moderately Damaged and ND = Negligible to Slightly Damaged), where available. 
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Portugal (c), Calar, Spain (d), Huelva, Spain (e), Kalamos, Greece (f), Zakynthos, Greece (g).
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Table 1. CLC2012 land cover classes over the entire site and within fire perimeter identified by EMS. In the last column, the
proportions of fire damage levels in the burned area according to EMS fire grading products (CD = Completely Destroyed,
HD = Highly Damaged, MD = Moderately Damaged and ND = Negligible to Slightly Damaged), where available.

CLC2012 Class (%) EMS Fire Damage

Bare Crops Forest Shrub Urban CD HD MD ND

Vesuvius
Italy

Site 6.6 38.7 36.5 10.4 7.78 0.0 12.8 3.7 2.3
BA 3.4 4.8 47.2 34.4 10.26 0.0 68.2 19.7 12.0

Leiria
Portugal

Site 0.2 15.4 43.1 40.2 1.10 0.0 8.9 5.6 2.3
BA - 5.6 66.7 27.5 0.17 0.0 53.0 33.1 13.8

Calar
Spain

Site 13.6 8.2 61.2 17.0 - 18.9 16.5 3.6 2.0
BA 0.3 2.4 76.4 20.9 - 46.2 40.2 8.7 4.9

Huelva
Spain

Site 0.8 11.9 39.7 46.6 0.89 0.0 15.4 1.1 0.0
BA 0.2 0.1 61.2 37.7 0.71 0.0 93.1 6.7 0.2

Zakynthos
Greece

Site 5.1 52.5 32.5 3.7 6.17 - 3.2 - -
BA 2.3 14.6 81.8 1.3 0.02 - 100 - -

Kalamos
Greece

Site 2.0 40.6 24.2 24.7 8.36 - 20.0 - -
BA 3.3 25.1 33.9 36.3 1.37 100 - -

2.2. Sentinel-2 Dataset

The remote sensing data source used for algorithm training and exportability tests
was the Sentinel-2 (S2) multispectral instrument (MSI) which measures the Earth’s reflected
radiance in 13 spectral bands from VIS/NIR to SWIR with a spatial resolution ranging
from 10 m to 60 m (https://earth.esa.int/web/sentinel/home, last access 1 May 2021).

Over each site, pre-fire and post-fire S2 images were selected and downloaded by
considering the occurrence of the major fire events, the dates of available reference datasets
and the most clear sky conditions (Figure 2). Since post-fire S2 images simultaneous with
reference data were desirable but hardly feasible, post-fire S2 dates were selected as close
as possible to the date of reference fire perimeters (Table 2) to minimize bias in accuracy
metrics due to spectral signal changes and further burning occurring after the date of
reference perimeters. S2 images were downloaded as Level 1C from Copernicus Open
Access Hub (https://scihub.copernicus.eu/, accessed 1 May 2021) since at the time of
data processing no Level 2A products were available. S2 images were processed with
Sen2r [31] Toolbox developed in R and released under GNU General Public License version
3 (GPL-3) and available on GitHub (https://ranghetti.github.io/sen2r, accessed 1 May
2021): Level-1C products were corrected with Sen2Cor [32] to derive bottom of atmosphere
(BOA) reflectance in the VIS–NIR–SWIR wavelengths (S2 bands 2 to 12). In pre-processing
steps, pixels with high and medium cloud probability were masked out while low cloud
probability and cloud shadow pixels were retained to avoid discarding of burned pixels. In
Sen2r, masking of cloudy pixels was done with information from the scene classification
map (SCL) [33].

Table 2. Pre- and post-fire S2 dates over the six sites, reference date and source for the EMS products.

Study Site Pre-Fire S2 Post-Fire S2 EMS Date

EMS Source
(https://emergency.copernicus.eu/
mapping/list-of-activations-rapid,

access 1 May 2021)

Vesuvius—Italy 08/04 22/07 16/07 EMSR213
Leiria—Portugal 04/06 04/07 20/06 EMSR207

Calar—Spain 15/07 04/08 04/08 EMSR216
Huelva—Spain 11/06 01/07 27/06 EMSR209

Zakynthos—Greece 25/07 03/09 18/08 EMSR224
Kalamos—Greece 28/07 17/08 18/08 EMSR224

https://earth.esa.int/web/sentinel/home
https://scihub.copernicus.eu/
https://ranghetti.github.io/sen2r
https://emergency.copernicus.eu/mapping/list-of-activations-rapid
https://emergency.copernicus.eu/mapping/list-of-activations-rapid
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Figure 2. Pre- and post-fire S2 images (first and second column) and EMS fire grading maps (last column) for each site: 
Vesuvius, Italy, (a–c); Leiria, Portugal, (d–f); Calar, Spain (g–i); Huelva, Spain (j–l); Kalamos, Greece (m–o); Zakynthos, 
Greece (p–r). S2 images are displayed as RGB false color composites (SWIR2, NIR, red). Notice that for Kalamos and 
Zakynthos sites, Greece, no fire damage grading maps are available from EMS. 
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Figure 2. Pre- and post-fire S2 images (first and second column) and EMS fire grading maps (last column) for each site:
Vesuvius, Italy, (a–c); Leiria, Portugal, (d–f); Calar, Spain (g–i); Huelva, Spain (j–l); Kalamos, Greece (m–o); Zakynthos,
Greece (p–r). S2 images are displayed as RGB false color composites (SWIR2, NIR, red). Notice that for Kalamos and
Zakynthos sites, Greece, no fire damage grading maps are available from EMS.

