Retrieval and Spatio-Temporal Variations Analysis of Yangtze River Water Clarity from 2017 to 2020 Based on Sentinel-2 Images
Abstract
:1. Introduction
2. Area and Data
2.1. Study Area
2.2. Sentinel-2 MSI Data
2.3. Auxiliary Data
3. Method
3.1. Calculated SDD Based on GEE
3.2. Waterbody Extraction
3.3. SDD Calculation
3.4. Time and Spatial Aggregation
3.5. Accuracy Evaluation of SDD
3.6. Model Adaptability
4. Result
4.1. SDD Results
4.2. Spatial Distribution
4.3. Seasonal Variation
4.4. Inter-Annual Variation
5. Discussion
5.1. Driving Forces of Water Clarity
5.2. Deficiencies
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The Yangtze River Water Conservancy Commission of the Ministry of Liberia. Atlas of the Yangtze River Basin; Map Publishing House: China, Beijing, 1999; pp. 239–240. [Google Scholar]
- Aas, E.; Høkedal, J.; Sørensen, K. Secchi depth in the Oslofjord-Skagerrak area: Theory, experiments and relationships to other quantities. Ocean Sci. 2014, 10, 177–199. [Google Scholar] [CrossRef] [Green Version]
- Carlson, R.E. A trophic state index for lakes. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Olmanson, L.G.; Bauer, M.E.; Brezonik, P.L.A. A 20-Year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sens. Environ. 2008, 112, 4086–4097. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Brezonik, P.L.; Finlay, J.C.; Bauer, M.E. Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes. Remote Sens. Environ. 2016, 185, 119–128. [Google Scholar] [CrossRef]
- Wang, S.L.; Li, J.S.; Zhang, B.; Lee, Z.; Spyrakos, E.; Feng, L.; Liu, C.; Zhao, H.; Wu, Y.; Zhu, L.; et al. Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS. Remote Sens. Environ. 2020, 247, 111949. [Google Scholar] [CrossRef]
- McCullough, I.M.; Loftin, C.S.; Sader, S.A. Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity. Remote Sens. Environ. 2012, 123, 109–115. [Google Scholar] [CrossRef]
- Lee, Z.P.; Shang, S.L.; Du, K.P.; Wei, J.W. Resolving the long-standing puzzles about the observed Secchi depth relationships. Limnol. Oceanogr. 2018, 63, 2321–2336. [Google Scholar] [CrossRef]
- Doron, M.; Babin, M.; Hembise, O.; Mangin, A.; Garnesson, P. Ocean transparency from space: Validation of algorithms estimating Secchi depth using MERIS, MODIS and SeaWiFs data. Remote Sens. Environ. 2011, 115, 2986–3001. [Google Scholar] [CrossRef]
- Mouw, C.B.; Greb, S.; Aurin, D.; DiGiacomo, P.M.; Lee, Z.; Twardowski, M.; Binding, C.; Hu, C.; Ma, R.; Moore, T.; et al. Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and recommendations for future satellite missions. Remote Sens. Environ. 2015, 160, 15–30. [Google Scholar] [CrossRef]
- Chipman, J.W.; Lillesand, T.M.; Schmaltz, J.E.; Leale, J.E.; Nordheim, M.J. Mapping lake water clarity with Landsat images in Wisconsin, USA. Can. J. Remote Sens. 2004, 30. [Google Scholar] [CrossRef]
- Nelson, S.A.C.; Soranno, P.A.; Cheruvelil, K.S.; Batzli, S.A.; Skole, D.L.L. Regional assessment of lake water clarity using satellite remote sensing. J. Limnol. 2003, 62, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.L.; Zheng, Z.B.; Li, Y.M.; Lv, G.N.; Wang, Q.; Lyu, H.; Huang, C.C.; Liu, G.; Du, C.G.; Mu, M.; et al. Remote observation of water clarity patterns in Three Gorges Reservoir and Dongting Lake of China and their probable linkage to the Three Gorges Dam based on Landsat 8 imagery. Sci. Total Environ. 2018, 625, 1554–1566. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.T.; Ma, R.H.; Zhang, Y.L.; Zhang, B. Remote-sensing assessment of regional inland lake water clarity in Northeast China. Limnology 2009, 10, 135–141. [Google Scholar] [CrossRef]
