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Abstract: Drill-core samples are a key component in mineral exploration campaigns, and their rapid
and objective analysis is becoming increasingly important. Hyperspectral imaging of drill-cores is
a non-destructive technique that allows for non-invasive and fast mapping of mineral phases and
alteration patterns. The use of adapted machine learning techniques such as supervised learning
algorithms allows for a robust and accurate analysis of drill-core hyperspectral data. One of the
remaining challenge is the spatial sampling of hyperspectral sensors in operational conditions, which
does not allow us to render the textural and mineral diversity that is required to map minerals
with low abundances and fine structures such as veins and faults. In this work, we propose a
methodology in which we implement a resolution enhancement technique, a coupled non-negative
matrix factorization, using hyperspectral, RGB images and high-resolution mineralogical data to
produce mineral maps at higher spatial resolutions and to improve the mapping of minerals. The
results demonstrate that the enhanced maps not only provide better details in the alteration patterns
such as veins but also allow for mapping minerals that were previously hidden in the hyperspectral
data due to its low spatial sampling.

Keywords: resolution enhancement; sampling enhancement; hyperspectral; high-spatial resolution
multi-spectral; drill-cores; mineral mapping; machine learning

1. Introduction

Drilling is a crucial component of the discovery roadmap to identifying economically
profitable ore deposits. Drill-cores are cylindrical rock samples drilled to depths that can
reach several hundreds to a few thousand meters from the Earth’s crust. They provide
valuable information useful for characterizing geological ore deposits (e.g., geology and
geological history of the deposits), aquifers, and geothermal prospects. Even if the overall
budget for exploration and exploration drilling has decreased in the mining industry
in the last two years due to economic reasons [1], there is an increasing need for more
advanced and robust analyses of new and archived drill-cores. Indeed, in order to achieve
the 2050 energy goals, new renewable energy networks such as wind, solar, and geothermal
power require substantial amounts of minerals such as cobalt and lithium as well as base
metals including copper and aluminium, perhaps up to 3 billion tons per year [2]. This
growing need is critical not only in terms of the new 2050 energy goals but also in light of
the extremely high cost of obtaining new samples from boreholes. As a result, the work
presented here is critical in terms of data management and cost-related optimization.

Drill-cores are primarily characterized using traditional core logging techniques. Ge-
ologists, mainly on site, carefully inspect and qualitatively describe the characteristics of
the drill-cores such as the rock type, texture, mineralogical assemblages, alteration facies,
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structures, and ore-forming minerals. This is, however, a subjective and time-consuming
task relying on the knowledge and expertise of geologists. Besides core logging, analytical
methods are also performed at meter intervals to obtain bulk geochemistry or on small rep-
resentative sections of the cores to derive detailed quantitative information on mineralogy
and geochemistry. Optical microscopy, X-ray diffraction and fluorescence, and scanning
electron microscopy (SEM) are common analytical techniques in the mining industry [3–6].
These techniques are destructive and costly but provide objective measurements that can
be used to support mining companies in their decision-making.

Mineral spectroscopy and more specifically hyperspectral imaging (HSI) has become
an innovative and pioneer technology for the analysis of drill-cores in the last decade. This
technique provides the means for a non-invasive, non-destructive, and rapid characteri-
zation of entire drill-cores. Hyperspectral data are recorded in several tens to hundreds
of narrow and contiguous spectral bands along the electromagnetic spectrum covering
from the visible and near infrared (VNIR), short-wave infrared (SWIR) to the long-wave
infrared (LWIR) spectra depending on the sensor. Due to the high spectral resolution,
the recorded data allow users to construct a rich reflectance spectrum that can be used to
identify minerals or mineral mixtures and to map their spatial distribution, changes in
composition, and relative abundance.

The reflectance spectrum of minerals varies, amongst other reasons, due to the chemi-
cal composition, mixtures in the mineral assemblages, and grain sizes. Each mineral has
a diagnostic response in different parts of the electromagnetic spectrum as a result of the
fundamental electronic and vibrational processes of the different atoms and molecular
bonds [7,8]. For instance, mica, clay, chlorites, epidote, amphiboles, alunite, and gypsum
have good diagnostic responses to short-wave infrared (SWIR) spectra and moderate
responses to long-wave infrared (LWIR) spectra. Feldspars, quartz, and carbonates are
distinguishable in the LWIR; however, carbonates also have a good diagnostic response in
the SWIR. For a more detailed description of the infrared active minerals, the readers are
referred to [7,9].

Drill-core hyperspectral data have been analyzed following well-established methods
such as minimum wavelength mapping, band ratios, spectral distance measurements using
reference libraries, endmember extraction, and unmixing [8,10–12]. Machine learning
techniques have also been implemented for the analysis of drill-core hyperspectral data in
recent years to ameliorate the automation of analyses and to provide more robust results,
especially by using supervised methods [13–17]. However, supervised learning algorithms
require reference data (i.e., training sets) that can be difficult to obtain for drill-cores since,
for example, they are not usually labelled at the millimeter scale. In our previous work [14],
we proposed an innovative strategy to exploit geochemical data from assays performed
over sections of ca. 1 m length to train a model and to estimate the element abundance
information of more than 300 m of drill-cores by means of a superpixel segmentation of the
hyperspectral data. In another work in [13], we upscaled high-resolution mineralogical
data (i.e., model mineralogy with a ground sampling distance (GSD) of 3 µm) obtained with
a scanning electron microscope (SEM) system coupled with the Mineral Liberation Analysis
software (MLA) from small sections of drill-core samples to the entire drill-core samples by
training a supervised machine learning model and by classifying the hyperspectral data.
Following a similar strategy, in [16], the authors used SEM-MLA data to retrieve quasi-
quantitative mineral abundances from hyperspectral data based on regressions. Although
these methods enable us to accurately map minerals, their relative abundances, and general
distribution in drill-core data, they do not entirely exploit the full synergetic potential of
SEM-MLA and hyperspectral data fusion due to the large difference between the spatial
samplings of these two datasets. SEM-MLA data have a spatial sampling in the micrometer
scale whereas hyperspectral data have a lower spatial sampling ranging in the millimeter
scale. Therefore, detailed mineralogical and structural information is lost.

