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Abstract: The growing development of data digitalisation methods has increased their demand
and applications in the transportation infrastructure field. Currently, mobile mapping systems
(MMSs) are one of the most popular technologies for the acquisition of infrastructure data, with
three-dimensional (3D) point clouds as their main product. In this work, a heuristic-based workflow
for semantic segmentation of complex railway environments is presented, in which their most
relevant elements are classified, namely, rails, masts, wiring, droppers, traffic lights, and signals.
This method takes advantage of existing methodologies in the field for point cloud processing and
segmentation, taking into account the geometry and spatial context of each classified element in
the railway environment. This method is applied to a 90-kilometre-long railway lane and validated
against a manual reference on random sections of the case study data. The results are presented and
discussed at the object level, differentiating the type of the element. The indicators F1 scores obtained
for each element are superior to 85%, being higher than 99% in rails, the most significant element
of the infrastructure. These metrics showcase the quality of the algorithm, which proves that this
method is efficient for the classification of long and variable railway sections, and for the assisted
labelling of point cloud data for future applications based on training supervised learning models.

Keywords: LiDAR; point clouds; railway inventory; semantic segmentation

1. Introduction

Transport infrastructures are massively used around the globe for several purposes
such as passenger or freight transport, being vitally important to society. Among the
various modes of transport, the most used ones are roads and railways. In 2018, the use of
road and railway services for freight transport was 1.2 million and 250 thousand tonne-
kilometre (tkm) in the EU, and 7.12 million and 2.88 million tkm in China [1]. In addition
to freight transportation, rail and road infrastructures also have relevant importance in
passenger transport. In this respect, the use of road services was 3.5 trillion passenger-
kilometre (pkm) in the EU and almost 1 trillion in China and Japan. The use of railways
was 380 billion in the EU, 400 billion in Japan, and 1.4 trillion pkm in China. These data
indicate the huge use and consequently the importance of the infrastructures in our society.

Considering the relevance of the infrastructures, safety is an aspect of critical impor-
tance. In the EU, only on railways, there were 1763 accidents in 2015, with 930 fatalities.
Moreover, 31 accidents involved the transport of dangerous goods [2].

Recently, concern about increasing the safety of railway infrastructures has risen.
This, together with technological advances, has allowed the development of algorithms
to digitise infrastructures. Building information modelling (BIM) is one of the solutions
mostly used [3], considerably increasing the efficiency of the industry by improving the
interoperability and the integration of the information of large construction projects [4]. In
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the field of railways, Biancardo et al. present a procedural modelling-based BIM approach
for railway design, discussing different BIM-based tools depending on the design require-
ments, such as OpenSCAD or Rhinoceros [5]. In this respect, Bansalah et al. present an
integration of BIM in a railway project with the advantages of serving as decision support
and control of the phases during the development of the project, and as assistance for
maintenance once completed [6].

However, the geometric model design of the existing infrastructure may not be straight-
forward to replicate in a BIM-oriented framework. Thus, several techniques are being
developed, based on remotely sensed data, to digitise the as-is geometric information of
the infrastructure. These techniques aim for a high level of automatisation, reducing the
manual operation both in the acquisition phase and in the processing phase, and improv-
ing the safety of workers. In the field of road infrastructures, previous work presents
a semi-automated method to define the alignment of road infrastructure following the
Industry Foundation Classes (IFCs) standard, thus aiming for an interoperable definition
of the infrastructure valid for a BIM methodology. This method is able to generate the
alignment from 3D point cloud data by detecting the road edges based on the intensity
level of the road markings [7]. In the field of railway infrastructures, Cheng et al. present
an automatic creation of as-is building information models from railway tunnel point
clouds [8], implementing an algorithm to segment the cloud based on their characteristics
and distribution in tunnels, generating parametric models of the elements based on the
estimated railway alignments and creating a BIM model using an application based on the
software MicroStation [9]. This approach is promising, but it only addresses a specific part
of the railway infrastructure.