Output pre-processed S2 images for the selected dates were available as bottom of
atmosphere (BOA) reflectance values in VIS–NIR–SWIR wavelengths (S2 bands 2 to 12)
resampled to a 10 m spatial resolution with a nearest neighbor method. The temporal
difference between post- and pre-fire (∆post-pre) reflectance was computed and, together
with post-fire reflectance, band values were used as input to a separability analysis to
identify features that were most suited for burned area identification. Hereafter, ∆ is
always meant as post-pre reflectance difference.

Training data were collected over the Vesuvius site, Italy, by photointerpretation
of false color RGB (SWIR–NIR–Red) composites of S2 images (Figure 2): polygons over
burned and unburned surfaces were extracted and labeled by considering as ‘burned’ only
areas that were affected by fires between the two S2 dates.

2.3. Reference Fire Perimeters

Burned area maps output from the proposed algorithm were validated by compar-
ison with fire reference perimeters obtained from independent source data. In all sites,
major fires occurred during the 2017 summer season, affecting, to a large extent, ecosys-
tems, houses and people, so the Copernicus Emergency Management Service (EMS) was
activated. EMS consists of the on-demand and fast provision (hours–days) of geospa-
tial information in support of emergency management activities and derived from pro-
cessing and analysis of satellite imagery acquired immediately after natural or human-
made disasters such as floods, droughts and forest fires. EMS products are delivered
as ready-to-print maps and geographic datasets (vector package). Two types of geo-
products are delivered: fire delineation (fire perimeter) and fire damage grading (burn
severity) derived from very high-resolution multispectral images. Fire damage grad-
ing is provided in four classes: “Completely Destroyed”, “Highly Damaged”, “Moder-
ately Damaged” and “Negligible to Slightly Damaged”. Quality checks are performed
by the European Commission Joint Research Centre (EC JRC) to assure fast delivery of
high-quality products. Further validation activities can be carried out by the EC JRC if
triggered by the European Commission and/or suggested by authorized users; further
information can be found in the ‘Online Manual for Rapid Mapping Products’ (https:
//emergency.copernicus.eu/mapping/ems/online-manual-rapid-mapping-products, last
access 1 May 2021).

Table 2 summarizes the reference dates of the EMS delineation and grading map
source (where available). EMS delineation maps were used as source datasets for fire
reference perimeters for all sites, except Vesuvius where EMS maps depicted the status of
the surface on 16 July 2017. Yet, ongoing fires made the time gap between the EMS and S2
post-fire date (22 July 2019) critical for the comparison and for the estimation of reliable
accuracy metrics (Appendix A, Figure A1). Hence, to generate a reference dataset suitable
for validation, very high-resolution (VHR) PlanetScope images [34] were used.

https://emergency.copernicus.eu/mapping/ems/online-manual-rapid-mapping-products
https://emergency.copernicus.eu/mapping/ems/online-manual-rapid-mapping-products
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PlanetScope is a constellation composed of more than 120 optical CubeSat 3U satellites
carrying a multi-spectral sensor with four bands: three in the visible wavelengths (b1:
455–515 nm; b2: 500–590 nm; b3: 590–670 nm) and one in the NIR wavelengths (b4:
780–860 nm) (https://earth.esa.int/web/guest/missions/3rd-party-missions/current-
missions/planetscope, accessed 1 May 2021). PlanetScope has a swath of about 25 Km and
a spatial resolution of 3 m for all bands [35]. Imagery is captured as a continuous strip of
single frame images known as ‘scenes’.

Pre- and post-fire PlanetScope images (22 April and 22 July 2017) were downloaded
and classified with a supervised random forest (RF) algorithm to extract fire perimeters
(Figure 3). The RF classifier is a machine learning algorithm that is largely used in remote
sensing [36,37]. It builds an ensemble of decision trees (CART) and merges them together
to yield a more accurate and stable prediction than any single tree alone [38]. The map gen-
erated at high resolution (~3 m) can be considered spatial explicit ground truth information
for the assessment of S2 products (namely 10 m resolution).
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3. Methods

The proposed algorithm relies on a multi-criteria approximate reasoning approach
that aggregates information brought by multiple features into synthetic global degrees of
evidence of burn. Each input feature could be used as source for deriving evidence of burn
conditions (partial evidence) but aggregation reinforces evidence by exploiting the conver-
gence of partial evidence from multiple possibly redundant sources and by compensating
the inconsistency/conflict of evidence from multiple possibly complementary sources. This
step allows strengthening of the likelihood of the presence of burn and reduces confusion
between burned areas and surfaces with similar spectral characteristics [26]. Aggregation
was carried out with ordered weighted averaging operators (OWAs): a parameterized
family of soft-mean-like aggregation operators. Different operators were used to represent
attitudes ranging between pessimistic (the maximum extent of the phenomenon to mini-
mize the chance of underestimating: modeling a compensative aggregation to integrate
complementarities of multiple criteria) and optimistic (minimize the chance of overesti-
mating: modeling a concurrent aggregation to integrate mutual reinforcement of multiple
criteria). Layers of global evidence derived with different OWAs were input to a region
growing (RG) algorithm. The approach was applied independently to each pixel of the
input RS images as follows:

1. Selection of the input features;
2. Definition of the soft constraints (membership function, MF) for each input feature

from training data and application to derive partial evidence of burn (MD);
3. Selection of OWAs, according to their semantic, for the soft integration;
4. Computation of the global degree of evidence of burn for generating seed and growing

layers;

https://earth.esa.int/web/guest/missions/3rd-party-missions/current-missions/planetscope
https://earth.esa.int/web/guest/missions/3rd-party-missions/current-missions/planetscope
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5. Implementation of the RG algorithm;
6. Segmentation of the RG output score to derive burned area maps.