HS sensors can theoretically record several parts of the electromagnetic spectrum;
however, technological constraints extremely limit the operational resolution and areas of



Remote Sens. 2021, 13, 2296 3 of 21

the spectrum that can be measured at a given integration time. These technical limitations
are the reasons why spatial resolution is one of the most expensive and difficult parameter
required to improve imaging systems. These shortcomings constitute the requirements
for post processing solutions. In this work, we propose a multi-resolution fusion-based
framework to integrate RGB images in the chain of hyperspectral mineral mapping. As a
complementary and intermediate source of information, the high-spatial resolution RGB
images (0.1 mm GSD) compensate for the large difference between the spatial resolution
of SEM-MLA (3 µm GSD) and hyperspectral data (1.5 mm GSD). More concretely, we
propose enhancing the spatial resolution of hyperspectral data by means of co-registered
RGB images before the integration of SEM-MLA and hyperspectral data. A variety of
resolution enhancement techniques have been developed to improve the spatial resolution
of multispectral images based on the fusion with high-spatial resolution panchromatic
images, so called pansharpening [18] during the last decade. Based on the previously devel-
oped pansharpening techniques, different resolution enhancement methods have also been
proposed for hyperspectral data. These techniques can be divided into two main groups:
pansharpening-based and subspace methods. The first category includes techniques such
as subdividing the hyperspectral data in different regions and applying conventional pan-
sharpening techniques to fuse the hyperspectral and high spatial resolution multispectral
(or RGB) data for each region [19], or synthesizing a high-resolution image for each band in
the hyperspectral data as a linear combination of the multispectral/RGB band images via
linear regression [20]. The subspace methods exploit the inherent spectral characteristics of
hyperspectral data via a subspace spanned by a set of spectral signatures of the materials,
the so-called endmembers, and consider the principle of spectral unmixing [21–24].

In our proposed approach, we enhance the resolution of the drill-core hyperspectral
data by fusing high spatial resolution RGB data from the same drill-core sample. More
specifically, we propose using subspace-based resolution enhancement methods because
they preserve the spectral component in fusion better in comparison to pansharpening-
based methods, and this is highly relevant for mineral mapping [22]. This resolution
enhancement allows for mapping minerals in drill-core hyperspectral data at a higher
spatial resolution than traditional hyperspectral mineral mapping techniques. This en-
hancement fills the gap between the spatial resolution of detailed analytical analyses and
hyperspectral data and, therefore, improves the identification of minerals and structural
patterns in hyperspectral data that are hidden at the original resolution to a large extent.
Moreover, highly detailed maps are important in the mining industry because only small
portions of the drill-cores contain relevant mineralizations and vein structures. After
enhancement of the hyperspectral sampling, we generate the reference data. The high-
resolution mineralogical data are co-registered and resampled to the new high-resolution
hyperspectral data following our strategy in [13]. Another advantage of this method is
that, if SEM-MLA data are available, once these have been co-registered, the number of
training samples also increases in comparison to the method proposed in [13] because of
the enhanced spatial sampling, which is crucial for accurate machine learning estimations.

As expected, once the hyperspectral data have been enhanced, the amount of data
considerably increases (i.e., 7.3 MB to 1.6 GB for one drill-core interval of ca. 30 cm). While
the technique can be applied to large datasets, we present the hyperspectral data of three
relevant drill-core samples of about 30 cm to showcase the approach. The hyperspectral
data cover the VNIR–SWIR region of the electromagnetic spectrum with 450 bands.

The manuscript is organized into six sections: Section 2 presents the proposed method-
ology for resolution enhancement for mineral mapping. Section 3 describes the datasets
used in this study, the parameter settings, and the application. Section 4 describes the
experimental results achieved. Section 5 describes a critical assessment of this study, and
finally, the conclusions are presented in Section 6.
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2. Methods: Resolution Enhancement for Mineral Mapping

Our proposed methodology to improve spatial details when mapping minerals in
complex natural samples using high-resolution hyperspectral data is schematically illus-
trated in Figure 1. We generate a high-spatial and spectral resolution hyperspectral dataset
by fusing high-spatial resolution RGB with hyperspectral drill-core data using a subspace-
based resolution enhancement algorithm (i.e., coupled non-negative matrix factorization
(CNMF) [22]). On one hand, the enhanced hyperspectral data can already be used to
generate high-spatial resolution mineral maps based on detailed spectral parameters, us-
ing, for example, a spectral library. On the other hand, we can obtain high-resolution
classified maps of the drill-core samples. For this purpose, we prepare the training data
by co-registering and resampling high-resolution mineralogical data with the new hy-
perspectral data. We then use a supervised machine learning algorithm (i.e., Canonical
Correlation Forest(CCF)) to train a model and further classify the enhanced drill-core
hyperspectral data.

Figure 1. Flowchart of the proposed methodology to map minerals at a high-spatial resolution using hyperspectral data.

2.1. Hyperspectral Resolution Enhancement

The spatial sampling of hyperspectral sensors often results in a limited resolution of
details and patterns in mineral maps. SEM-MLA analysis provides a mineral map at high-
spatial resolution (i.e., GSD of about 3 µm) but to an extremely limited spatial extent (e.g.,
covering a region of about 39 × 29 mm). To improve spatial sampling of the hyperspectral
data and to facilitate a more meaningful use of the SEM-MLA analysis as reference data,
we enhance the resolution of the hyperspectral data by means of a high-spatial resolution
RGB image of the same sample.

We perform the enhancement with the Coupled Non-negative Matrix Factorization
algorithm (CNMF [22]). We chose this algorithm for its robust performance as a benchmark
method, as shown in the literature, and for its ability to preserve the detailed spectral
information in the enhanced hyperspectral data [22,25], which represents a key factor when
mapping minerals. Moreover, CNMF has been shown to perform better than a variety
of resolution enhancement methods, e.g., [21,26]. CNMF is a resolution enhancement
algorithm belonging to the family of subspace methods. It was originally proposed to
fuse hyperspectral, X ∈ Rλh×Lh , and multispectral data, Y ∈ Rλm×Lm , based on a recursive
non-negative matrix factorization (NMF) unmixing. λh and λm represent the number of
spectral bands in the hyperspectral and multispectral data, whereas Lh and Lm denote the
number of pixels in both datasets. The fusion of hyperspectral and multispectral data,
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which in this study correspond to a three-spectral-channel RGB image, based on unmixing
is achieved by estimating high-spectral resolution endmember spectra (W) and high-spatial
resolution abundances maps (H) from the two datasets [22]. Spectral unmixing of the
multispectral image itself cannot be achieved accurately due to the broad spectral response
at limited wavelengths. However, this unmixing is helpful to determine the detailed
spatial distribution of abundances at fine resolutions once the spectral signatures and the
fractional abundances are obtained at a lower spatial resolution by spectral unmixing of
the hyperspectral data [25].