One of the most widespread technologies used to gather accurate data on infrastruc-
tures is mobile laser scanning (MLS). There are a vast number of studies showing the
capabilities of this technology in the field of road and rail infrastructures [10–14]. It can be
inferred that MLS technology is able to generate representations of the environment in the
form of 3D point clouds. However, the raw data are unstructured; thus, the development
of point cloud segmentation and classification algorithms is necessary to identify and
locate different elements required for the digitalisation of the infrastructure. Aside from
MLS, there are different types of sensors, such as the type used by Qiang Han et al. to
analyse the fastener in rail tracks [15]. That sensor consists of combining a 3D depth image
with a 2D intensity image. Grzegorz Gabara et al. present an approach for railway track
inspection using a digital single-lens reflex (DSLR) camera to generate image-based point
clouds [16]. However, since these photogrammetric methods generate structured data,
the computational cost is higher than using MLS in the case of recording linear structures
(such as railway infrastructures). Regardless, a segmentation and classification process is
required to extract the information of the data.

According to this, several authors have developed algorithms to automatically seg-
ment railway point clouds. Zhu et al. analyse airborne and mobile laser scanning point
clouds, recognising objects surrounding railway infrastructure but do not analyse the
infrastructure itself [17]. Yang et al. use geometry and intensity data to analyse railway
MLS points clouds, but they only focus on rail track recognition [18]. Elberink et al. present
a method to extract and model rail track centrelines [19]. They apply local properties, such
as height and parallelism, to extract roughly the rail tracks, refining the results with a
modelling process. However, other elements are not analysed. Arastounia implements
a segmentation process based on PCA to segment wiring points, using a region growing
algorithm to group them. However, this algorithm does not consider proximity between
wires as their data only have one railway track [20]. In previous research, an automatic
detection method is presented, along with the decomposition of a railway from cloud
points in tunnels, with good results using support vector machine algorithms (SVMs),
but it is not applicable to more complex and variable scenarios [21]. In other previous
studies, [22] a different method is introduced with the same objectives, using Pointnet [23]
and KPConv [24], but applicable only to tunnels. In that vein, a methodology is developed
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that is applicable to complex areas and tested at 90 km but only for the delineation of
railway lanes in order to generate IFC alignment models [25].

As a follow-up to those studies, this paper aims to introduce an algorithm that im-
proves existing point cloud segmentation methods in railway environments, presenting
the following contributions:

(1) It offers a complete segmentation of the railway environment, including rails, masts,
wiring, droppers, traffic lights, and signals. Slab tracks were not considered a relevant
item when the objectives of this project were discussed;

(2) It is applied to a 90 km long railway scenario, showing its versatility and ability to be
generalised to different scenarios such as tunnels, as well as to complex areas with a
variable number of railway lanes.

This work is structured as follows: first, the case study is presented in Section 2.
Then, Section 3 details the developed methodology for the segmentation of the railway
environment using 3D point cloud data. Then, the method is evaluated in Section 4. Finally,
Sections 5 and 6 present a discussion of the method and its results and the conclusions of
this study, respectively.

2. Case Study

The scenario used to validate the methodology presented in this paper consists of
90 km of railway section shown in Figure 1, surveyed with an average speed of 10 km/h.
This scenario has been acquired in May 2019 using the LYNX Mobile Mapper by Optech [26],
a system using two LiDAR sensors. The specifications of the sensors can be found in [27].
For computational reasons, the complete dataset is divided into 450 georeferenced point
clouds in .las format, thus averaging a length of 200 m for each individual point cloud. The
dataset contains more than 3000 million points, being considerably larger than in other
state-of-the-art works.

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 41 
 

 

it is not applicable to more complex and variable scenarios [21]. In other previous studies, 
[22] a different method is introduced with the same objectives, using Pointnet [23] and 
KPConv [24], but applicable only to tunnels. In that vein, a methodology is developed that 
is applicable to complex areas and tested at 90 km but only for the delineation of railway 
lanes in order to generate IFC alignment models [25]. 