The algorithm was applied to vegetated areas, while not burnable (bare soil and urban
classes) and agricultural areas were masked out based on the CLC2012 land cover map.
Output burned area maps were compared to reference datasets for estimating accuracy
metrics. Steps (1) to (6) were applied over the training site (Vesuvius, Italy) for the selection
of the best input features, the definition of the membership functions and the customization
of the RG algorithm. Exportability was tested over the other sites by applying steps (4)
to (6) to assess the algorithm’s performance over geographic locations with different
environmental conditions compared to those of the training site.

3.1. Separability Analysis

A separability analysis was preliminarily carried out over the Vesuvius training site for
selecting the most suitable bands for the discrimination of burned and unburned surfaces.
Separability metric M (1) was computed from frequency distributions of training pixels [39].

M =

∣∣∣∣µu − µb
σu + σb

∣∣∣∣ (1)

where µu, µb are mean values and σu, σb are standard deviation values of the unburned
(u) and burned (b) classes in the training data. Spectral bands with M > 1 were selected as
input features for the computation of the partial evidence of burn.

3.2. Definition of the Membership Functions

Membership functions (MFs) are soft constraints that can be defined with different
approaches according to the available expertise and training data [40]. Here, soft constraints
were defined from training data over the Vesuvius site for each input feature identified by
the separability analysis. MFs are sigmoid Functions (2) used to convert a pixel’s values
of the input feature into degrees of membership to the burned class (membership degree,
MD), i.e., the partial evidence of burn that is a score in the range [0, 1]. The extremes of
the sigmoid-shaped MFs were defined based on percentiles of the unburned and burned
histogram distributions, respectively [19].

f (x) =
L

1 + e−k(x−x0)
(2)

where L is the upper limit of the function, in this case L→1 to quantify the maximum degree
of membership, k is the curve’s slope and x0 is the inflection point. The two parameters k
and x0 are estimated by using percentiles.

Based on Roteta et al. (2019) [19], we selected a different shape for the sigmoid
functions depending on the spectral characteristics of burned areas in the specific input
feature: a z-shaped function or s-shaped function. The upper limit of the function f (x)→1
represents the greatest partial evidence of burn defined by a pixel’s values of the input
features below and above the 50th percentile of the frequency distribution function of
the burned training pixels for z-shaped and s-shaped functions, respectively (Figure 4).
On the opposite side, f (x)→0 (no partial evidence of burn) and it is given by the 10th
and 90th percentile of the frequency distribution function of the unburned training pixels
for the z-shaped and s-shaped function, respectively. Training pixels for burned and
unburned categories, extracted over the Vesuvius training site, were used to estimate k and
x0 parameters: a z-shaped function was used when fire occurrence led to a decrease in
the pixel’s value in a given input feature, for example, in the NIR S2 reflectance band. On
the contrary, an s-shaped function represents the case when per-pixel input feature value
increases over a burned area.
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3.3. OWA Operators for Computing Global Evidence

Layers of partial evidence were integrated to derive global scores of burn evidence
with ordered weighted averaging (OWA) operators [28]. An OWA of dimension N (OWA:
[0, 1]N → [0, 1]), where N is the number of input values [d1, . . . , dN] to aggregate, has a
weighting vector W = [w1, . . . ,wN], with ∑i=1,...,N wi = 1, so that it computes an aggregated
output value a ∈ [0, 1] by applying the following formula [41]:

a = OWA([d1, . . . , dN ]) =
N

∑
i=1

wi ∗ gi (3)

where gi is the ith largest value among the input d1, . . . ,dN.
Input values d1, . . . ,dN, are rearranged from the highest to the smallest; reordering

is a key element of OWA operators, meaning that a specific weight wi is not univocally
associated to the specific ith input but rather it is associated with the ith position of the
reordered inputs [28]. Since, in our case, OWAs aggregated the MDs expressing partial
evidence of burn provided by single features, in each pixel, a different reordering of the
MDs may have occurred so different features contributed to determining the aggregated
value.

Different operators were tested to represent decision attitudes between pessimistic
(the maximum extent of the phenomenon to minimize the chance of underestimating)
and optimistic (to minimize the chance of overestimating). For example, a weighting
vector W of the OWA operator with the last weight wN = 1 considers only the contribution
of the smallest input value, i.e., the minimum partial evidence degree after reordering;
hence, it implements an optimistic attitude by computing the minimum total burned area
(AND aggregation). Conversely, by setting the first weight w1 = 1, the maximum partial
evidence will determine the largest burned area, thus modeling the pessimistic case (OR
aggregation). Intermediate cases, in which all or most components of W are not null, model
soft integrations.

