Spatio-Temporal Distribution of Ground Deformation Due to 2018 Lombok Earthquake Series
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Magnitude of Displacement in Northern Part of Lombok Island
3.2. Average Magnitude of Displacement at Local Scale
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Irsyam, M.; Hanifa, N.R.; Djarwadi, D. Executive summary rangkaian Gempa Lombok 2018. In Kajian Rangkaian Gempa Lombok Provinsi Nusa Tenggara Barat 29 Juli 2018 (M6.4), 5 Agustus 2018 (M7.0), 19 Agustus 2018 (M6.9); Irsyam, M., Hanifa, N.R., Djarwadi, D., Eds.; Pusat Penelitian dan Pengembangan Perumahan dan Pemukiman, Badan Penelitian dan Pengembangan. Kementerian Pekerjaan Umum dan Perumahan Rakyat: Bandung, Indonesia, 2018; pp. XIV–XXXI. [Google Scholar]
- Papadopoulos, G.A.; Ganas, A.; Agalos, A.; Papageorgiou, A.; Triantafyllou, I.; Kontoes, C.; Papoutsis, I.; Diakogianni, G. Earthquake Triggering Inferred from Rupture Histories, DInSAR Ground Deformation and Stress-Transfer Modelling: The Case of Central Italy During August 2016–January 2017. Pure Appl. Geophys. 2017, 174, 3689–3711. [Google Scholar] [CrossRef]
- Castaldo, R.; De Novellis, V.; Solaro, G.; Pepe, S.; Tizzani, P.; De Luca, C.; Bonano, M.; Manunta, M.; Casu, F.; Zinno, I.; et al. Finite element modelling of the 2015 Gorkha earthquake through the joint exploitation of DInSAR measurements and geologic-structural information. Tectonophysics 2017, 714–715, 125–132. [Google Scholar] [CrossRef]
- Ramdani, F.; Setiani, P.; Setiawati, D.A. Analysis of sequence earthquake of Lombok Island, Indonesia. Prog. Dis. Sci. 2019, 4, 100046. [Google Scholar] [CrossRef]
- Lakhote, A.; Thakkara, M.G.; Kandregula, R.J.; Jani, C.; Kothyari, G.C.; Chauhan, G.; Bhandari, S. Estimation of active surface deformation in the eastern Kachchh region, western India: Application of multi-sensor DInSAR technique. Quat. Int. 2020, 575–576, 130–140. [Google Scholar] [CrossRef]
- Markogiannaki, O.; Karavias, A.; Bafi, D.; Angelou, D.; Parcharidis, I. A geospatial intelligence application to support post-disaster inspections based on local exposure information and on co-seismic DInSAR results: The case of the Durres (Albania) earthquake on November 26, 2019. Nat. Hazards. 2020, 103, 3085–3100. [Google Scholar] [CrossRef]
- Wibowo, S.B.; Lavigne, F.; Mourot, P.; Métaxian, J.-P.; Zeghdoudi, M.; Virmoux, C.; Sukatja, C.B.; Hadmoko, D.S.; Mutaqin, B.W. Coupling between Video and Seismic Data Analysis for the Study of Lahar Dynamics at Merapi Volcano, Indonesia. Geomorphol. Relief Process. Environ. 2015, 21, 3–251. [Google Scholar] [CrossRef] [Green Version]
- Wibowo, S.B. Utilisation des classifications d’Oldeman et de Schmidt-Ferguson pour l’aptitude culturale des sols à Batu, Indonésie. In Hydrocomplexity: New Tools for Solving Wicked Water Problems; Khan, S., Savenije, H.G.H., Demuth, S., Hubert, P., Eds.; IAHS Publication: Wallingford, UK, 2010; pp. 181–182. [Google Scholar]