As a follow-up to those studies, this paper aims to introduce an algorithm that im-
proves existing point cloud segmentation methods in railway environments, presenting 
the following contributions: 
(1) It offers a complete segmentation of the railway environment, including rails, masts, 

wiring, droppers, traffic lights, and signals. Slab tracks were not considered a rele-
vant item when the objectives of this project were discussed; 

(2) It is applied to a 90 km long railway scenario, showing its versatility and ability to be 
generalised to different scenarios such as tunnels, as well as to complex areas with a 
variable number of railway lanes. 
This work is structured as follows: first, the case study is presented in Section 0. Then, 

Section 0 details the developed methodology for the segmentation of the railway environ-
ment using 3D point cloud data. Then, the method is evaluated in Section 0. Finally, Sec-
tions 0 and 0 present a discussion of the method and its results and the conclusions of this 
study, respectively. 

2. Case Study 
The scenario used to validate the methodology presented in this paper consists of 90 

km of railway section shown in Error! Reference source not found., surveyed with an 
average speed of 10 km/h. This scenario has been acquired in May 2019 using the LYNX 
Mobile Mapper by Optech [26], a system using two LiDAR sensors. The specifications of 
the sensors can be found in [27]. For computational reasons, the complete dataset is di-
vided into 450 georeferenced point clouds in .las format, thus averaging a length of 200 m 
for each individual point cloud. The dataset contains more than 3000 million points, being 
considerably larger than in other state-of-the-art works. 

 
Figure 1. Casa study data. 90 km of railway section. 

Moreover, the path followed by the sensor, its trajectory, is also used. The attributes 
of this trajectory are spatial location and time stamp. 

  

Figure 1. Casa study data. 90 km of railway section.

Moreover, the path followed by the sensor, its trajectory, is also used. The attributes of
this trajectory are spatial location and time stamp.

3. Methodology

This paper presents an automatic heuristic segmentation of railway point clouds. A
schematic representation of the methodology is shown in Figure 2. The methodology
consists of a preprocessing step, in which each point cloud is sectioned and voxelised;
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a segmentation process, through which each voxelised section is segmented; a merging
process, through which the segmented sections are regrouped into the whole dataset.
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3.1. Point Cloud Preprocessing

The input data consist of 450 point clouds as well as the trajectory of the sensor
during the survey. Let an individual point cloud be Ci = (x, y, z, I, ts), an Np × 5 matrix
where (x, y, z) are the coordinates, I the intensity, and ts the timestamp of the Np points.
Furthermore, let the trajectory be T = (x, y, z, ts), an Nt × 4 matrix where (x, y, z) are
the coordinates as recorded by the navigation system, and ts is a timestamp which is
synchronised with the point cloud data.

These point clouds are raw data, neither organised nor adapted to be directly seg-
mented. Therefore, it is necessary to apply preprocessing algorithms to simplify the data,
making the segmentation process lighter and more effective. To that end, a sectioning
process, followed by a voxelisation process, is applied to each point cloud Ci.

3.1.1. Sectioning

During the survey, the complete railway environment is captured, i.e., the infrastruc-
ture as well as other elements such as vegetation, constructions, or slopes. Consequently, a
significant portion of the point clouds does not provide relevant information. Furthermore,
the railway curvature effect and the variable length of the infrastructure, presented in each
Ci, also increase the complexity of the segmentation process.

Taking this into account, a sectioning algorithm is applied to reduce the size of the
input data. Sectioning preprocesses are commonly used in these kinds of scenarios by
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other authors such as in [20]. This preprocessing algorithm consists of splitting Ci in
sections, limiting their length and curvature, and only including points related to the
infrastructure, removing points that would only include noise and computational load to
the segmentation process.