In this work, we compare the results obtained by applying five different OWA opera-
tors with the following weighting vectors:

WAND = [0, . . . , 0, 1] thus OWAAND([d1, . . . , dN ]) = min{d1, . . . , dN}
WOR = [1, . . . , 0, 0] thus OWAOR([d1, . . . , dN ]) = max{d1, . . . , dN}
WAlmostAND = [0, . . . , 0.5, 0.5] thus OWAAlmostAND([d1, . . . , dN ]) =

1
2 min{d1, . . . , dN}+ 1

2 min{{d1, . . . , dN} − {min{d1, . . . , dN}}

WAaverage =
[

1
N , . . . , 1

N

]
thus OWAAverage([d1, . . . , dN ]) =

1
N

N
∑

j=1
dj

WAlmostOR = [0.5, 0.5, 0, . . . , 0] thus OWAAlmostOR([d1, . . . , dN ]) =
1
2 max{d1, . . . , dN}+ 1

2 max{{d1, . . . , dN} − {max{d1, . . . , dN}}

The output of an OWA operator applied to all pixels in an image is a gray-level image
whose pixels take values in [0, 1], where each pixel’s value is the global evidence of burn:
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in Figure 5, this step performs the dimension reduction from N input features (MD scores
for each pixel) to 1 (synthetic score). OWA layers are then input to the region growing
algorithm.
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3.4. Region Growing

The RG algorithm, implemented in Harris IDL language (https://www.l3harrisgeospatial.
com/docs/region_grow.html, last access 1 May 2021), needs as input a seed layer (OWAseed)
and a growing layer (OWAgrow) and two conditions (thresholds) on OWAseed and OWAgrow
to identify seed pixels and to delimit maximum growing boundaries. Seed and growing
layers are selected among the layers of global evidence generated with distinct OWAs: one
concurrent for the seed layer whose segmentation is set to minimize commission errors,
and one compensative for the grow layer, whose segmentation is set to minimize omission
errors by expanding seeds. Hence, seeds are extracted from the most restrictive OWAAND
while growing boundaries are derived from less restrictive OWAs (OWAOR, OWAAverage,
OWAAlmostOR). While the requirement on the seed layer is very high, the strategy for
identifying candidate boundaries (i.e., the limits for the region growing) can be looser, thus
allowing the algorithm to also expand over pixels with low burn signal but connected to
more reliable pixels, i.e., the seeds (e.g., partially burned pixels along the perimeter of the
burned patches). The RG algorithm is an iterative algorithm that at each iteration expands
the seed pixels: starting from initial seeds (pixel with OWAAND above a given threshold),
it searches the 8-neighbor connected pixels and it includes in the seed layer only those
pixels with OWAgrow > 0. These expanded pixels update the seeds for the next iteration
cycle. The iteration ends when boundaries of maximum growth is reached in the OWAgrow

https://www.l3harrisgeospatial.com/docs/region_grow.html
https://www.l3harrisgeospatial.com/docs/region_grow.html
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layer. The output layer is a gray-level image (RGscore ∈ [0, 1]) whose values can be further
segmented to generate the maps of burned/unburned areas (binary maps).

Preliminary analysis carried out over the training site allowed the definition of the
implementation conditions of the RG algorithm: thresholds for seed and growing layers as
well as a threshold for the segmentation of the RGscore. The criterion set for seed selection
is OWAAND > 0.9; no change in burned area mapping accuracy was observed for different
thresholds applied to OWAAND due to its frequency distribution with a bimodal shape
centered over extreme values 0 (no evidence of burn) and 1 (full membership to the burned
class, greatest evidence of burn) (not shown). For the growing layer, different conditions
on the value of OWAgrow were analyzed to identify the maximum growing boundary (S.2,
S.3), showing that the highest accuracy is achieved when all pixels with not null evidence
are retained (OWAgrow > 0). Finally, in the segmentation step on RGscore, the analysis
of variable thresholds showed that RGscore > 0 provides the greatest accuracy (S.2, S.3).
As a result of these preliminary analyses, Figure 5 shows the flowchart of the algorithm
proposed in this work.

3.5. Validation

The accuracy of the output burned area maps was estimated by comparison with
reference fire perimeters (i.e., fire polygons from RF classification of PlanetScope images
for the Vesuvius site and Copernicus EMS fire delineation layers). Over the Vesuvius
site, accuracy assessment was part of the training phase for the definition of the best
implementation criteria of the algorithm. Over the other sites, accuracy assessment of the
burned area maps obtained by applying the algorithm in its final form contributed to the
evaluation of the exportability. In both cases, validation was carried out by estimating
metrics from the confusion matrix (commission error, omission error, Dice coefficient and
relative bias) [42]. In order to build the confusion matrix, score map output from the RG
algorithm was segmented to extract burned/unburned areas in a binary form (RGscore > 0,
S.3). In the Results section, accuracy metrics are presented and discussed as a function of
the OWAgrow layer.