CNMF starts by unmixing the low-spatial resolution hyperspectral data. For the
unmixing, a linear model is adopted due to its physical effectiveness and mathematical
simplicity. CNMF alternately unmixes X and Y using non-negative matrix factorization
(NMF) to estimate W and H, and for this, the following constraints are considered: the
endmembers and abundances are assumed to be non-negative (W ≥ 0 and H ≥ 0) and the
abundances are also constrained to sum-to-one ( ∑D

j=1 hjk = 1(k = 1, 2, . . . , Lm), where D is
the number of endmembers). Moreover, NMF does not assume the presence of pure pixels.
For unmixing with NMF, the CNMF algorithm uses multiplicative update rules, which
are as follows:

W← W · ∗ (XHT
h ) · / (WHhHT

h ) (1)

Hh ← Hh · ∗ (WTX) · / (WTWHh) (2)

Wm ← Wm · ∗ (YHT) · / (WmHHT) (3)

H← H · ∗ (WT
mY) · / (WT

mWmH) (4)

where (·)T denotes the transposed matrix and where ·∗ and ·/ denote element wise
multiplication and division, respectively.

In the initial phase, the endmember matrix is calculated by the vertex component
analysis algorithm (VCA). The abundance matrix from the hyperspectral data (Equation (2))
is set as a constant value 1/D and is updated until convergence with the endmembers fixed.
For the optimization of W and Hh, they are alternately updated using Equations (1) and (2)
until the next convergence. In the subsequent NMF unmixing for X, the initialization phase
for the abundances is performed considering the point spread function. The endmembers
(Equation (1)) are updated until convergence with abundances from the hyperspectral data,
which is important to inherit the reliable information of abundance maps obtained from
multispectral data [22]. In the optimization phase, both Wm and H are alternately updated
using Equations (3) and (4) until the next convergence.

The point spread function, together with the spectral response function, are sensor-
dependent characteristics that are related to the input hyperspectral and multispectral data
by building sensor observation models into the initialization of the multispectral signatures
of the endmembers and the low-spatial resolution abundance maps [21]. The relative
sensor characteristics can be estimated from the data sources when they are not available
as prior knowledge. The spectral response function is used to initialize the endmember
matrix derived from the NMF unmixing of the high-spatial resolution RGB image. The
abundances from the multispectral data are also initialized in this step as the constant value
1/D and are updated until convergence with the endmembers from the multispectral data.
Through this process, reliable information about the endmember spectra obtained from the
hyperspectral data is inherited [22]. The two NMF unmixing steps are repeated alternately
until convergence, and the final high-spatial resolution hyperspectral data are obtained
by deriving the product of both W and H. For a more detailed definition of the CNMF
algorithm, we refer the readers to [22].

2.2. Mineral Mapping

We generate initial mineral maps from the enhanced hyperspectral data using a well-
established and robust minimum wavelength mapper. We use the version available in the
Hylite toolbox for spectral analysis [27]. The minimum wavelength mapper combines the
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position and depth information of the deepest absorption feature to provide an overview
of its presence and distribution [10,28]. Changes in the wavelength position are observed
in color variations, and hue variations represent changes in the strength of the absorption
feature. We perform the mapping on continuum-removed data and evaluate the position
and depth of the deepest absorption feature present in the data. We perform the mapping
between 2130 and 2370 nm since, based on a spectral library [29], this wavelength range
encloses the diagnostic absorption features of minerals such as white micas, chlorites,
carbonates, and kaolinites, amongst others.

2.3. Supervised Classification

After the hyperspectral data were enhanced, we co-registered and resampled the
SEM-MLA data to match the enhanced hyperspectral data and to generate the training
or reference data to perform the supervised mapping. For this, we followed a modified
approach from the one presented by [13]. We opted to resample the SEM-MLA data by
selecting the most dominant minerals per hyperspectral pixel instead of generating class
labels with their associated mineral abundances. This is because the spatial sampling
of the high-spatial resolution hyperspectral image is now more related to sampling the
original high-resolution mineralogical data used in this study. A threshold needs to be
set to guarantee the presence of representative minerals (i.e., minerals with a minimum
abundance in the entire region covered by the SEM-MLA data) for resampling. We consider
all of the minerals identified in the SEM analysis. However, minerals that do not have a
diagnostic response in the spectral range used for the hyperspectral data (VNIR–SWIR)
have been set as one class called Others in the final labelling of the resampled maps. These
non-diagnostic minerals are, for example, quartz, plagioclase, and pyrite.

The last step of the proposed methodology concerns upscaling of the high-resolution
mineralogical data from the SEM-MLA to the drill-core samples and is performed by
training a machine learning model. To train the model, the hyperspectral features are given
as input together with the training samples to a supervised classifier. In this work, we
suggest using a novel decision tree ensemble method, i.e., Canonical Correlation Forest
(CCF) [30], since it is known that ensemble classifiers can provide good classification results
where there is no balance between dimensionality and the number of available training
samples. Moreover, the combination of decision trees in ensemble classifiers is expected to
provide more accurate and robust results than individual decision tree classifiers.

CCF applies canonical correlation analysis to capture the relationship between the
class labels and features before the leaf split is performed in each decision tree [31]. It
applies the correlation analysis in the construction of trees to find feature projections that
provide the maximum correlation between the features and the class labels. The best split at
a particular node in this projected space is selected using an exhaustive search in the space
of the projected features. CCF is constructed by several individual canonical correlation
trees. The individual trees are binary decision trees with hyperplane splits based on local
canonical correlation coefficients calculated during the training [30]. Majority voting is
used to combine the predictions of the individual canonical correlation trees.

