Regional Mapping of Groundwater Potential in Ar Rub Al Khali, Arabian Peninsula Using the Classification and Regression Trees Model
Abstract
:1. Introduction
2. Description of the Study Area
2.1. Geography and Topographic
2.2. Geology and Hydrology
3. Materials and Methods
3.1. Materials and Preprocessing
3.2. Construction of Groundwater Conditioning Factors
3.3. Analysis and Optimization of the GWCFs
3.4. The Classification and Regression Trees (CART)
3.5. Application of the CART Model in Mapping Zones of Groundwater Potential
3.6. Validation
Evaluation Criteria
4. Results
4.1. Spatial Analysis
4.2. Groundwater Potential Mapping
4.3. Validation
5. Discussion
5.1. Spatial Analysis
5.2. The CART Application
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Elmahdy, S.I.; Mohamed, M.M. Remote sensing and GIS applications of surface and near-surface hydromorphological features in Darfur region, Sudan. Int. J. Remote Sens. 2013, 34, 4715–4735. [Google Scholar] [CrossRef]
- Dimock, W.C. A Study of the Water Resources of the Rub Al-Khali in Southern Saudi Arabia; ARAMCO: Ryadh, Saudi Arabia, 1961; p. 183, Unpublished Groundwater Report 22. [Google Scholar]
- Geert, K.; Afifi, A.M.; Al-Hajri, S.I.A.; Droste, H.J. Paleozoic stratigraphy and hydrocarbon habitat of the Arabian Plate. GeoArabia 2001, 6, 407–442. [Google Scholar]
- Pachur, H.-J.; Rottinger, F. Evidence for a large extended paleolake in the Eastern Sahara as revealed by spaceborne radar lab images. Remote Sens. Environ. 1997, 61, 437–440. [Google Scholar] [CrossRef]
- Hoelzmann, P.; Keding, B.; Berke, H.; Kröpelin, S.; Kruse, H.J. Environmental change and archaeology: Lake evolution and human occupation in the Eastern Sahara during the Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 169, 193–217. [Google Scholar] [CrossRef]
- Elmahdy, S.I.; Mohamed, M.M. Remote sensing and geophysical survey applications for delineating near-surface palaeochannels and shallow aquifer in the United Arab Emirates. Geocarto Int. 2015, 30, 723–736. [Google Scholar] [CrossRef]
- Elmahdy, S.I.; Mohamed, M.M. Mapping of tecto-lineaments and investigate their association with earthquakes in Egypt: A hybrid approach using remote sensing data. Geomat. Nat. Hazards Risk 2015, 7, 600–619. [Google Scholar] [CrossRef] [Green Version]
- Elmahdy, S.I.; Mohamed, M.M. Relationship between geological structures and groundwater flow and groundwater salinity in Al Jaaw Plain, United Arab Emirates; mapping and analysis by means of remote sensing and GIS. Arab. J. Geosci. 2013, 7, 1249–1259. [Google Scholar] [CrossRef]
- Clark, A. Lakes of the Rub’ Al-Khali. Aramco World 1989, 40, 28–33. [Google Scholar]
- Dabbagh, A.E.; Al-Hinai, K.G.; Khan, M.A. Detection of sand-covered geologic features in the Arabian Peninsula using SIR-C/X-SAR data. Remote Sens. Environ. 1997, 59, 375–382. [Google Scholar] [CrossRef]
- Elmahdy, S.I. Hydromorphological mapping and analysis for characterizing darfur paleolake, NW Sudan using remote sensing and GIS. Int. J. Geosci. 2012, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Sultan, M.; Sturchio, N.; Al Sefry, S.; Milewski, A.; Becker, R.; Nasr, I.; Sagintayev, Z. Geochemical, isotopic, and remote sensing constraints on the origin and evolution of the Rub Al Khali aquifer system, Arabian Peninsula. J. Hydrol. 2008, 356, 70–83. [Google Scholar] [CrossRef]
- Moghaddam, D.; Rezaei, M.; Pourghasemi, H.R.; Pourtaghie, Z.S.; Pradhan, B. Groundwater spring potential mapping using bivariate statisticalmodel and GIS in the Taleghan watershed, Iran. Arabian J. Geosci. 2015, 8, 913–929. [Google Scholar] [CrossRef]