4. Results
4.1. Separability and Membership Functions

Results of the separability analysis depict the distance between burned and unburned
classes, as observed in the post-fire and ∆post-pre S2 reflectance bands for the Vesuvius
site (Table 3); M > 1 highlights a good separability that is, in this case, achieved by S2
post-fire red–edge (RE2, RE3) and NIR bands and their temporal difference (∆post-pre). S2
SWIR2 post-fire reflectance provides very poor separability (M < 0.1) that increases when
temporal difference (∆SWIR2) is computed, suggesting that the difference with respect to
pre-fire unburned conditions enhances separability; the opposite occurs for the S2 SWIR1
band. Reflectance of burned surfaces is the result of a mixture of bare soil, unburned
vegetation and combustion products (ash, charcoal) that are present on the surface after a
fire. The combustion of vegetation significantly influences the post-fire spectral signature
by generally decreasing reflectance (µb), thus enhancing the difference with respect to
unburned conditions (µu), especially in the NIR wavelengths. For longer wavelength
bands (i.e., SWIR2), the spectral reflectance of dry unburned vegetation (green vegetation
proportion absorbing radiation due to water content) and burned surfaces could be equally
low, thus reducing separability (lower M value). The separability power of SWIR wave-
bands in the temporal change detection algorithm has also been widely exploited as an
indicator of burn severity although the sensitivity of these bands has been found to vary
geographically [43]. Red–edge bands show good separability for wavelengths longer than
740 nm (RE2 and RE3), and are certainly of great interest, although these bands are not
present on all space-borne sensors and they are mainly selected for vegetation chlorophyll
content estimation and monitoring [44].
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Table 3. Separability metric M measuring the distance between burned and unburned surface spectral
signal in the post-fire and post-pre fire reflectance of the S2 bands. Bold numbers highlight values
M > 1 of the selected features.

S2 Band M Post fFire M ∆Post Fire-Pre Fire

Green (b3) 0.577 0.027
Red (b4) 0.321 0.454
RE1 (b5) 0.879 0.214
RE2 (b6) 2.091 1.571
RE3 (b7) 1.917 1.561
NIR (b8) 1.812 1.530
SWIR1 (b11) 0.873 0.099
SWIR2 (b12) 0.029 1.100

Based on these results, the following seven input layers were selected as features for
the implementation of the algorithm (Figure 5): post-fire NIR, post-fire RE2 and RE3 and
temporal difference (∆post-pre) of the same three bands and additionally of SWIR2. From
the same training dataset, statistics for burned and unburned surfaces were computed for
the estimation of the k and x0 parameters of the membership functions (Table 4). MFs map
the input feature’s values into the [0, 1] domain where values closer to 1 (0) represent the
greatest (lowest) likelihood of being burned. Among the selected features, only ∆SWIR2
was properly described by an s-shaped function since, according the training dataset, over
burned areas, ∆SWIR2 > 0.

Table 4. Percentiles of the frequency distribution functions extracted from the training pixels of the
study area and used for defining MFs.

S2
Band

Burned Unburned MF Parameters
10% 50% 90% 10% 50% 90% k x0

PostRE2 0.058 0.074 0.102 0.147 0.220 0.286 −125.89 0.111
PostRE3 0.061 0.077 0.112 0.156 0.249 0.339 −115.77 0.116
PostNIR 0.054 0.073 0.115 0.147 0.264 0.370 −123.66 0.109

∆RE2 −0.126 −0.098 −0.063 −0.021 0.012 0.088 −120.29 −0.06
∆RE3 −0.158 −0.124 −0.075 −0.026 0.012 0.108 −93.721 −0.075
∆NIR −0.180 −0.139 −0.085 −0.034 0.011 0.111 −87.14 −0.086

∆SWIR2 0.025 0.063 0.114 −0.030 0.0084 0.024 236.98 0.044

4.2. Partial and Global Evidence of Burn

MFs are applied to the input features to derive maps of partial evidence of burn (MD =
membership degree score). Figure 6 shows the partial evidence of burn for the training site:
greater MD values represent higher likelihood of burn (from blue to yellow in the figure)
and the frequency distribution of pixel values varies with the input feature according to
its sensitivity in detecting different burned conditions. Areas located in the southernmost
regions of the park that were severely affected by fires during summer 2017 are consistently
identified by all features with the greatest values (yellow regions). Differences in the partial
evidence of burn brought by single features are mainly observed in the northern regions;
in fact, each feature is sensitive to different characteristics of the burned surfaces and/or
different degrees of burn. In the figure, non-forested areas within the border of the national
park are masked out and shown in gray.

Global evidence of burn is computed with OWA operators integrating partial evidence,
as shown in Figure 7 for the Vesuvius training site. OWA score ranges within [0, 1], with
the greatest values showing pixels with the highest likelihood of being burned according to
convergent evidence of burn from the input layers. All OWA maps highlight regions of the
Vesuvius site most affected by fires in the southernmost areas, where all input layers agree
on identifying higher partial evidence of burn. The ‘concurrent–strict’ to ‘complementary–
relaxed’ integration conditions implemented by the different OWAs supported the choice of
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seed and growing layers for the RG algorithm: we selected OWAAND as the seed layer com-
bined with average and OR-like OWAs as the growing layer (OWAAverage, OWAAlmostOR
and OWAOR). Once seed pixels were selected (OWAAND > 0.9), the RG algorithm expanded
the initial selection in an iterative way over the OWAgrow layer in order to also capture
pixels with lower values of global evidence (less likely to be burned).
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4.3. RG Burn Score and Validation

Figure 8 shows the RGscore (top row) and agreement (bottom row) maps that depict
the spatial distribution of agreement between the two-class algorithm’s output and the
reference datasets: full agreement over burned (orange) and unburned classes (white) as
well as errors of omission (green) and commission (blue).
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In the agreement maps, omission errors in the northern slopes of the volcano are
mainly produced by the lack of seed pixels in the OWAseed layer (Figure 7a), likely due to
low-intensity and/or below-canopy fires; these regions are common to all output RGscore
maps since the omission error descends from the seed layer rather than the growing layer.
Commission errors are larger in the maps produced with OWAAlmostOR and OWAOR that
implement ‘complementary–relaxed’ aggregation. Accuracy metrics quantifying the errors
depicted in Figure 8 are summarized in Table 5 together with total estimated hectares of
area burned (Tot BA).