- Ville, A.; Lavigne, F.; Virmoux, C.; Brunstein, D.; De Bélizal, E.; Wibowo, S.B.; Hadmoko, D.S. Geomorphological evolution of the Gendol valley following the October 2010 eruption of Mt Merapi (Java, Indonesia). Geomorphol. Relief Process. Environ. 2015, 21, 235–250. [Google Scholar] [CrossRef]
- Terrone, M.; Piana, P.; Paliaga, G.; D’Orazi, M.; Faccini, F. Coupling Historical Maps and LiDAR Data to Identify Man-Made Landforms in Urban Areas. ISPRS Int. J. Geo. Inf. 2021, 10, 349. [Google Scholar] [CrossRef]
- Samodra, G.; Hadmoko, D.S.; Wicaksono, G.N.; Adi, I.P.; Yudinugroho, M.; Wibowo, S.B.; Suryatmojo, H.; Purwanto, T.H.; Widartono, B.S.; Lavigne, F. The March 25 and 29, 2016 landslide-induced debris flow at Clapar, Banjarnegara, Central Java. Landslides 2018, 15, 5–985. [Google Scholar] [CrossRef]
- Gob, F.; Gautier, E.; Virmoux, C.; Grancher, D.; Tamisier, V.; Primanda, K.W.; Wibowo, S.B.; Sarrazin, C.; De Bélizal, E.; Ville, A.; et al. River responses to the 2010 major eruption of the Merapi volcano, Central Java, Indonesia. Geomorphology 2016, 273, 244–257. [Google Scholar] [CrossRef]
- Wibowo, S.B.; Nurani, I.W. Improving geoinformation technology by incorporating local participation. In Proceedings of the Sixth Geoinformation Science Symposium, Yogyakarta, Indonesia, 26–27 August 2019. [Google Scholar]
- Lei, J.; Ren, Z.; Oguchi, T.; Zhang, P.; Uchiyama, S. Topographic Evolution Involving Co-Seismic Landslide, Deformation, Long-Term Folding and Isostatic Rebound: A Case Study on the 2004 Chuetsu Earthquake. Remote Sens. 2021, 13, 1073. [Google Scholar] [CrossRef]
- Behrends, G.; Stöbener, D.; Fischer, A. Integrated, Speckle-Based Displacement Measurement for Lateral Scanning White Light Interferometry. Sensors 2021, 21, 2486. [Google Scholar] [CrossRef]
- Solaro, G.; De Novellis, V.; Castaldo, R.; De Luca, C.; Lanari, R.; Manunta, M.; Casu, F. Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile) Retrieved from Multi-Orbit Sentinel1-A DInSAR Measurements. Remote Sens. 2016, 8, 323. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Li, Z.; Feng, G.; Zhang, Z.; Wang, Q.; Hu, J.; Chen, X. Continent-Wide 2-D Co-Seismic Deformation of the 2015 Mw 8.3 Illapel, Chile Earthquake Derived from Sentinel-1A Data: Correction of Azimuth Co-Registration Error. Remote Sens. 2016, 8, 376. [Google Scholar] [CrossRef] [Green Version]
- Jelenek, J.; Kopačková, V.; Farova, K. Post-Earthquake Landslide Distribution Assessment Using Sentinel-1 and -2 Data: The Example of the 2016 Mw 7.8 Earthquake in New Zealand. Proceedings 2018, 2, 361. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, R.; Wang, X.; Liu, G. Retrieving Three-Dimensional Co-Seismic Deformation of the 2017 Mw7.3 Iraq Earthquake by Multi-Sensor SAR Images. Remote Sens. 2018, 10, 857. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, R.; Liu, Y. 3D Coseismic Deformation Field and Source Parameters of the 2017 Iran-Iraq Mw7.3 Earthquake Inferred from DInSAR and MAI Measurements. Remote Sens. 2019, 11, 2248. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Zhang, G.; Shan, X.; Gong, W.; Zhang, Y.; Li, Y. Co-Seismic Deformation and Fault Slip Model of the 2017 Mw 7.3 Darbandikhan, Iran–Iraq Earthquake Inferred from D-InSAR Measurements. Remote Sens. 2019, 11, 2521. [Google Scholar] [CrossRef] [Green Version]