3. Case Study

We showcase the performance of our proposed methodology on three drill-core sam-
ples from the Bolcana copper–gold mineralized system located in the Brad-Sacaramb
metallogenic district within the Golden Quadrilateral in South Apuseni Mountains, Ro-
mania. This is a porphyry-type Cu–Au ore deposit with associated epithermal veins [32].
Hyperspectral data were acquired over the surface of these drill-cores, and small portions
of them were subjected to the SEM-MLA analysis (see Figure 2). In Sample 1, the matrix
is predominantly composed of white mica, and a large pyrite-gypsum vein is presented.
Sample 2 and Sample 3 are composed of mainly feldspars with disseminated chlorite and
biotite in the matrix at different proportions. Sample 2 has minor chlorite, whereas Sample 3
has less biotite. Sample 2 presents fine pyrite and quartz veins, whereas Sample 3 presents
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pyrite-gypsum veins and quartz veins. From these minerals only white mica, biotite,
chlorite, and gypsum have diagnostic responses in the VNIR–SWIR wavelength range.

Figure 2. RGB images of the drill-core samples used in this study with the overlaid SEM-MLA images. The pixel size in the
original SEM-MLA images is about 3 µm. (Wmca—white mica, Bt—biotite, Chl—chlorite, Ep—epidote, Amp—amphibole,
Cal—calcite, Sd—siderite, Ank—ankerite, Gp—gypsum, Px—pyroxenes, Fe–TiOx—Fe–Ti oxides, Pl—plagioclase, Kfs—
K-feldspar, Qz—quartz, Rt—rutile, Acc—accessory minerals, Py—pyrite, S−2acc—sulphides accessory, S−2-Cu—copper
sulphides, Ccp—chalcopyrite, and Au—gold).

3.1. Data Acquisition

For the acquisition of data, a high-resolution RGB and a hyperspectral camera were
mounted onto the SisuRock scanner manufactured by SPECIM (see Figure 3a). The scanner
is an automatic imaging workstation that carries the samples placed on a moving table
under the field-of-view of the cameras. We used a Canon EOS 750D for high-resolution
RGB data. This is a 24.2 megapixel digital SLR camera that produces high-resolution RGB
images of about 0.1 mm ground sampling distance (GSD).

For the hyperspectral data, we used the SPECIM FENIX camera. This is a push-broom
instrument that contains two sensors to cover the VNIR–SWIR regions of the electromag-
netic spectrum, 380–970 nm and 970–2500 nm, respectively. The spectral resolution of the
VNIR sensor is about 3.5 nm and that of the SWIR sensor is about 12 nm. The spectral
binning was set to 4 for the VNIR and to 1 for the SWIR. The scanning speed was set
to 25.06 mm/s, and the integration times were 15 ms and 4 ms for the VNIR and SWIR,



Remote Sens. 2021, 13, 2296 8 of 21

respectively. The FENIX camera provides a co-register hyperspectral data cube of the
VNIR–SWIR data with a total of 450 bands and a GSD of around 1.5 mm.

The radiance values of the hyperspectral data were automatically converted to re-
flectance values based on an empirical line correction with a dedicated plugin in the
acquisition software provided by SPECIM. We also applied geometric corrections using
the toolbox presented in [33] to account for the sensor-specific optical distortions known as
fish-eye and slit-bending effects. We removed the hyperspectral data from 380 to 538 nm
and from 2486 to 2500 nm to avoid bands with low signal-to-noise ratio. Hence, the
hyperspectral data we used for this work have a total of 400 bands.

The high-resolution mineralogical data were acquired using SEM-MLA with an FEI
Quanta 650 F field emission SEM instrument, equipped with two Bruker Quantax X-Flash
5030 energy dispersive X-ray detectors and the MLA 3.1.4 software (see Figure 3b). The
acquisition was performed in GXMAP mode over carbon-coated polished thin sections of
about 30 µm thickness from the drill-core samples. The GSD of the MLA images is about
3 µm. More details on the measurement mode are available in [34,35].

(a) SisuRock drill-core scanner equipped with an
AisaFenix VNIR-SWIR hyperspectral sensor.

(b) Scanning Electron Microscope (SEM)-
Mineral Liberation Analysis (MLA).

Figure 3. Drill-core scanner and SEM-MLA instruments available at the spectroscopy and geometallurgy laboratories,
respectively, at the Helmholtz Institute Freiberg for Resource Technology.

3.2. Resolution Enhancement Application

For the resolution enhancement of hyperspectral data using the CNMF algorithm, the
number of endmembers can be set manually or can be determined automatically using
virtual dimensionality (VD) [36]. In this case, we opted for automatic estimation of the
endmembers and set the false alarm rate of the VD to 0.05 to guarantee the detection of
weak signal sources with small energies [36]. The ratio between spatial sampling of the
hyperspectral and RGB data is the enhancement factor (EF). The three samples used in
this study have EFs ranging between 15 and 17. These factors are reasonable considering
that one spectrum from the original hyperspectral dataset is used to determine the spectral
content of only 225–289 pixels. With these EFs the spatial sampling of the hyperspectral
data is decreased from about 1.5 mm to 0.1 mm. Mineral sizes vary from microns to
millimeters in the rock samples considered. That implies that one pixel from the enhanced
dataset is more likely to contain a single mineral (pure pixels).

The threshold we used to generate the training set from the resampled SEM-MLA data
corresponds to around 2% of the total pixel area covered by the SEM-MLA. We chose this
value by testing different options and by assessing for a meaningful number of minerals
considering the GSD of the hyperspectral data. We also performed the mapping with the
GSD of the original hyperspectral data to be able to evaluate the mapping improvement at
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the enhanced sampling. In this case, we set the same value for the threshold in resampling
the SEM-MLA data.

We selected the number of training samples at 80% of the smallest class to avoid
unbalanced classes. This step is necessary because, for example, the class Others is highly
abundant and mainly consists of mixtures of minerals without a diagnostic response in
the VNIR–SWIR. The performance evaluation of the classifier is not a relevant point in
this study but the actual mapping of enhanced sampling is. Additionally, one should be
aware that using traditional metrics to evaluate an improvement in mapping for enhanced
sampling is not completely appropriate since mapping at the original and enhanced GSD
are two different classifications based on two different training sets. However, for the sake
of transparency, we calculate the accuracies of the CCF algorithm when mapping at the
original and enhanced resolutions. The number of samples in the validation set is chosen
as 20% of the smallest class. We used the values suggested in the literature to tune the CCF
algorithm [30,31] and used 500 trees for the classification because this number of trees has
been shown to produce stable results when mapping minerals [13].