Table 5. Accuracy metrics (oe = omission error, ce = commission error, dc = Dice coefficient, relB = rel-
ative bias) over the Vesuvius site for the three (OWAAverage, OWAAlmostOR and OWAOR) growing
layers. The total amount of burned area from the algorithm (Tot BA RG) and the reference (Tot BA
REF) are also given.

OWAgrow oe ce dc RelB (%) Tot BA
RG (ha)

Tot BA
REF (ha)

Average 0.15 0.12 0.87 +1.82 1676.39
1744.07AlmostOR 0.10 0.20 0.85 −5.81 1959.69

OR 0.09 0.22 0.84 −7.70 2029.95
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Results show that omission error is below 0.15 while commission error is in the
range [0.12–0.22]. Commission is greater than omission for OWAAlmostOR and OWAOR
growing layers, while OWAAverage leads to the greatest underestimation. Over the training
site, total estimated burned area from the RG algorithm ranges between 1676.39 ha and
2029.95 ha, while the reference dataset provides 1744.07 ha of area burned. Saulino et al.
(2020) [45] estimated that the area burnt by summer wildfires in 2017 in Vesuvius National
Park amounted to 3350.23 ha, although this estimate covers the entire summer season by
including fires that occurred later than the S2 post-fire date, 22 July.

4.4. Exportability Results

The algorithm developed over the Vesuvius site was applied to the sites selected for
testing and located in Spain (2), Portugal (1) and Greece (2) with the following criteria:

1. Seed layer: OWAAND;
2. Seed selection: OWAAND > 0.9;
3. Growing layers: OWAAverage, OWAAlmostOR and OWAOR;
4. RG algorithm: OWAgrow > 0;
5. Burned area mapping: RGscore > 0.

Figure 9 shows the agreement maps for the five sites and the corresponding accuracy
metrics are summarized in Figure 10 and compared to metrics estimated for the training
site. Increasing commission errors for OR-like operators (ce > 0.15) are visible in Calar and
Huelva sites, Spain. In particular, in the Calar site, the OWAOR growing layer generates a
significantly greater commission error (ce > 0.30) by mistakenly classifying as burned a
region of woodland–shrubland located in the northeastern part of the site. Additionally,
in the Zakynthos site, Greece, commission error for the OR-like OWA operators is greater
than OWAAverage and mainly located in sparsely vegetated land covers. Commission is
greater than omission in all sites except Kalamos, Greece, and Leiria, Portugal. In all
sites, the difference in the estimates of the Dice coefficient for the three growing layers
is negligible while relative bias shows values significantly below zero (overestimation)
for Vesuvius, Calar and Huelva sites and OR-like operators confirm the ‘complementary–
relaxed’ aggregation of these operators. Estimates of the relative bias clearly show that
OWAAverage provides burned area maps that tend to underestimate the area actually
burned; again, the opposite occurs for OWAOR. In terms of relB, the Zakynthos and Leiria
sites show the lowest values and no difference among the three growing layers tested.
Finally, a negligible difference is observed in accuracy metrics obtained over the Leiria site,
Portugal, probably due to the clear burn spectral signal produced by intense and severe
fires affecting forest cover; over this site, we obtained the overall greatest Dice coefficient
and lowest relative bias.
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and Zakynthos, Greece (o–q). The four classes represent: correctly classified burned pixels (orange), correctly classified
unburned pixels (white), pixels mistakenly classified as burned—commission (blue) and pixel mistakenly classified as
unburned—omission (green).

A regression analysis was carried over a grid layer spacing of 500 m × 500 m to
compare the proportion of grid cells labeled as burned in the RG output and the reference
maps. This analysis allows a more robust quantitative evaluation of the agreement between
classified and reference data [46] by reducing the effect of error compensation. The results
are displayed as regression scatter plots and the agreement was quantified by regression co-
efficients and error metrics: the coefficient of determination (R2) and the root mean squared
error (RMSE) computed from the proportion and the total amount (hectares) of area burned
within each grid cell (Figure 11). Slopes of the linear regression are generally very close to
1, showing a more than satisfactory agreement between classified and reference maps; in
particular, slope values slightly below 1 can be observed for the Leiria, Calar and Kalamos
sites, pointing out an underestimation of the area burned in S2 maps; on the contrary,
overestimation occurs for the Zakynthos site (slope > 1.07). Indeed, underestimation error
is rather expected when burned area mapping is carried out by coarser-resolution data [46]
despite the contribution of RG in reducing commission (Figure 12). These trends appear to
be least influenced by the OWAgrow layer that is selected in the RG (columns in Figure 11).
Only Vesuvius and Huelva show the slope of the regression model changing from negative
to positive with OWAgrow; indeed, commission errors brought by the OR-like OWAs lead
to a slope > 1. The R2 values confirm the very good agreement with lower values obtained
over the Vesuvius training site and with OR-like operators (R2~0.85). By looking at the
RMSE, the best results are obtained by applying different OWAs in the different sites:
OWAAverage yields the best results in Vesuvius, Huelva and Zakynthos, OWAOR performs
best in Kalamos and Leiria, while OWAAlmostOR performs best in Calar. Hence, it is not uni-
vocally identified which OWAgrow layer performs best across the sites, although OWAOR
should be discarded due to the high overestimation errors. By choosing OWAAverage or
OWAAlmostOR, the average grid cell RMSE is below 2 ha. As highlighted in Figure 9, the
greatest commission errors occur over the Calar site, Spain, and with OWAOR growing
layer; this error is represented in the scatter plot by grid cells along the y-axis (BA reference
cell proportion = 0).
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By observing, in particular, scatter plots for the Leiria and Huelva sites, a large number
of grid cells are fully burned according to the reference (BA reference cell proportion along
the x-axis = 1) but the burn proportion detected by the RG algorithm is largely variable (BA
RG cell proportion along the y-axis) with some cases of full omission. An in-depth analysis
of these cells by visual inspection of S2 RGB color composite images (RGB = SWIR−NIR−
Red) revealed that disagreement is mainly due to unburned islands and/or linear elements,
such as roads, that are included as burned in the EMS polygons. Moreover, discrepancy
between RG and reference perimeters is also due to differences in the reference date of the
pre-fire image. The EMS pre-fire images can date back to previous years while S2 pre-fire
images in this study belong to the same year as the fire event (2017); in fact, to limit the
influence of changes of surface conditions due to other phenomena and to maximize the
burned/unburned separability, we kept a time gap between pre- and post-fire S2 images in
the range of 1–2 months. Some examples area given in the (Appendix A, Figure A4).
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Figure 11. Scatter plot of the proportion of 500 m × 500 m grid cell mapped as burned in the RG output and the reference
dataset for each site and OWAgrow layer. Scatter plots are displayed as counts of cells for 0.05 step along the x- and y-axis to
better represent overlapping points and with a logarithmic color scale. The black dotted line is the 1:1 line while the gray
continuous line is the linear regression model. The coefficient of determination (R2), slope of the regression linear model
(Slope), root mean squared error (RMSE) and total number of cells (N cells) are also shown.
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the training site for burned area maps obtained with the RG algorithm (with three cases of growing layer, OWAAverage,
OWAAlmost_OR and OWAOR) and from segmentation of the OWA global evidence (from all tested OWAs).