- Mohamed, M.M.; Elmahdy, S.I. Remote sensing and information value (IV) model for regional mapping of fluvial channels and topographic wetness in the Saudi Arabia. GISci. Remote Sens. 2016, 53, 520–541. [Google Scholar] [CrossRef]
- Stumpf, A.; Kerle, N. Object-oriented mapping of landslides using Random Forests. Remote Sens. Environ. 2011, 115, 2564–2577. [Google Scholar] [CrossRef]
- Stumpf, A.; Kerle, N. Combining Random Forests and object-oriented analysis for landslide mapping from very high-resolution imagery. Procedia Environ. Sci. 2011, 3, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Vorpahl, P.; Elsenbeer, H.; Maerker, M.; Schröder, B. How can statistical models help to determine driving factors of landslides? Ecol. Model. 2012, 239, 27–39. [Google Scholar] [CrossRef]
- Trigila, A.; Frattini, P.; Casagli, N.; Catani, F.; Crosta, G.; Esposito, C.; Iadanza, C.; Lagomarsino, D.; Mugnozza, G.S.; Segoni, S.; et al. Landslide Susceptibility Mapping at National Scale: The Italian Case Study. Landslide Sci. Pract. 2013, 1, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Demšar, U. Knowledge Discovery in the Environmental Sciences: Visual and Automatic Data Mining for Radon Problems in Groundwater. Trans. GIS 2007, 11, 255–281. [Google Scholar] [CrossRef]
- Baudron, P.; Alonso-Sarría, F.; García-Aróstegui, J.-L.; Cánovas-García, F.; Martínez-Vicente, D.; Moreno-Brotóns, J. Identifying the origin of groundwater samples in a multi-layer aquifer system with Random Forest classification. J. Hydrol. 2013, 499, 303–315. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Mendes, M.P.; Garcia-Soldado, M.J.; Olmo, M.C.; Ribeiro, L. Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain). Sci. Total. Environ. 2014, 476–477, 189–206. [Google Scholar] [CrossRef]
- Elmahdy, S.I.; Mohamed, M.M.; Ali, T.A. Automated detection of lineaments express geological linear features of a tropical region using topographic fabric grain algorithm and the SRTM DEM. Geocarto Int. 2021, 36, 76–95. [Google Scholar] [CrossRef]
- Elmahdy, S.; Ali, T.; Mohamed, M. Flash Flood Susceptibility Modeling and Magnitude Index Using Machine Learning and Geohydrological Models: A Modified Hybrid Approach. Remote Sens. 2020, 12, 2695. [Google Scholar] [CrossRef]
- Elmahdy, S.I.; Ali, T.A.; Mohamed, M.M.; Howari, F.M.; Abouleish, M.; Simonet, D. Spatiotemporal Mapping and Monitoring of Mangrove Forests Changes From 1990 to 2019 in the Northern Emirates, UAE Using Random Forest, Kernel Logistic Regression and Naive Bayes Tree Models. Front. Environ. Sci. 2020, 8, 102. [Google Scholar] [CrossRef]
- Elmahdy, S.; Mohamed, M.; Ali, T. Land Use/Land Cover Changes Impact on Groundwater Level and Quality in the Northern Part of the United Arab Emirates. Remote Sens. 2020, 12, 1715. [Google Scholar] [CrossRef]
- Elmahdy, S.I.; Mohamed, M.M.; Ali, T.A.; Abdalla, J.E.-D.; Abouleish, M. Land subsidence and sinkholes susceptibility mapping and analysis using random forest and frequency ratio models in Al Ain, UAE. Geocarto Int. 2020, 1–17. [Google Scholar] [CrossRef]
- Aguiar, F.S.; Almeida, L.L.; Ruffino-Netto, A.; Kritski, A.L.; Mello, F.C.; Werneck, G.L. Classification and regression tree (CART) model to predict pulmonary tuberculosis in hospitalized patients. BMC Pulm. Med. 2012, 12, 40. [Google Scholar] [CrossRef] [PubMed]
- Dixon, B. A case study using SVM, NN and logistic regression in a GIS to predict wells contaminated with Nitrate-N. Hydrogeol. J. 2009, 17, 1507–1520. [Google Scholar] [CrossRef]