- Barba-Sevilla, M.; Baird, B.W.; Liel, A.B.; Tiampo, K.F. Hazard Implications of the 2016 Mw 5.0 Cushing, OK Earthquake from a Joint Analysis of Damage and InSAR Data. Remote Sens. 2018, 10, 1715. [Google Scholar] [CrossRef] [Green Version]
- Tzouvaras, M.; Kouhartsiouk, D.; Agapiou, A.; Danezis, C.; Hadjimitsis, D. The Use of Sentinel-1 Synthetic Aperture Radar (SAR) Images and Open-Source Software for Cultural Heritage: An Example from Paphos Area in Cyprus for Mapping Landscape Changes after a 5.6 Magnitude Earthquake. Remote Sens. 2019, 11, 1766. [Google Scholar] [CrossRef] [Green Version]
- Valerio, E.; Manzo, M.; Casu, F.; Convertito, V.; De Luca, C.; Manunta, M.; Monterroso, F.; Lanari, R.; De Novellis, V. Seismogenic Source Model of the 2019, Mw 5.9, East-Azerbaijan Earthquake (NW Iran) through the Inversion of Sentinel-1 DInSAR Measurements. Remote Sens. 2020, 12, 1346. [Google Scholar] [CrossRef] [Green Version]
- Brozzetti, F.; Mondini, A.C.; Pauselli, C.; Mancinelli, P.; Cirillo, D.; Guzzetti, F.; Lavecchia, G. Mainshock Anticipated by Intra-Sequence Ground Deformations: Insights from Multiscale Field and SAR Interferometric Measurements. Geoscience 2020, 10, 186. [Google Scholar] [CrossRef]
- Monterroso, F.; Bonano, M.; De Luca, C.; Lanari, R.; Manunta, M.; Manzo, M.; Onorato, G.; Zinno, I.; Casu, F. A Global Archive of Coseismic DInSAR Products Obtained through Unsupervised Sentinel-1 Data Processing. Remote Sens. 2020, 12, 3189. [Google Scholar] [CrossRef]
- Andi Mangga, S.; Atmawinata, S.; Hermanto, B.; Setyonugroho, B.; Amin, C. Geological Map of the Lombok Sheet, West Nusatenggara; Geological Research and Development Centre: West Nusa Tenggara, Indonesia, 1994; Sheet: Lombok (1807); Scale 1:250 000. [Google Scholar]
- Lavigne, F.; Degeai, J.-P.; Komorowski, J.-C.; Guillet, S.; Robert, V.; Lahitte, P.; Oppenheimer, C.; Stoffel, M.; Vidal, C.M.; Surono; et al. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia. Proc. Natl. Acad. Sci. USA 2013, 110, 16742–16747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cigna, F.; Tapete, D. Sentinel-1 Big Data Processing with P-SBAS InSAR in the Geohazards Exploitation Platform: An Experiment on Coastal Land Subsidence and Landslides in Italy. Remote Sens. 2021, 13, 885. [Google Scholar] [CrossRef]
- Navarro-Hernández, M.I.; Tomás, R.; Lopez-Sanchez, J.M.; Cárdenas-Tristán, A.; Mallorquí, J.J. Spatial Analysis of Land Subsidence in the San Luis Potosi Valley Induced by Aquifer Overexploitation Using the Coherent Pixels Technique (CPT) and Sentinel-1 InSAR Observation. Remote Sens. 2020, 12, 3822. [Google Scholar] [CrossRef]
- Fadhillah, M.F.; Achmad, A.R.; Lee, C.-W. Integration of InSAR Time-Series Data and GIS to Assess Land Subsidence along Subway Lines in the Seoul Metropolitan Area, South Korea. Remote Sens. 2020, 12, 3505. [Google Scholar] [CrossRef]