5. Discussion

The algorithm described here relies on S2 spectral bands and their temporal differ-
ence (pre-fire to post-fire reflectance change) in mapping burned areas in Mediterranean
ecosystems. We chose to rely on spectral bands rather than indices for the more robust
relationship between reflectance and surface properties; indeed, spectral indices might pro-
vide local good discrimination but their performance can vary in space and time [47]. The
approach integrates burn evidence from those S2 bands and their temporal differences that
showed the greatest sensitivity in discriminating burned and unburned surfaces. Among
the S2 spectral bands, the separability metric M identified red–edge (bands 6 and 7) and
NIR (band 8) as the most suitable bands while the short-wave infrared domain showed
poor separability (M < 1) with the lowest values for SWIR2 (band 12). In this wavelength
domain, separability improves slightly above the threshold value (M = 1.1) only when
temporal difference (∆post-pre) is computed and for the longer wavelength SWIR2 S2 band.
Additionally, ∆red–edge and NIR reflectance showed high separability (M > 1.5), although
lower than post-fire reflectance (M > 1.8), thus, suggesting that, in the case of a lack of
temporal series and/or suitable S2 image pairs, single-date images could provide accu-
rate mapping results. This confirms previous findings obtained with Landsat images by
Stroppiana et al. (2012) [26].

Seven features (PostRE2, PostRE3, PostNIR, ∆RE2, ∆RE3, ∆NIR, ∆SWIR2) were therefore se-
lected as input for the algorithm that relies on approximate reasoning to model uncertainty
on burned areas through the convergence of evidence of burned conditions. In this frame-
work, pixel-based partial burn evidence is the likelihood of observing burned conditions
in a given single spectral feature and the global evidence is given by the complementary–
concurrent aggregation of partial evidence degrees. This way, self-adaptation of the al-
gorithm to slightly similar areas and context is achieved, conferring robustness to the
approach. Prior to aggregation, input features are interpreted in terms of burn likelihood
by membership functions (MFs); similarly to other works proposed in the literature [19], we
chose sigmoid-shaped functions to rescale the domain of each input feature into a common
domain [0, 1] and these functions were defined from training sets in a semi-automatic way.
This improvement makes the implementation of the burned area mapping algorithm less
dependent on supervision and/or expert intervention compared to the previous version
where membership functions were defined in a fully expert driven way [26]. Tests carried
out on the exportability to new sites (4.4) confirmed that MFs are robust and provide
reliable results in similar ecological conditions (Mediterranean ecosystems of Southern
Europe). If other new regions have similar characteristics in terms of fire regime and land
cover, the algorithm could be applied in its present form since it is robust and self-adaptive,
stable and valid. The algorithm could be further automatized with MFs defined from
training that are automatically extracted, for example, from active fire points in a hybrid
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approach able to combine multi-source information to add new evidence for burned area
classification [10,16].

Integration of partial evidence to derive global scores was achieved with ordered
weighted averaging (OWA) operators; OWA layers were then used as input to a region
growing (RG) algorithm, which is largely exploited for image segmentation to balance
omission and commission errors [25]. An initial seed layer, in which burned pixels are
identified to minimize commission errors (i.e., in this case using an AND-like OWA), ex-
pands by adding new neighboring pixels belonging to a grow layer, identified to minimize
omission errors (i.e., in this case OR-like OWA). The improved performance of the algo-
rithm achieved with RG is presented in Figure 12 for the Vesuvius training site. First, the
implementation of the RG combined with OWA significantly reduces relative bias (relB)
that quantifies the difference between overestimation and underestimation. Moreover, RG
reduces the higher omission error brought by AND-like OWAs (more restrictive conditions
on the convergence of evidence) while it reduces commission of the OR-like operators. The
balance between these two types of errors, as quantified by the Dice coefficient (dc), shows
that RG brings significant improvement with respect to extreme OWAAND and OWAOR
accuracy (dc~0.6).