- Lathrop, R.G.; Lillesand, T.M. Use of thematic mapper data to assess water quality in Green Bay and central Lake Michigan. Photogramm. Eng. Remote Sens. 1986, 52, 671–680. [Google Scholar]
- Lathrop, R.G. Landsat thematic mapper monitoring of turbid inland water quality. Photogramm. Eng. Remote Sens. 1992, 58, 465–470. [Google Scholar]
- Giardino, C.; Pepe, M.; Brivio, P.A.; Ghezzi, P.; Zilioli, E. Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using landsat imagery. Sci. Total Environ. 2001, 268, 19–29. [Google Scholar] [CrossRef]
- Kloiber, S.M.; Brezonik, P.L.; Bauer, M.E. Application of Landsat imagery to regional-scale assessments of lake clarity. Water Res. 2002, 36, 4330–4340. [Google Scholar] [CrossRef]
- Kloiber, S.M.; Brezonik, P.L.; Olmanson, L.G.; Bauer, M.E. A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sens. Environ. 2002, 82, 38–47. [Google Scholar] [CrossRef]
- Hellweger, F.L.; Schlosser, P.; Lall, U.; Weissel, J.K. Use of satellite imagery for water quality studies in New York Harbor. Estuar. Coast. Shelf Sci. 2004, 61, 437–448. [Google Scholar] [CrossRef]
- Lee, Z.P.; Darecki, M.; Carder, K.L.; Davis, C.O.; Stramski, D.; Rhea, W.J. Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods. J. Geophys. Resour. Oceans 2005, 110. [Google Scholar] [CrossRef]
- Lee, Z.P.; Weidemann, A.; Kindle, J.; Arnone, R.; Carder, K.L.; Davis, C. Euphotic zone depth: Its derivation and implication to ocean-color remote sensing. J. Geophys. Res. 2007, 112, C03009. [Google Scholar] [CrossRef] [Green Version]
- Binding, C.E.; Jerome, J.H.; Bukata, R.P.; Booty, W.G. Trends in water clarity of the lower great lakes from remotely sensed aquatic color. J. Great Lakes Resour. 2007, 2, 828–841. [Google Scholar] [CrossRef] [Green Version]
- Budd, J.W.; Drummer, T.D.; Nalepa, T.F.; Fahnenstiel, G.L. Remote sensing of biotic effects: Zebra mussels (Dreissena polymorpha) influence on water clarity in Saginaw Bay, Lake Huron. Limnol. Oceanogr. 2001, 46, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Gower, J.F.R. SeaWiFS global composite images show significant features of Canadian waters for 1997–2201. Can. J. Remote Sens. 2004, 30, 26–35. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.L.; Zhu, G.W.; Qin, B.; Pan, D.L. Deteriorating water clarity in shallow waters: Evidence from long term MODIS in-situ observations. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 287–297. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.M.; Chen, X.L.; Song, Q.J. Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS. Remote Sens. Environ. 2014, 140, 779–788. [Google Scholar] [CrossRef]
- Shi, H.Y.; Gao, C.; Dong, C.M.; Xia, C.S.; Xu, G.L. Variations of river islands around a large city along the Yangtze River from satellite remote sensing images. Sensors 2017, 17, 2213. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.J.; Lu, X.X.; Liew, S.C.; Zhou, Y. Retrieval of suspended sediment concentrations in large turbid rivers using Landsat ETM+: An example from the Yangtze River, China. Earth Surf. Process. Landf. 2009, 34, 1082–1092. [Google Scholar] [CrossRef]
- Hou, X.J.; Feng, L.; Duan, H.T.; Chen, X.L.; Sun, D.Y.; Shi, K. Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China. Remote Sens. Environ. 2017, 190, 107–121. [Google Scholar] [CrossRef]