This process starts by splitting T into sections, which are used later to divide each Ci. As
the trajectory T covers the complete dataset, it is necessary to know which portion of T over-
laps with each Ci. To that end, the following three steps are applied for each Ci: (1) points in
T with a timestamp within the range of Ci timestamp [time stamp max, time stamp min] are
selected; (2) points in T outside of Ci bounding box are removed; (3) the closest points in
Ci to the first and last points of the selected T slice are selected. Then, the closest points in
T to those Ci points are classified as the first and the last points of the T slice for the cloud
under study. Let the selected T points corresponding to Ci be TCi (Figure 3a).
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Next, TCi is sectioned in slices with a length equal to ls, and each resulting section is
defined as Tsk. This length is calculated as the distance between the first and last point of
each slice. Then, a modified principal component analysis (MPCA) is applied to Tsk. MPCA
works as follows: Let the reference axes be X0, Y0, Z0, being Z0 a vector perpendicular
to the Earth plane pointing upwards. Let A be a set of points. Let the eigenvectors of
principal components obtained by applying principal component analysis (PCA) to A be
Xpca, Ypca, Zpca, sorted into descending order by its correspondent eigenvalues. Let the
result of applying MPCA to A be the axes Xmpca, Ympca, Zmpca. The origin of these axes
is A, where denotes a mean operator. The construction of the vector base Xmpca is made
by assigning it to Xpca, Ympca orthogonal to the Xpca and parallel to the X0Y0 plane, and
Zmpca = ±(Xmpca ∧ Ympca ) with the Z-component restricted to be positive.

For performing spatial operations, coordinates on the reference axes X0, Y0, Z0 of a
point P = PX0 , PY0 , PZ0 can be expressed in Xpca, Ypca, Zpca axes. These operations are a
translation and a rotation, as shown in Equation (1).

PXmpca , PYmpca , P Z mpca = (PX0 , PY0 , PZ0 − AX0 , AY0 , AZ0) ∗
Xpca
Ypca
Zpca

(1)

A representation of this process is shown in Figure 2.
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The aim of applying MPCA instead of PCA is to calculate a reference system in
which the set of points are oriented but not rotated in its main direction (Figure 4). Let
the resulting directions after applying MPCA to Tsk be X, Y, Z. Considering the MPCA
operations, X is the direction of the trajectory in Tsk, and Y is the direction perpendicular
to the trajectory and parallel to the X0Y0 plane. If X, Y, Z was the result of applying PCA
instead of MPCA, the Y direction might not be parallel to X0Y0 if Tsk were too straight. It is
interesting that the Y direction is parallel to this plane, which is the ground plane, when
using it for measuring distances to the rail track.

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 41 
 

 

a regular grid of boxes. These boxes, called voxels, are 3D elements analogous to pixels. 
Several features can be analysed in voxels based on the points contained in them or their 
distribution in the space. In this work, since the objective is to segment different elements 
in point clouds, the coordinates of each voxel are calculated as the centroid of the points 
contained in each voxel. Furthermore, empty voxels are not stored in memory. Moreover, 
since it is a regular grid, the spatial distribution of the voxels is known, having a unique 
index which identifies them. Hence, the neighbourhood of each voxel is known. Error! 
Reference source not found.5 shows a representation of the voxel’s neighbourhood with 
the notation used in this paper. According to this notation, if voxel 𝑖 is just above voxel 𝑗, 𝑖 is neighbour 22 of voxel 𝑗, and 𝑗 is neighbour 5 of voxel 𝑖. 

 
Figure 4. MPCA: 𝑿𝟎, 𝒀𝟎,𝒁𝟎 are the world coordinates; 𝑿𝒑𝒄𝒂, 𝒀𝒑𝒄𝒂,𝒁𝒑𝒄𝒂, are the PCA eigenvectors ap-
plied in A; 𝑿𝒎𝒑𝒄𝒂, 𝒀𝒎𝒑𝒄𝒂,𝒁𝒎𝒑𝒄𝒂 are the MPCA eigenvectors applied in A. 

 
Figure 5. Voxel’s neighbours numbering. The numeration is organised by levels in the 𝒁 dimen-
sion. 