- Khorrami, M.; Alizadeh, B.; Ghasemi Tousi, E.; Shakerian, M.; Maghsoudi, Y.; Rahgozar, P. How Groundwater Level Fluctuations and Geotechnical Properties Lead to Asymmetric Subsidence: A PSInSAR Analysis of Land Deformation over a Transit Corridor in the Los Angeles Metropolitan Area. Remote Sens. 2019, 11, 377. [Google Scholar] [CrossRef] [Green Version]
- Darwish, N.; Kaiser, M.; Koch, M.; Gaber, A. Assessing the Accuracy of ALOS/PALSAR-2 and Sentinel-1 Radar Images in Estimating the Land Subsidence of Coastal Areas: A Case Study in Alexandria City, Egypt. Remote Sens. 2021, 13, 1838. [Google Scholar] [CrossRef]
- Parker, A.L.; Filmer, M.S.; Featherstone, W.E. First Results from Sentinel-1A InSAR over Australia: Application to the Perth Basin. Remote Sens. 2017, 9, 299. [Google Scholar] [CrossRef] [Green Version]
- Cando-Jácome, M.; Martínez-Graña, A. Determination of Primary and Secondary Lahar Flow Paths of the Fuego Volcano (Guatemala) Using Morphometric Parameters. Remote Sens. 2019, 11, 727. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Xu, C.; Wen, Y.; Liu, Y.; Xu, G. The 2017 Noneruptive Unrest at the Caldera of Cerro Azul Volcano (Galápagos Islands) Revealed by InSAR Observations and Geodetic Modelling. Remote Sens. 2019, 11, 1992. [Google Scholar] [CrossRef] [Green Version]
- Boixart, G.; Cruz, L.F.; Miranda Cruz, R.; Euillades, P.A.; Euillades, L.D.; Battaglia, M. Source Model for Sabancaya Volcano Constrained by DInSAR and GNSS Surface Deformation Observation. Remote Sens. 2020, 12, 1852. [Google Scholar] [CrossRef]
- Valade, S.; Ley, A.; Massimetti, F.; D’Hondt, O.; Laiolo, M.; Coppola, D.; Loibl, D.; Hellwich, O.; Walter, T.R. Towards Global Volcano Monitoring Using Multisensor Sentinel Missions and Artificial Intelligence: The MOUNTS Monitoring System. Remote Sens. 2019, 11, 1528. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, E.; Foumelis, M.; Trasatti, E.; Ventura, G.; Raucoules, D.; Mouratidis, A. Multi-Sensor SAR Geodetic Imaging and Modelling of Santorini Volcano Post-Unrest Response. Remote Sens. 2019, 11, 259. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Cao, Y.; Yin, K.; Wang, Y.; Shi, X.; Catani, F.; Ahmed, B. Landslide Characterization Applying Sentinel-1 Images and InSAR Technique: The Muyubao Landslide in the Three Gorges Reservoir Area, China. Remote Sens. 2020, 12, 3385. [Google Scholar] [CrossRef]
- Rehman, M.U.; Zhang, Y.; Meng, X.; Su, X.; Catani, F.; Rehman, G.; Yue, D.; Khalid, Z.; Ahmad, S.; Ahmad, I. Analysis of Landslide Movements Using Interferometric Synthetic Aperture Radar: A Case Study in Hunza-Nagar Valley, Pakistan. Remote Sens. 2020, 12, 2054. [Google Scholar] [CrossRef]
- Meng, Q.; Confuorto, P.; Peng, Y.; Raspini, F.; Bianchini, S.; Han, S.; Liu, H.; Casagli, N. Regional Recognition and Classification of Active Loess Landslides Using Two-Dimensional Deformation Derived from Sentinel-1 Interferometric Radar Data. Remote Sens. 2020, 12, 1541. [Google Scholar] [CrossRef]