- Zhu, H.; Zhu, J.S.; Zou, Q. Comprehensive analysis of coordination relationship between water resources environment and high-quality economic development in urban agglomeration in the middle reaches of Yangtze River. Water 2020, 12, 1301. [Google Scholar] [CrossRef]
- Fan, H.M.; Chen, S.S.; Li, Z.E.; Liu, P.X.; Xu, C.Y.; Yang, X.X. Assessment of heavy metals in water, sediment and shellfish organisms in typical areas of the Yangtze River Estuary, China. Mar. Pollut. Bull. 2020, 151, 110864. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.S.; Wang, B.D.; Zhang, X.L.; Ran, X.B.; Fu, M.Z.; Sun, X.; Yu, Z.G. Contribution of the offshore detached Changjiang (Yangtze River) diluted water to the formation of hypoxia in summer. Sci. Total Environ. 2021, 764, 142838. [Google Scholar] [CrossRef]
- He, G.; Xia, Y.L.; Qin, Y.; Zhu, Y.N.; Wang, W.W. Evaluation and spatial-temporal dynamics change of water resources carrying capacity in the Yangtze River economic belt. Res. Soil Water Conserv. 2019, 26, 287–300. [Google Scholar]
- Yin, H.; Sun, C.; Wang, H.; Qin, Z.D.; Xu, Q.Q.; Ke, G.; Zhao, Q.; Deng, X.W. Water environment issues and pollution prevention strategies in Wuhan reach of Fu River. Environ. Sci. Manag. 2018, 43, 81–85. [Google Scholar]
- Tian, X.J.; Zou, F.; Jin, S.G. Impact of climate change and human activities on water storage changes in the Yangtze River Basin. J. Geod. Geodyn. 2019, 39, 371–436. [Google Scholar]
- Shen, Q.J.; Pei, L.; Zhang, Z.F. Coupling coordination between urbanization and water resources in Yangtze River economic zone. Resour. Ind. 2019, 21, 1–9. [Google Scholar]
- Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ. 2017, 198, 52–68. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.L.; Shen, Q.; Wang, Q.; Yang, F.; Wang, S.L.; Li, J.S.; Zhang, F.F.; Yao, Y. Recognition of Water Colour Anomaly by Using Hue Angle and Sentinel-2 Image. Remote Sens. 2020, 12, 716. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.L.; Wang, S.L.; Zhang, F.F.; Shen, Q.; Li, J.S.; Yang, F. Remote Sensing-Based Analysis of Spatial and Temporal Water Colour Variations in Baiyangdian Lake After the Establishment of the Xiong’an New Area. Remote Sens. 2021, 13, 1729. [Google Scholar] [CrossRef]
- Pahlevan, N.; Sarkar, S.; Franz, B.A.; Balasubramanian, S.V.; He, J. Sentinel-2 Multispectral Instrument (MSI) data processing for aquatic science applications: Demonstrations and validations. Remote Sens. Environ. 2017, 201, 485–497. [Google Scholar] [CrossRef]
- Liu, C.D.; He, B.Y.; Li, M.T.; Ren, X.Y. Quantitative modeling of suspended sediment in middle Changjiang River from MODIS. Chin. Geogr. Sci. 2006, 16, 79–82. [Google Scholar] [CrossRef]
- Li, C.; Lian, E.G.; Yang, C.F.; Deng, K.; Qian, P.; Xiao, S.B.; Liu, Z.F.; Yang, S.Y. Seasonal variability of stable isotopes in the Changjiang (Yangtze) River water and its implications for natural climate and anthropogenic impacts. Environ. Sci. Eur. 2020, 32, 84. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30m resolution sample set collected in 2015 to mapping 10 m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.B.; Xie, S.P.; Zhang, X.L.; Chen, C.; Guo, H.; Du, J.K.; Duan, Z. A robust multi-band water index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 73–91. [Google Scholar] [CrossRef]
- Capó, M.; Pérez, A.; Lozano, J.A. An efficient approximation to the k-means clustering for massive data. Knowl. Based Syst. 2017, 117, 56–69. [Google Scholar] [CrossRef] [Green Version]
- CIE (Commission International de l’Eclairage). Proceedings; Cambridge University Press: Cambridge, UK, 1931; pp. 19–29. [Google Scholar]