The resolution enhancement in this study derives datasets in which a more precise
delineation of elements is observed due to the finer spatial sampling of the hyperspectral
data. For example, in the enhanced image of the area within the red square in Figure 4, the
total number of pixels corresponds to 345 × 345 whereas the original dataset for this area
has 23 × 23 pixels. This increment depicts the elongated and linear features better and not
only the thicker ones as in the original data. The relevance of this enhancement lies in the
fact that these linear features correspond to veins that are highly important for geologists
looking for indicators of ore mineralizations.

Figure 4. Resolution enhancement example: RGB image of Sample 2 with red square showing an specific region where
the enhancement is illustrated. Bottom row shows the RGB image of the specific region, band 889 nm of the original
hyperspectral (HSI) data (1.5 mm ground sampling distance (GSD)) and the same band of the enhanced hyperspectral data
(0.1 mm GSD).

3.3. Evaluation of the Resolution Enhancement

We performed a sensitivity analysis to evaluate whether the spectral fidelity is pre-
served in the resolution enhancement. We used the spectral angle mapper (SAM) [37],
which is a widely used quality measure for quantitative fusion assessment. SAM is a
common measure in the field of resolution enhancement for determining the spectral
preservation at each pixel [21,25]. It determines the spectral similarity between two spectra,
in this case, between the enhanced and reference spectra (original dataset), by calculating
the angle between their vectors in the spectral space. For the enhancement, we used not
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only the original RGB data but also six extra datasets obtained by down-sampling the orig-
inal RGB image to also assess the impact of the EF in the spectra. The EF of these datasets
ranges from 3 to 13, and the total number of pixels varies from 69 × 69 to 345 × 345.
We considered an average of 200 pixels for each dataset when calculating the spectral
similarity to produce more sound results. The sensitivity analysis shows stable results
with average values around 2.2 rad for all of the datasets generated with the different EF.
The dataset with the closest sampling to the original hyperspectral data (EF of 3) and the
one obtained with the original RGB data (EF 15) are the ones presenting slightly lower
values (see the plot at the bottom right of Figure 5). The sensitivity analysis shows that the
reconstruction step captures the main absorption features and general shape of the spectra
in the enhancement process. This can be also observed in the plot at the bottom left of
Figure 5 where the only apparent difference is visible in the reflectance intensity for all of
the enhanced data. These spectra correspond to the center pixels marked with the red dots
in the hyperspectral images (HSI) and MLA image overlaid on the RGB of the section of
interest from Sample 2 shown at the top of the figure. When using hyperspectral data to
map minerals, the absorption features are crucial for proper identification of the present
minerals. Based on the wavelength location of the main absorption features of the spectra
shown in Figure 5, these show a dominant presence of biotite.

Figure 5. Sensitivity analysis for the spectral integrity by means of SAM measurement for a small section of Sample 2. Top
image shows an RGB image of the small section, and the red square shows the area where the analysis was performed.
Below are images of band 889 nm of the hyperspectral (HSI) data enhanced at different factors with an overlaid red dot
pointing toward the center pixel. At the bottom, from left to right, is the spectra of the center pixels and the plot with the
SAM results. (Wmca—white mica, Bt—biotite, Chl—chlorite, Ep—epidote, Amp—amphibole, Cal—calcite, Sd—siderite,
Ank—ankerite, Gp—gypsum, Px—pyroxenes, Fe–TiOx—Fe–Ti oxides, Pl—plagioclase, Kfs—K-feldspar, Qz—quartz, Rt—
rutile, Acc—accessory minerals, Py—pyrite, S−2acc—sulphides accessory, S−2-Cu—copper sulphides, Ccp—chalcopyrite,
and Au—gold).
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4. Results
4.1. Mineral Mapping

Initial high-spatial resolution mineral maps obtained by the minimum wavelength
mapper serve to evaluate the spectral parameters, wavelength position, and depth of the
main absorption features, which relate to the minerals present in the samples (see Figure 6).
The main color present in the matrix of Sample 2 and Sample 3 is representative of chlorite
and biotite rich in magnesium. The intense blue in the veins is representative of mica
richer in magnesium or iron (more phengitic composition), while the magenta color in the
middle and upper part of the veins in Sample 3 and Sample 1 corresponds to the mica of a
paragonitic composition.

Minimum wavelength maps are also useful for assessing the performance of the
resolution enhancement and whether the spectra have been properly preserved by visually
comparing the high-spatial resolution mineral maps with the maps obtained with the
original hyperspectral data. In general, the enhanced mineral maps show a striking
improvement in the delineation of the structures such as veins. For example, in Figure 6,
the first vertical vein at the bottom left part of Sample 3 is not mapped in the enhanced HSI
as sharp as it is in the original HSI. This vein is visible in the SEM-MLA maps in Figure 7
at the bottom, and it is mainly composed of quartz (Qz), which does not have diagnostic
absorption features in the VNIR–SWIR wavelength range and, therefore, should not be
highlighted in the minimum wavelength maps. Another example is the sharp vertical vein
at the bottom right of Sample 3 (see Figure 6), which in the SEM-MLA maps in Figure 7
corresponds to the vein at the top. This vein is composed of a mixture of quartz with white
mica (Wmca) and less chlorite (Chl). The presence of white mica is what sharpens the vein
in the enhanced minimum wavelength maps.