- Crippa, C.; Franzosi, F.; Zonca, M.; Manconi, A.; Crosta, G.B.; Dei Cas, L.; Agliardi, F. Unraveling Spatial and Temporal Heterogeneities of Very Slow Rock-Slope Deformations with Targeted DInSAR Analyses. Remote Sens. 2020, 12, 1329. [Google Scholar] [CrossRef] [Green Version]
- Aslan, G.; Foumelis, M.; Raucoules, D.; De Michele, M.; Bernardie, S.; Cakir, Z. Landslide Mapping and Monitoring Using Persistent Scatterer Interferometry (PSI) Technique in the French Alps. Remote Sens. 2020, 12, 1305. [Google Scholar] [CrossRef] [Green Version]
- Zekber, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Azkiya, J.N.; Jatmiko, R.H. Studi Perbandingan Dua Algoritma Phase Unwrapping (Region Growing Dan Minimum Cost Flow) pada Teknik Interferometric Synthetic Aperture Radar (Insar) Dalam Menghasilkan Digital Surface Model (DSM). J. Bum. Ind. 2015, 4, 263–272. [Google Scholar]
- Abdel-Hamid, A.; Dubovyk, O.; Greve, K. The potential of sentinel-1 InSAR coherence for grasslands monitoring in Eastern Cape, South Africa. Int. J. Appl. Earth Obs. Geoinform. 2021, 98, 102306. [Google Scholar] [CrossRef]
- Arjasakusuma, S.; Kusuma, S.S.; Mahendra, W.K.; Astriviany, N. Mapping paddy field extent and temporal pattern variation in a complex terrain area using sentinel 1-time series data: Case study of magelang district, Indonesia. Int. J. Geoinform. 2021, 17, 79–88. [Google Scholar]
- Morishita, Y.; Hanssen, R.F. Deformation parameter estimation in low coherence areas using a multisatellite InSAR approach. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4275–4283. [Google Scholar] [CrossRef]
- Lu, C.-H.; Ni, C.-F.; Chang, C.-P.; Yen, J.-Y.; Chuang, R.Y. Coherence Difference Analysis of Sentinel-1 SAR Interferogram to Identify Earthquake-Induced Disasters in Urban Areas. Remote Sens. 2018, 10, 1318. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Fan, H.; Wang, L.; Zhuang, H. Monitoring of surface deformation in a low coherence area using distributed scatterers InSAR: Case study in the Xiaolangdi Basin of the Yellow River, China. Bull. Eng. Geol. Environ. 2020, 80, 25–39. [Google Scholar] [CrossRef]
- Ting-Chen, J. Ameliorative Minimum Cost Flow Algorithm for Phase Unwrapping. Procedia Environ. Sci. 2011, 10, 2560–2566. [Google Scholar] [CrossRef] [Green Version]
- Dudczyk, J.; Kawalec, A. Optimizing the minimum cost flow algorithm for the phase unwrapping process in SAR radar. Bull. Pol. Acad. Sci. Tech. Sci. 2014, 62, 511–516. [Google Scholar] [CrossRef] [Green Version]
- Pepe, A. Theory and Statistical Description of the Enhanced Multi-Temporal InSAR (E-MTInSAR) Noise-Filtering Algorithm. Remote Sens. 2019, 11, 363. [Google Scholar] [CrossRef] [Green Version]
- Esch, C.; Köhler, J.; Gutjahr, K.; Schuh, W.-D. One-Step Three-Dimensional Phase Unwrapping Approach Based on Small Baseline Subset Interferograms. Remote Sens. 2020, 12, 1473. [Google Scholar] [CrossRef]
- Zebker, H.A.; Goldstein, R.M. Topographic mapping from interferometric synthetic aperture radar observations. J. Geophys. Res. 1986, 91, 4993–4999. [Google Scholar] [CrossRef]