- Wang, S.L.; Li, J.S.; Qian, S.; Zhang, B.; Zhang, F.F.; Lu, Z.Y. MODIS- Based radiometric color extraction and classification of inland water with the Forel-Ule scale: A case study of Lake Taihu. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 907–918. [Google Scholar] [CrossRef]
- Capuzzo, E.; Stephens, D.; Silva, T.; Barry, J.; Forster, R.M. Decrease in water clarity of the Southern and Central North Sea during the 20th-century. Glob. Chang. Biol. 2015, 21, 2206–2214. [Google Scholar] [CrossRef] [Green Version]
- Fleming-Lehtinen, V.; Laamanen, M. Long-term changes in Secchi depth and the role of phytoplankton in explaining light attenuation in the Baltic Sea. Estuar. Coast. Shelf Sci. 2012, 102–103. [Google Scholar] [CrossRef]
- Billah, M.M.; Goodall, J.L. Annual and interannual variations in terrestrial water storage during and following a period of drought in South Carolina, USA. J. Hydrol. 2011, 409, 472–482. [Google Scholar] [CrossRef]
- Peng, T.; Tian, H.; Qin, Z.X.; Wang, G.X. Impacts of climate change and human activities on flow discharge and sediment load in the Yangtze River. J. Sediment Res. 2018, 43, 54–60. [Google Scholar]
- Wang, Y.G.; Shi, H.L.; Liu, Q. Influence of sediment trapping in reservoirs on runoff and sediment discharge variations in Yangtze River. Adv. Water Sci. 2014, 25, 467–476. [Google Scholar]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L. Novel Spectral-Derived Features for Empirical Retrieval of Water Quality Parameters: Demonstrations for OLI, MSI, and OLCI Sensors. IEEE Trans. Geosci. Remote Sens. 2019, 57, 10285–10300. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Month | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|
January | 32 | 93 | 101 | 105 | |
February | 69 | 160 | 52 | 158 | |
March | 35 | 196 | 163 | 201 | |
April | 106 | 258 | 207 | 192 | |
May | 67 | 108 | 180 | 231 | |
June | 47 | 240 | 180 | 106 | |
July | 160 | 330 | 229 | 71 | |
August | 162 | 389 | 384 | 267 | |
September | 73 | 248 | 273 | 171 | |
October | 120 | 303 | 194 | 184 | |
November | 159 | 205 | 163 | 206 | |
December | 87 | 180 | 71 | 195 | 139 |
Total | 87 | 1210 | 2601 | 2321 | 2031 |
Year | Upper Reaches (m) | Middle Reaches (m) | Lower Reaches (m) | Yangtze River (m) |
---|---|---|---|---|
2017 | 0.91 | 0.43 | 0.29 | 0.55 |
2018 | 1.2 | 0.76 | 0.35 | 0.77 |
2019 | 0.79 | 0.35 | 0.25 | 0.47 |
2020 | 0.82 | 0.43 | 0.26 | 0.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Wang, S.; Zhang, F.; Shen, Q.; Li, J. Retrieval and Spatio-Temporal Variations Analysis of Yangtze River Water Clarity from 2017 to 2020 Based on Sentinel-2 Images. Remote Sens. 2021, 13, 2260. https://doi.org/10.3390/rs13122260
Zhao Y, Wang S, Zhang F, Shen Q, Li J. Retrieval and Spatio-Temporal Variations Analysis of Yangtze River Water Clarity from 2017 to 2020 Based on Sentinel-2 Images. Remote Sensing. 2021; 13(12):2260. https://doi.org/10.3390/rs13122260
Chicago/Turabian StyleZhao, Yelong, Shenglei Wang, Fangfang Zhang, Qian Shen, and Junsheng Li. 2021. "Retrieval and Spatio-Temporal Variations Analysis of Yangtze River Water Clarity from 2017 to 2020 Based on Sentinel-2 Images" Remote Sensing 13, no. 12: 2260. https://doi.org/10.3390/rs13122260
APA StyleZhao, Y., Wang, S., Zhang, F., Shen, Q., & Li, J. (2021). Retrieval and Spatio-Temporal Variations Analysis of Yangtze River Water Clarity from 2017 to 2020 Based on Sentinel-2 Images. Remote Sensing, 13(12), 2260. https://doi.org/10.3390/rs13122260