- Ozdemir, A. GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. J. Hydrol. 2011, 411, 290–308. [Google Scholar] [CrossRef]
- Ozdemir, A. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). J. Hydrol. 2011, 405, 123–136. [Google Scholar] [CrossRef]
- Manap, M.A.; Nampak, H.; Pradhan, B.; Lee, S.; Sulaiman, W.N.A.; Ramli, M.F. Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arab. J. Geosci. 2014, 7, 711–724. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth: Belmont, CA, USA, 2017. [Google Scholar]
- Holm, D.A. Desert Geomorphology in the Arabian Peninsula. Science 1960, 132, 1369–1379. [Google Scholar] [CrossRef]
- Edgell, H.S. Arabian Deserts: Nature, Origin and Evolution; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Petraglia, M.D.; Alsharekh, A.; Breeze, P.; Clarkson, C.; Crassard, R. Hominin Dispersal into the Nefud Desert and Middle Palaeolithic Settlement along the Jubbah Palaeolake, Northern Arabia. PLoS ONE 2012, 7, e49840. [Google Scholar] [CrossRef]
- Patlakas, P.; Stathopoulos, C.; Flocas, H.; Kalogeri, C.; Kallos, G. Regional Climatic Features of the Arabian Peninsula. Atmosphere 2019, 10, 220. [Google Scholar] [CrossRef] [Green Version]
- Woods, W.W.; Imes, J.L. How wet is wet? Precipitation constraints on late quaternary climate in the southern Arabian Peninsula. J. Hydrol. 1995, 164, 263–268. [Google Scholar] [CrossRef]
- Haynes, C.V. Oyo a Lost Oasis of the Southern Libyan Desert. Geograph. J. 1989, 155, 189–195. [Google Scholar] [CrossRef]
- Elmahdy, S.; Ali, T.; Mohamed, M. Hydrological modeling of Ar Rub Al Khali, Arabian Peninsula: A modified remote sensing approach based on the weight of hydrological evidence. Geocarto Int. 2021, 1–20. [Google Scholar] [CrossRef]
- Sharland, P.R.; Archer, R.; Casey, D.M.; Davies, R.B.; Hall, S.H.; Heward, A.P.; Horbury, A.D.; Simmons, M.D. Arabian Plate sequence stratigraphy. GeoArabia Spec. Publ. 2001, 2, 371. [Google Scholar]
- Johnson, P.R.; Woldehaimanot, B. Development of the Arabian-Nubian Shield: Perspectives on accretion and de-formation in the northern East African Orogen and the assembly of Gondwana. Geol. Soc. Lond. Spec. Publ. 2003, 206, 289–325. [Google Scholar] [CrossRef]
- Allen, P.A. The Huqf Supergroup of Oman: Basin development and context for Neoproterozoic glaciation. Earth Sci. Rev. 2007, 84, 139–185. [Google Scholar] [CrossRef]
- Stoeser, D.B.; Frost, C.D. Nd, Pb, Sr, and O isotopic characterization of Saudi Arabian Shield terranes. Chem. Geol. 2006, 226, 163–188. [Google Scholar] [CrossRef]
- Rosenberg, T.M.; Preusser, F.; Blechschmidt, I.; Fleitmann, D.; Jagher, R.; Matter, A. Late Pleistocene palaeolake in the interior of Oman: A potential key area for the dispersal of anatomically modern humans out-of-Africa? J. Quat. Sci. 2012, 27, 13–16. [Google Scholar] [CrossRef]
- Crassard, R.; Petraglia, M.D.; Drake, N.A.; Breeze, P.; Gratuze, B.; Alsharekh, A.; Robin, C.J. Middle Palaeolithic and Ne-olithic occupations around Mundafan palaeolake, Saudi Arabia: Implications for climate change and human dispersals. PLoS ONE 2013, 8, e69665. [Google Scholar] [CrossRef] [PubMed]
- Groucutt, H.S.; White, T.S.; Clark-Balzan, L.; Parton, A.; Crassard, R.; Shipton, C.; Alsharekh, A. Human occupation of the Arabian empty quarter during MIS 5: Evidence from Mundafan Al-Buhayrah, Saudi Arabia. Quat. Sci. Rev. 2015, 119, 116–135. [Google Scholar] [CrossRef]
- Pike, J.G. The evaporation of grondwater from coastal Playas in the Arabian Gulf. J. Hydrol. 1971, 2, 10–18. [Google Scholar]