Figure 6. Minimum wavelength maps performed over the range between 2130 and 2370 nm for both the original and
enhanced hyperspectral images (HSI). A stretch for visualization was performed between 2150 and 2370 nm.
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4.2. Supervised Classification

The enhanced hyperspectral data allows for more meaningful use of SEM-MLA data to
train a supervised machine learning model for the mineral mapping of drill-cores because
of the smaller GSD. With the smaller GSD achieved in the enhanced data, the difference in
the spatial sampling of the SEM-MLA and hyperspectral data is minimized, and therefore,
smaller objects such as mineral grains are depicted in the matrix. With the SEM-MLA
resampled to the enhanced GSD, not only are higher details mapped but also more minerals
can be preserved from the original SEM-MLA. For example, a region could only contain
one mineral at a 1.5 mm GSD, but when increasing the resolution to 0.1 mm GSD, the
region shows more than just one mineral. To illustrate the improvement in the use of
the SEM-MLA data, Figure 7 shows one of the SEM-MLA images obtained from Sample 3
and the resampled versions for both resolutions: the original hyperspectral and enhanced
data. In general, the matrix of the sample at the original resolution shows only plagioclase,
which is a mineral without diagnostic absorption features in the VNIR–SWIR. However,
the image resampled to the resolution of the enhanced hyperspectral data shows that, in
the matrix, there are in fact grains of other minerals that have a diagnostic response in
the wavelength range used(see also the zoom map at the bottom right of the figure). For
example, the grain within the red sphere in the zoom is mapped as biotite. The average
spectra of the area within the red sphere show the characteristic absorption features of
biotite, however, not for pure biotite (see the spectra at the bottom left of the figure).

Figure 7. SEM-MLA performed over a small section of Sample 3 (top section in Sample 3 in Figure 2) at the original
resolution (3 µm GSD), resampled to the original resolution of the hyperspectral (HSI) data (1.5 mm GSD), and resampled
to the enhanced HSI resolution (0.1 mm GSD). Below is a zoom of the red squared over the enhanced HSI map and the
spectra of the biotite (Bt) grain pointed with the red sphere. (Wmca—white mica, Bt—biotite, Chl—chlorite, Ep—epidote,
Amp—amphibole, Cal—calcite, Sd—siderite, Ank—ankerite, Gp—gypsum, Px—pyroxenes, Fe–TiOx—Fe–Ti oxides, Pl—
plagioclase, Kfs—K-feldspar, Qz—quartz, Rt—rutile, Acc—accessory minerals, Py—pyrite, S−2acc—sulphides accessory,
S−2-Cu—copper sulphides, Ccp—chalcopyrite, and Au—gold).
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The training data were obtained after the original SEM-MLA images were co-registered
and resampled to the resolution of the enhanced hyperspectral data (from 3 µm GSD to
0.1 mm GSD) (see maps on the right side of Figure 8). Following the same approach,
we also performed resampling of the high-resolution mineralogical maps to the original
resolution of the hyperspectral data (from 3 µm GSD to 1.5 mm GSD) to compare the
high-spatial resolution maps (see left side of Figure 8). SEM-MLA reference maps at
enhanced resolution show more detailed patterns as more linear and circular features,
which correspond to veins and mineral grains, are delineated. Additionally, the model
mineralogy provided by SEM-MLA is explored to its fullest extent. This observation is
evident in the matrix of Sample 2 and Sample 3, where mineralogical changes are observed.
At the original resolution, the matrix contains mainly the class Others, and at the enhanced
resolution, it is composed of biotite (Bt) and chlorite (Chl) besides the class Others. These
changes are also evident in the veins of Sample 1 and Sample 3. To illustrate this, the top
SEM-MLA in Sample 1 shows, in contrast to the map at the original resolution, that the vein
is composed of white mica and not only of the class Others.

Figure 8. Co-registered scanning electron microscopy—mineral liberation analysis (SEM-MLA) images and resampled to
the original hyperspectral (HSI) resolution (1.5 mm GSD) and to the resolution of the enhanced HSI data (0.1 mm GSD).
(Wmca—white mica, Bt—biotite, Chl—chlorite, and Gp—gypsum).

After we trained the supervised machine learning model as mentioned in Sections 2.3
and 3.2, we upscaled the high-resolution mineralogical data from the resampled SEM-MLA
to the entire enhanced drill-core hyperspectral data and obtained high-spatial resolution
minerals maps (see the right side of Figure 9). Moreover, we also included the mineral maps
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obtained with the original hyperspectral data to be able to provide a thorough assessment
of the improvement in the mapping when spatially enhancing the hyperspectral data (see
the mineral maps on the left side of Figure 9). In general, the high-spatial resolution maps
show a visually striking refinement of the structural patterns in the entire samples; for
example, the linear features inside the white mica mapped on the left side of Sample 1
are barely seen in the map at original resolution. Complete veins are now visible in the
high-spatial resolution maps, as can be observed in Sample 2 with the white mica–chlorite
veins mapped in the middle of the sample. In Sample 3, although the main veins are already
visible in the map obtained at the original resolution, a great improvement is evident in the
matrix, which now appears to be better resolved.

Figure 9. Classified maps obtained by selecting training samples from the co-registered and resampled scanning electron
microscopy—mineral liberation analysis (SEM-MLA) data and by classifying the enhanced hyperspectral (HSI) data on the
right side with a sampling of 0.1 mm ground sampling distance (GSD). As a comparison of the proposed method, we also
present the classified maps obtained when using the original hyperspectral data (with a sampling of 1.5 mm GSD) on the
left side. (Wmca—white mica, Bt—biotite, Chl—chlorite, and Gp—gypsum).

We visually compared the high-spatial resolution classified maps obtained with the
original SEM-MLA data to evaluate and validate the significance of the results (see Figure 2).
Overall, the distribution and mapping of the identified minerals agree with the high-
resolution mineralogical data. For example, we depicted the Gp (gypsum) vein on the right
side of Sample 1 and the following thick vein mapped with the class Others, which based
on the original SEM-MLA corresponds to pyrite that does not have diagnostic absorption
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features in the VNIR–SWIR wavelength range. This thick vein classified as Others is
then followed by a Wmca (white mica) region with disseminated gypsum. Similarly, the
mapping in Sample 2 is in agreement with the SEM-MLA data. The majority of the veins are
a mixture of white mica with less chlorite, and the matrix is mainly mapped as Others and
biotite. The mapping in the matrix of Sample 3, however, seems to overestimate the content
of biotite. Veins in this sample are correctly mapped as a mixture of white mica, chlorite,
and gypsum in certain regions. When comparing the veins in Sample 3 with the SEM-MLA
data (see Figure 2), it reveals that the top vertical gypsum vein is better mapped at the
original resolution of the hyperspectral data than at the enhanced resolution. However,
when looking carefully at the high-resolution mineralogical maps, it is evident that this is a
thin gypsum vein with a quartz alteration halo, which is in fact correctly mapped at the
enhanced resolution with the class Others. This is also the case of the vein cutting through
the white mica veins at the bottom of Sample 2.