- Ng, A.H.-M.; Chang, H.-C.; Ge, L.; Rizos, C.; Omura, M. Radar Interferometry for Ground Subsidence Monitoring Using ALOS PALSAR Data. In Proceedings of the XXI Congress: Silk Road for Information from Imagery: The International Society for Photogrammetry and Remote Sensing, Beijing, China, 3–11 June 2008; pp. 67–73. [Google Scholar]
- Lemarchand, N.; Grasso, J.-R. Interactions between earthquakes and volcano activity. Geophys. Res. Lett. 2007, 34, L24303. [Google Scholar] [CrossRef] [Green Version]
- Ferrario, M.F. Landslides triggered by multiple earthquakes: Insights from the 2018 Lombok (Indonesia) events. Nat. Hazards. 2019, 98, 575–592. [Google Scholar] [CrossRef]
- Tsimopoulou, V.; Mikami, T.; Hossain, T.T.; Takagi, H.; Esteban, M.; Utama, N.A. Uncovering unnoticed small-scale tsunamis: Field survey in Lombok, Indonesia, following the 2018 earthquake. Nat. Hazards. 2020, 103, 2045–2070. [Google Scholar] [CrossRef]
- Natawidjadja, D.H.; Widiyantoro, S.; Meilano, I.; Hidayati, S.; Irsyam, M.; Daryono, M.; Supartoyo; Gunawan, E.; Hanifa, N.R. Penjelasan komprehansif sumber gempa Lombok. In Kajian Rangkaian Gempa Lombok Provinsi Nusa Tenggara Barat 29 Juli 2018 (M6.4), 5 Agustus 2018 (M7.0), 19 Agustus 2018 (M6.9); Irsyam, M., Hanifa, N.R., Djarwadi, D., Eds.; Pusat Penelitian dan Pengembangan Perumahan dan Pemukiman, Badan Penelitian dan Pengembangan. Kementerian Pekerjaan Umum dan Perumahan Rakyat: Bandung, Indonesia, 2018; pp. 23–26. [Google Scholar]
- Azhari, M.F.; Karyanto, K.; Rasimeng, S.; Mulyanto, B.S. Analysis of surface deformation using dinsar method (differential interferometry synthetic aperture radar) in case study lombok earthquakes on august 2018. J. Geof. Ekspl. 2020, 6, 131–144. [Google Scholar] [CrossRef]
Earthquake | Images | Role | Perpendicular Baseline (m) |
---|---|---|---|
29 July 2018 | Sentinel 1A (27 July 2018) | Master | −4 |
Sentinel 1B (2 August 2018) | Slave | ||
5 August 2018 | Sentinel 1B (2 August 2018) | Master | −22 |
Sentinel 1A (8 August 2018) | Slave | ||
9 August 2018 | Sentinel 1A (8 August 2018) | Master | 27 |
Sentinel 1B (14 August 2018) | Slave | ||
19 August 2018 | Sentinel 1B (14 August 2018) | Master | −14 |
Sentinel 1A (20 August 2018) | Slave |
Location | Number of Pixels | Min | Max | Range | Mean | Median | Mode | Least Frequent Value | Variance | Standard Deviation |
---|---|---|---|---|---|---|---|---|---|---|
29 July 2018 | ||||||||||
Mataram | 167162 | −0.020 | 0.058 | 0.077 | 0.015 | 0.016 | 0.011 | −0.020 | 0.000034 | 0.006 |
Pamenang | 46767 | −0.148 | −0.026 | 0.122 | −0.083 | −0.084 | −0.117 | −0.148 | 0.000210 | 0.014 |
Tampes | 86079 | −0.109 | 0.055 | 0.165 | −0.032 | −0.040 | −0.063 | −0.109 | 0.000513 | 0.023 |
Sukadana | 186318 | −0.080 | 0.102 | 0.181 | −0.001 | −0.003 | −0.055 | −0.080 | 0.001096 | 0.033 |
Sembalun | 140887 | −0.163 | −0.021 | 0.142 | −0.095 | −0.095 | −0.104 | −0.163 | 0.000224 | 0.015 |