- Mohamed, M.M.; Elmahdy, S.I. Fuzzy logic and multi-criteria methods for groundwater potentiality mapping at Al Fo’ah area, the United Arab Emirates (UAE): An integrated approach. Geocarto Int. 2017, 32, 1120–1138. [Google Scholar] [CrossRef]
- McClure, H. Early paleozoic glaciation in Arabia. Palaeogeogr. Palaeoclim. Palaeoecol. 1978, 25, 315–326. [Google Scholar] [CrossRef]
- Dyer, R.A.; Husseini, M. The Western Rub’Al-Khali Infracambrian Graben System. In Middle East Oil Show; Society of Petroleum Engineers: Manama, Bahrain, 1991. [Google Scholar]
- Wender, L.E.; Bryant, J.W.; Dickens, M.F.; Neville, A.S.; Al-Moqbel, A.M. Paleozoic Pre-Khuff Hydrocarbon Geology of the Ghawar Area, Eastern Saudi Arabia. GeoArabia 1998, 3, 273–302. [Google Scholar]
- Florinsky, I.V. Relationships between topographically expressed zones of flow accumulation and sites of fault intersection: Analysis by means of digital terrain modelling. Environ. Model. Softw. 2000, 15, 87–100. [Google Scholar] [CrossRef]
- Elmahdy, S.I.; Mohamed, M.M. Influence of geological structures on groundwater accumulation and groundwater salinity in Musandam Peninsula, UAE and Oman. Geocarto Int. 2013, 28, 453–472. [Google Scholar] [CrossRef]
- Poletaev, A.I. Fault Intersections of the Earth Crust; Geoinformmark: Moscow, Russia, 1992. [Google Scholar]
- Roth, L.; Elachi, C. Coherent electromagnetic losses by scattering from volume inhomogeneities. IRE Trans. Antennas Propag. 1975, 23, 674–675. [Google Scholar] [CrossRef]
- Santillan, J.R.; Makinano-Santillan, M. Vertical accuracy assessment of 30-M Resolution ALOS, ASTER, and SRTM global dems over northeastern Mindano, Philippines. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 33–37. [Google Scholar]
- Jarvis, A.; Rubiano, J.; Nelson, A.; Farrow, A. Practical Use of SRTM Data in the Tropics: Comparisons with Digital Elevation Models Generated Cartographic Data; International Center for Tropical Agriculture: Cali, Colombia, 2004. [Google Scholar]
- Stern, J.R.; Johnson, P. Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis. Earth-Sci. Rev. 2010, 101, 29–67. [Google Scholar] [CrossRef]
- Breiman, L.; Jerome, F.; Charles, J.S.; Richard, A.O. Classification and Regression Trees; Wadsworth Int. Group: Dordrecht, The Netherlands, 1984; Volume 37, pp. 237–251. [Google Scholar]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Bel, L.; Allard, D.; Laurent, J.M.; Cheddadi, R.; Bar-Hen, A. CART algorithm for spatial data: Application to environmental and ecological data. Comput. Stat. Data Anal. 2009, 53, 3082–3093. [Google Scholar] [CrossRef]
- Chen, X.; Wang, L.; Qu, J.; Guan, N.-N.; Li, J.-Q. Predicting miRNA–disease association based on inductive matrix completion. Bioinformatics 2018, 34, 4256–4265. [Google Scholar] [CrossRef]
- Gregor, J.; Garrett, N.; Gilpin, B.; Randall, C.; Saunders, D. Use of classification and regression tree (CART) analysis with chemical faecal indicators to determine sources of contamination. N. Z. J. Mar. Freshw. Res. 2002, 36, 387–398. [Google Scholar] [CrossRef]
- Kamp, U.; Growley, B.J.; Khattak, G.A.; Owen, L. GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 2008, 101, 631–642. [Google Scholar] [CrossRef]
- Pham, B.T.; Prakash, I. Machine Learning Methods of Kernel Logistic Regression and Classification and Regression Trees for Landslide Susceptibility Assessment at Part of Himalayan Area, India. Indian J. Sci. Technol. 2018, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pham, B.T.; Prakash, I.; Bui, D.T. Spatial prediction of landslides using a hybrid machine learning approach based on Random Subspace and Classification and Regression Trees. Geomorphology 2018, 303, 256–270. [Google Scholar] [CrossRef]