4.3. Validation

We calculated the accuracies for each of the samples to evaluate the performance of
the CCF classifier (see Table 1). In general and as we expected, accuracies are relatively low
when using the enhanced hyperspectral data and ranging from about 49% for Sample 2
to 81% for Sample 3. Values of the average accuracy seem to be higher than the values of
the overall accuracy, which is expected due to the difference in the number of samples per
class. Accuracies obtained at the original sampling of the hyperspectral data are higher
than those obtained on the enhanced data. However, the comparison and evaluation of the
improvement of the mapping at the enhanced sampling using this traditional metric is not
appropriate. To be able to evaluate the improvement in the mapping quality due to the
increase in resolution, we performed a quantitative analysis over the SEM-MLA resampled
maps. We first resized the resampled SEM-MLA data to the original size of the SEM-MLA
images and randomly selected 80% of the total amount of available pixels for each mineral
in the original SEM-MLA data and compared those pixels with the corresponding pixels at
both the resampled to the original and enhanced hyperspectral resolutions (GSDs of 1.5
and 0.1 mm, respectively). We performed the analysis 100 times and averaged the results.
The quantitative analysis shows that the SEM-MLA map resampled to the resolution
of the enhanced hyperspectral data preserves the mineralogical information from the
original SEM-MLA data in about 98% and 54% better than the SEM-MLA data resampled
to the original hyperspectral resolution. Figure 10 summarizes this quantitative analysis
for the seven most abundant minerals. The opaque bars correspond to the resampled
SEM-MLA data at the enhanced resolution, and the transparent bars correspond to the
resampled data at the original hyperspectral resolution. In general, the map at the enhanced
resolution correctly identified more minerals than the map at the original resolution of
the hyperspectral data except for Pl for which the difference is very subtle. This figure
also highlights how some minerals, for example, Kfs, Chl, and Py, are now seen in the
SEM-MLA data resampled to the enhanced resolution of the hyperspectral data, whereas
at the resolution of the original hyperspectral data, they are lost.

Table 1. Classification accuracies for the canonical correlation forest (CCF) algorithm (%).

CCF
Enhanced HSI Original

1 2 3 1 2 3

Overall 50.84 48.95 80.98 65.64 82.17 82.86
Average 63.17 63.41 86.78 70.24 78.37 90.67
Kappa 0.24 0.24 0.58 0.34 0.44 0.66
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Figure 10. Comparison of mineral identification amongst original scanning electron microscopy-
mineral liberation analysis (SEM-MLA), resampled SEM-MLA at the original resolution of the
hyperspectral (HSI) data (dashed lines, transparent bars), and the resampled map at the enhanced
resolution (continuous lines, opaque bars). (Pl—plagioclase, Qz—quartz, Wmca—white mica, Gp—
gypsum, Kfs—K-feldspar, Chl—chlorite, and Py—pyrite).

5. Discussion

In this work, we propose a methodology to map minerals in drill-core hyperspectral
data at a high-spatial resolution by fusing hyperspectral and high-spatial resolution RGB
data. We propose the use of the established CNMF algorithm, which is a subspace-based
resolution enhancement technique. We performed a sensitivity analysis over 200 randomly
selected pixels to evaluate the spectral integrity after the enhancement process. This sensi-
tivity analysis provides a direct assessment of the impact in the spectra of the resolution
enhancement process and evaluates whether the spectra have been preserved or artifacts
were added. For this, we used various enhanced hyperspectral datasets obtained with
different resolution enhancement factors. The RGB images used for the enhancement of
these datasets were generated from the original RGB after a down-sampling step and not
acquired with different RGB cameras at different spatial samplings. This sensitivity analysis
shows that the spectra are well preserved and that only a general change in the reflectance
intensity is observed, which could be due to the involvement of the abundance matrix
derived from the RGB data in the process of generating the enhanced data. The fact that
the RGB data only have three spectral channels in the visible range of the electromagnetic
spectrum (blue, green, and red) has an impact on the general reflectance intensity. This is
because the fusion of hyperspectral and multispectral data is usually an ill-posed problem,
and when the difference in the spatial sampling of both data sets is large and RGB data
(three spectral channels) are used as the multispectral data, unmixing of the RGB data
results in a severely ill-posed problem.

The preservation of the spectra is highlighted by the mostly constant values in the
spectral similarity measure results. We expected a slight decrease in the measure when
using the EF of 15 since this is the one obtained from the original RGB data. The evaluation
of the spectral preservation is also possible by looking at the characteristics of the absorption
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features (wavelength position and depth) with the minimum wavelength maps (Figure 6).
These initial mineral maps preserve the spatial coherence and do not show any random
mapping. The high-spatial resolution minimum wavelength maps clearly highlight the
advantages and impact of the enhancement when mapping minerals by better depicting
the mineral distribution patterns and showing narrower and more delineated veins. This
difference in the mapped veins is highlighted, for example, in the first vertical vein at
the bottom left part of Sample 3 at the original resolution. In the map derived from the
enhanced HSI, this vein is not mapped as intense as with the original HSI. This is due
to the refinement of the spatial distribution of the different spectrally distinct mineral
phases during the unmixing process involved in the resolution enhancement step since the
presence of white mica is what accentuates this vein in the original HSI.

In this work, we also integrated the enhanced hyperspectral data with SEM-MLA
data to map minerals in a supervised manner. The SEM-MLA maps, resampled at both the
original and the enhanced hyperspectral resolutions, show that the enhancement allows
for the identification and mapping of minerals that are hidden in the original hyperspectral
data. For example, the disseminated biotite and chlorite are mapped in the matrix of
the SEM-MLA map at the enhanced sampling (see Figure 7). Unraveling the spectra
of the objects mapped at the enhanced resolution is, however, still dependent on the
scale of the mixtures. Although CNMF operates on a subspace of dimensions given by
the number of endmembers determined in the unmixing process within the resolution
enhancement, if the intrinsic mixtures of minerals in the sample are at a finer scale than
that resolved by the fusion of the RGB and hyperspectral data, mixtures are still observed
at the enhanced resolution.