Hence, two layers of global evidence were selected as input to the RG algorithm for
seed selection and growing. Seeds were identified as pixels where OWAAND > 0.9 to guaran-
tee the highest reliability relying on the OWA operator able to implement ‘concurrent–strict’
integration conditions. On the other hand, the grow layer is selected among operators
implementing “partially complementary–relaxed” (average) and “complementary–relaxed”
(OR-like) aggregation. The output of the RG algorithm (RGscore) is a continuous layer in
[0, 1] that can be segmented to deliver a binary two-class burned/unburned map to be
compared to reference fire perimeters (i.e., validation).

Preliminary analysis over the Vesuvius training site (Appendix A, Figures A2 and A3)
showed that all pixels in the OWAgrow layer could be retained as potentially burned
(OWAgrow > 0) and all evidence values from the RG algorithm contribute to burned area
mapping (RGscore > 0). Under these conditions, estimated accuracy metrics are commission
error < 0.22, omission error < 0.15, Dice coefficient > 0.84.

Over the exportability sites, accuracy metrics fall in the range of values: oe [0.02, 0.15],
ce [0.01, 0.22], dc [0.84, 0.97] and relB [−0.077, 0.040]. The range of values is given by the
three OWAs used as potential layers for growing boundaries. Accuracy metrics are more
than satisfactory for a semi-automatic burned area mapping algorithm covering a wide
range of fire and land cover conditions in Mediterranean ecosystems. Where fire severity is
greatest, such as in the case of the Leiria site, Portugal, we observed that all three growing
layers analyzed provided comparable accuracy.

In the literature, Pulvirenti et al. (2020) [48] proposed an automated algorithm based
on S2 spectral indices over forest areas and achieved an average commission error of 6.3%
and omission error of 12.7%. Similarly, Smiraglia et al. (2020) [49] obtained commission
error = 33% and omission error = 24% by also exploiting S2 spectral indices. Furthermore,
Seydi et al. (2021) [50] mapped burned areas with a random forest algorithm (proved to
be the algorithm providing greatest accuracy) with ce = 8.7% and oe = 9.2%. Hence, the
performance of the algorithm proposed here is consistent with published results.

The regression analysis over 500 m × 500 m grid cells confirmed the high spatial accu-
racy achieved over all sites and, in particular, over Kalamos and Zakynthos, Greece (R2~1,
RMSE < 0.1 ha). Overall accuracy metrics (Figure 10) showed that the algorithm tends to
overestimate, with commission errors larger than omissions; the greatest overestimation
rate being from the OWAOR (RMSE > 3 ha), as also shown by the agreement maps (Figure 9,
third column). In these cases, areas erroneously classified as burned are mainly located
in sparsely vegetated land covers. On the contrary, disagreement between reference and
S2 classification and resulting in large omission errors occurred in the Leiria and Huelva
sites. In these cases, the regression analyses highlighted local omission errors better than
the overall accuracy metrics: visual comparison of RGB S2 composite images pointed out
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that these errors are due to unburned islands and linear patterns (e.g., roads) that are
erroneously included in the reference burned polygons. Additionally, differences in pre-fire
image date for S2 (our algorithm) and EMS products could lead to biased accuracy metrics;
an example is reported in the (Appendix A, Figure A4). Although EMS delineation maps
proved to be suitable source of information for validation [18] by delivering reliable fire
perimeters in rapid mapping mode, inconsistency might occur locally. Since no detailed
information is available on the accuracy of the EMS fire perimeters, we could not further
investigate this issue.

From the algorithm point of view, even if a single OWAgrow layer was not identified
as the best performing across all sites, we can be confident in stating that OWAAverage and
OWAAlmostOR are the best ones. If the characteristics of a new region are known in advance
and comparable to those of one of our test sites, we could select the best OWA case by case.

6. Conclusions

We propose a burned area mapping algorithm that is an improvement over a previous
version [26] in several aspects:

1. Customization to S2 imagery for implementing a convergence of evidence approach;
2. Exploitation of additional spectral bands available from the S2 MSI instrument;
3. Automatic interpretation of input features (e.g., post-fire and ∆post-pre reflectance)

through membership functions (MFs) defined from training statistics (partial evidence
of burn);

4. Tests of OWA operators from AND-like (for seed selection) to OR-like (for growing
layer) integration criteria;

5. Implementation of OWA global evidence in a region growing (RG) algorithm;
6. Accuracy assessment over a wide range of conditions/locations in Southern Europe

for the 2017 summer fire season.

Accuracy over training and exportability sites confirmed that the semi-automatic
algorithm is robust and self-adaptive over different land cover and fire regime conditions
in Mediterranean landscapes. Overall, accuracy metrics (oe < 15%, ce < 22%, dc > 0.84)
are consistent with values from the literature for regional applications, although effort
should be made in reducing commission errors. A key issue in the validation activity is the
availability of reference fire perimeters comparable in space and time with the burned area
maps from classification that could induce biased estimation of accuracy metrics. Finally,
future activity will be focused on the exploitation of the output burn evidence from OWA
operators and RG (RGscore) as an indicator of variable degrees of burn severity.
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