Belanting | 120364 | −0.103 | 0.031 | 0.134 | −0.033 | −0.032 | −0.035 | −0.103 | 0.000277 | 0.017 |
5 August 2018 | ||||||||||
Mataram | 176680 | −0.073 | −0.002 | 0.071 | −0.040 | −0.040 | −0.053 | −0.073 | 0.000075 | 0.009 |
Pamenang | 49243 | 0.197 | 0.626 | 0.429 | 0.387 | 0.379 | 0.264 | 0.197 | 0.006355 | 0.080 |
Tampes | 94795 | 0.295 | 0.713 | 0.419 | 0.530 | 0.542 | 0.561 | 0.295 | 0.004501 | 0.067 |
Sukadana | 202391 | 0.224 | 0.507 | 0.283 | 0.374 | 0.382 | 0.277 | 0.224 | 0.003618 | 0.060 |
Sembalun | 188978 | 0.086 | 0.277 | 0.191 | 0.191 | 0.190 | 0.182 | 0.086 | 0.000202 | 0.014 |
Belanting | 157874 | 0.024 | 0.247 | 0.223 | 0.124 | 0.119 | 0.128 | 0.024 | 0.001304 | 0.036 |
9 August 2018 | ||||||||||
Mataram | 175986 | −0.101 | −0.026 | 0.075 | −0.053 | −0.053 | −0.051 | −0.101 | 0.000009 | 0.003 |
Pamenang | 70863 | −0.338 | −0.150 | 0.188 | −0.225 | −0.220 | −0.224 | −0.338 | 0.000875 | 0.030 |
Tampes | 159333 | −0.161 | −0.067 | 0.094 | −0.121 | −0.121 | −0.127 | −0.161 | 0.000070 | 0.008 |
Sukadana | 239294 | −0.148 | −0.055 | 0.094 | −0.105 | −0.106 | −0.114 | −0.148 | 0.000071 | 0.008 |
Sembalun | 239592 | −0.151 | −0.017 | 0.134 | −0.090 | −0.092 | −0.099 | −0.151 | 0.000115 | 0.011 |
Belanting | 193507 | −0.194 | −0.047 | 0.146 | −0.110 | −0.109 | −0.113 | −0.194 | 0.000146 | 0.012 |
19 August 2018 | ||||||||||
Mataram | 181138 | −0.005 | 0.065 | 0.070 | 0.025 | 0.024 | 0.019 | −0.005 | 0.000027 | 0.005 |
Pamenang | 78016 | 0.056 | 0.284 | 0.228 | 0.160 | 0.163 | 0.148 | 0.056 | 0.001189 | 0.034 |
Tampes | 166333 | −0.008 | 0.092 | 0.100 | 0.046 | 0.045 | 0.039 | −0.008 | 0.000065 | 0.008 |
Sukadana | 242346 | 0.027 | 0.147 | 0.120 | 0.089 | 0.089 | 0.091 | 0.027 | 0.000298 | 0.017 |
Sembalun | 249290 | −0.017 | 0.204 | 0.221 | 0.092 | 0.090 | 0.082 | −0.017 | 0.001296 | 0.036 |
Belanting | 185297 | 0.111 | 0.475 | 0.364 | 0.265 | 0.275 | 0.284 | 0.111 | 0.002939 | 0.054 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wibowo, S.B.; Hadmoko, D.S.; Isnaeni, Y.; Farda, N.M.; Putri, A.F.S.; Nurani, I.W.; Supangkat, S.H. Spatio-Temporal Distribution of Ground Deformation Due to 2018 Lombok Earthquake Series. Remote Sens. 2021, 13, 2222. https://doi.org/10.3390/rs13112222
Wibowo SB, Hadmoko DS, Isnaeni Y, Farda NM, Putri AFS, Nurani IW, Supangkat SH. Spatio-Temporal Distribution of Ground Deformation Due to 2018 Lombok Earthquake Series. Remote Sensing. 2021; 13(11):2222. https://doi.org/10.3390/rs13112222
Chicago/Turabian StyleWibowo, Sandy Budi, Danang Sri Hadmoko, Yunus Isnaeni, Nur Mohammad Farda, Ade Febri Sandhini Putri, Idea Wening Nurani, and Suhono Harso Supangkat. 2021. "Spatio-Temporal Distribution of Ground Deformation Due to 2018 Lombok Earthquake Series" Remote Sensing 13, no. 11: 2222. https://doi.org/10.3390/rs13112222
APA StyleWibowo, S. B., Hadmoko, D. S., Isnaeni, Y., Farda, N. M., Putri, A. F. S., Nurani, I. W., & Supangkat, S. H. (2021). Spatio-Temporal Distribution of Ground Deformation Due to 2018 Lombok Earthquake Series. Remote Sensing, 13(11), 2222. https://doi.org/10.3390/rs13112222