The resolution enhancement step in the supervised mapping of drill-core hyperspec-
tral data not only helps to obtain greater details of the matrix and veins in the cores but
also makes it possible to achieve a more explicit identification of the minerals present in the
samples. This is because each pixel is assigned a single label when using a hard classifier
such as CCF and, therefore, minor components are lost in the mapping. With the increase
in GSD in the hyperspectral data, these minor components can now be mapped. This can
be observed in the mineral maps we obtained with our proposed supervised mapping
(see Figure 9). The use of the extra class Others avoids overestimation of the minerals with
a diagnostic response in the VNIR–SWIR and allows for a more accurate representation
of the alteration patterns. If hyperspectral data in the long-wave infrared region of the
electromagnetic spectrum are available for these samples, it would be possible to fuse the
almost full range and, therefore, all of the minerals identified in the SEM-MLA analysis
could be used instead of the class Others. This supervised mapping is highly influenced
by the quality of the co-registration between the SEM-MLA and the hyperspectral data.
To simplify the co-registration, regions where thin sections for SEM-MLA analysis are
performed could be marked in the drill-core samples before acquiring the hyperspectral
data. In another strategy, the SEM-MLA could be performed in thick sections that can be
scanned again with the hyperspectral sensors after removing the carbon coating.

Finally, we performed an accuracy assessment to evaluate the performance of the
CCF ensemble classifier when mapping at the original and enhanced resolutions. We built
the validation set per class using a number equal to 20% of the total amount of samples
in the smallest class. We expected low values for the accuracies due to the configuration
of the validation set. These accuracies, however, demonstrate the good performance of
the CCF algorithm, which can be explained by the fact that CCF is an algorithm that
performs a split between the classes after being implemented in the feature projections
found by the canonical correlation analysis. The higher values of the accuracy when
using the original hyperspectral data could be due to the fact that original data are highly
mixed, and although we performed an enhancement that involves several unmixing steps,
this resultant enhancement is basically spatial and sharpens the mapping, meaning that
we increased the number of pixels but some of the obtained pixels still remain mixed.
Therefore, in the enhanced data, the number of mixed pixels increases in comparison to
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the original data, causing a small drop in the accuracies since the calculation is performed
for their respective resampled training data. However, a direct comparison of the two
classifications based on merely accuracies is not convenient since each of them have their
specific training and validation sets. The quantitative analysis we performed to evaluate the
improvement of the mapping quality highlights how that the data enhancement step aids in
reducing the gap between the difference in resolution in both SEM-MLA and hyperspectral
data. This in turn allows for preserving the high-resolution mineralogical information from
the original SEM-MLA data with an average percentage of 98 as presented in Section 3.2
and Figure 10. The enhancement helps improve the quality of the mapping also due to
the better training data; for example, linear features are better delineated at the enhanced
resolution, as can be seen with the mapping and refinement of the thin veins in Sample 1
and Sample 2 (see Figure 8).

Implementing resolution enhancement techniques to map minerals in drill-core hy-
perspectral data allows for the identification of minerals and spatial patterns with hyper-
spectral data at a higher spatial resolution than traditional mineral mapping techniques
performed over the original hyperspectral data. Although the most relevant factor for min-
eral detection over drill-cores is the spectral quality, including detailed spatial information
is highly relevant to better delineate veins, alteration halos, and mineral grains. Having a
detailed mapping of such structures enables, for example, the definition of proxies towards
mineralization by using the vein composition and orientation and by assessing the stage of
alteration. This work was showcased over three drill-core samples; however, the technique
can be applied to large datasets as long as the data are co-registered and sufficient storage
is available. It is important to highlight storage as the data volume considerably increases
when enhancing the spatial resolution of hyperspectral data. As an example, hyperspec-
tral data of 103 bands for 1 meter of drill-core consists of 73× 887 pixels and takes about
22 MB. The enhanced hyperspectral data of such sample consists of 511× 6209 pixels and
takes around 4.8 GB. This implies that, for an operational environment where, for exam-
ple, 5 km of cores are drilled, an average of 24 TB is required for storage. However, the
resolution enhancement could be used as an intermediate step and only the subsequent
mineral/classified maps or abundance estimates at high-spatial resolution could be stored,
considerably reducing the amount of data.

6. Conclusions

In this work, we presented a high-spatial resolution mineral mapping approach for
drill-core hyperspectral data. We proposed performing an enhancement of the drill-core
hyperspectral data using the coupled non-negative matrix factorization (CNMF) algorithm
together with high-spatial resolution RGB data. The initial mineral maps highlight that
improving the spatial sampling of the hyperspectral data results in a better distribution
of the mineral patterns and better delineation of the depicted features, such as veins and
mineral grains.

We combined the high-spatial resolution hyperspectral data with high-resolution min-
eralogical data obtained with the scanning electron microscopy-based mineral liberation
analysis (SEM-MLA) to fully explore the possibilities of the resolution enhancement and
map minerals in a supervised manner. The enhancement reduces the gap in the spatial
sampling between the SEM-MLA and hyperspectral data and allows for a more mean-
ingful synergy between both datasets. Our obtained results show that the mapping not
only improved spatially by allowing for the identification of more structures and details
(i.e., veins and mineral grains in the matrix of the samples) but also allowed mapping
minerals that are hidden at the original resolution of the hyperspectral data. The use of
SEM-MLA analysis as reference or training data for a high-spatial resolution supervised
characterization of the drill-core hyperspectral data represents a valuable tool for a more
automatic upscaling of validated mineralogical information and is beneficial for mapping
regions of interest with high detail. This resolution enhancement approach improves the
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mapping of minerals in drill-core hyperspectral data to a level of detail that is favorable in
supporting mining companies in their decision-making.

The implementation of the resolution enhancement approach on larger sections such
as full bore-holes can be challenging due to the relevant increment in the size of the
enhanced data. Additionally, it has been shown in the literature that the performance of
the resolution enhancement algorithms reduces once the data is linearly transformed or
the dimensionality is reduced, especially when fusing hyperspectral with RGB data (three
spectral channels).

In future research, we would like to investigate in detail the impact of more advanced
machine learning classifiers not only in mapping but also in the accuracies. Moreover, we
will investigate the performance of resolution enhancement algorithms for mineral mapping
when fusing hyperspectral data covering the electromagnetic spectrum from the visible-near
infrared to the long-wave infrared spectra where more minerals can be identified.
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