- Band, S.S.; Janizadeh, S.; Pal, C.S.; Saha, A.; Chakrabortty, R.; Melesse, A.M.; Mosavi, A. Flash Flood Suscep-tibility Modeling Using New Approaches of Hybrid and Ensemble Tree-Based Machine Learning Algorithms. Remote Sens. 2020, 12, 3568. [Google Scholar] [CrossRef]
- Duan, H.; Deng, Z.; Deng, F.; Wang, D. Assessment of Groundwater Potential Based on Multicriteria Decision Making Model and Decision Tree Algorithms. Math. Probl. Eng. 2016, 2016, 2064575. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.T.; Ha, D.H.; Jaafari, A.; Nguyen, H.D.; Van Phong, T.; Al-Ansari, N.; Prakash, I.; Van Le, H.; Pham, B.T. Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study, Vietnam. Int. J. Environ. Res. Public Health 2020, 17, 2473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, L.A. The Measure of a Successful Information Storage and Retrieval System. In Perspectives in Information Science; Springer: Dordrect, The Netherlands, 1975; pp. 379–408. [Google Scholar]
- StatSoft. STATISTICA Data Miner: Integrating R Programs into the Data Miner Environment; StatSoft Business White Paper; GeoSoft, Inc.: Tusla, OK, USA; New York, NY, USA, 2003. [Google Scholar]
- Elmahdy, S.I.; Mohamed, M.M. Groundwater of Abu Dhabi Emirate: A regional assessment by means of remote sensing and geographic information system. Arabian J. Geosci. 2015, 8, 11279–11292. [Google Scholar] [CrossRef]
- Fragaszy, S.; McDonnell, R. Oasis at a Crossroads: Agriculture and Groundwater in Liwa, United Arab Emirates. IWMI Project Publication: Groundwater Governance in the Arab World–Taking Stock and Addressing the Challenges; USAID: Washington, DC, USA, 2016. [Google Scholar]
- Lin, N.; Noe, D.; He, X. Tree-Based Methods and Their Applications. In Springer Handbook of Engineering Statistics; Springer Science and Business Media LLC: London, UK, 2006; pp. 551–570. [Google Scholar]
- Ollier, C. Tectonics and Landforms; Longman: London, UK, 1981. [Google Scholar]
Factor | Chi-Square | p-Value |
---|---|---|
Altitude | 99.212 | 0.000 |
Aspect | 1.002 | 0.321 |
Depth to basement | 45.218 | 0.516 |
Distance from faults | 65.341 | 0.001 |
Distance from Palaeochannels | 65.054 | 0.000 |
Fault density | 64.863 | 0.000 |
Faults | 337.187 | 0.000 |
GW Table | 67.457 | 0.000 |
Palaeochannels | 252.582 | 0.000 |
Palaeochannels density | 87.231 | 0.000 |
Slope | 222.098 | 0.000 |
Zones of flow accumulation | 118.452 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elmahdy, S.; Ali, T.; Mohamed, M. Regional Mapping of Groundwater Potential in Ar Rub Al Khali, Arabian Peninsula Using the Classification and Regression Trees Model. Remote Sens. 2021, 13, 2300. https://doi.org/10.3390/rs13122300
Elmahdy S, Ali T, Mohamed M. Regional Mapping of Groundwater Potential in Ar Rub Al Khali, Arabian Peninsula Using the Classification and Regression Trees Model. Remote Sensing. 2021; 13(12):2300. https://doi.org/10.3390/rs13122300
Chicago/Turabian StyleElmahdy, Samy, Tarig Ali, and Mohamed Mohamed. 2021. "Regional Mapping of Groundwater Potential in Ar Rub Al Khali, Arabian Peninsula Using the Classification and Regression Trees Model" Remote Sensing 13, no. 12: 2300. https://doi.org/10.3390/rs13122300
APA StyleElmahdy, S., Ali, T., & Mohamed, M. (2021). Regional Mapping of Groundwater Potential in Ar Rub Al Khali, Arabian Peninsula Using the Classification and Regression Trees Model. Remote Sensing, 13(12), 2300. https://doi.org/10.3390/rs13122300