Figure 4. MPCA: X0, Y0, Z0 are the world coordinates; Xpca, Ypca, Zpca, are the PCA eigenvectors
applied in A; Xmpca, Ympca, Zmpca are the MPCA eigenvectors applied in A.

Once X, Y, Z axes are calculated, Tsk curvature is evaluated as follows: if Tsk range
interval in the Y direction, [Tsk Y min, Tsk Y max], is greater than curs, which means that the
effect of the curvature is too high for segmentation purposes. In those cases, Tsk is redefined
by iteratively removing its last point, making the segment shorter until the curvature effect
is under the threshold curs. Once Tsk is defined, the next section Ts(k+1) starts in the last
point that was removed for the calculation of Tsk (Figure 3b). This process is applied until
all points in TCi belong to a Tsk section. As a result, the trajectory T is sectioned in such a
way that each individual point cloud Ci has one or many Tsk trajectory sections.

After T is split into sections Tsk, each Ci cloud is sectioned accordingly, generating
a set of Csk sections. The first step consists of calculating the coordinates of Ci points
in X, Y, Z axes. For computational reasons, not all Ci points are recalculated. When
Ts(k−1) is calculated, Ci points with an X lower than Ts(k−1) X max are not considered in
the following sections. Additionally, points with a timestamp greater than Tsk ts max +
(Tsk ts max − Tsk ts min) are also removed. In this way, Ci points from previous sections out
of the overlap area are not considered, and only Ci points corresponding to Tsk including
a safety margin are taken into account. Finally, the points assigned to the section under
study are the ones with a |Y| < ws, and X < Tsk X max + ovs. This removes points that are
both far from the infrastructure and after the last Tsk point in the X direction. However,
it adds a certain overlap area, ovs, including points in this section that are also included
in the next one. The overlap simplifies the process of linking linear elements after the
segmentation process.

A schematic representation of the sectioning process is shown in Figure 3.

3.1.2. Voxelisation

The sectioning is a preprocess applied to the raw data in order to properly prepare
it for a segmentation process by generating smaller sections of the data. Nevertheless,
the point cloud data is still unstructured and not homogeneous; hence, a voxelisation is
proposed to achieve the following objectives:
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• Homogenising the cloud, i.e., allowing density-based analyses with no influence on
the distance between the studied area and the sensor;

• Knowing the neighbourhood of each voxel, i.e., it is useful in the segmentation process
to know the local properties of each voxel;

• Reducing the number of points, i.e., making the process faster and reducing the
computational load. The impact of this reduction is driven by the voxel size gv.

Chen et al. define a voxelised object as a “3D discrete representation of a continuous
object on a regular grid of voxels” [28]. The process of voxelisation in 3D is an analogous
process to the rasterisation process in 2D. This process consists of discretising the space in
a regular grid of boxes. These boxes, called voxels, are 3D elements analogous to pixels.
Several features can be analysed in voxels based on the points contained in them or their
distribution in the space. In this work, since the objective is to segment different elements
in point clouds, the coordinates of each voxel are calculated as the centroid of the points
contained in each voxel. Furthermore, empty voxels are not stored in memory. Moreover,
since it is a regular grid, the spatial distribution of the voxels is known, having a unique
index which identifies them. Hence, the neighbourhood of each voxel is known. Figure 5
shows a representation of the voxel’s neighbourhood with the notation used in this paper.
According to this notation, if voxel i is just above voxel j, i is neighbour 22 of voxel j, and j
is neighbour 5 of voxel i.
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This voxelisation process is applied to all Csk from the same Ci joined. In this way,
only one voxelisation operation is needed for each Ci. The voxelised cloud is referred to as
Vi, and its sections corresponding to each Csk are Vsk.

3.2. Point Cloud Segmentation

Once the data are organised to be segmented, the algorithms explained in this section
are applied. The main objective of this segmentation process is the extraction of the railway
track, masts, wiring, droppers, signage elements, and rails from each point cloud Ci.

The input to this process is Vsk, with voxel coordinates calculated in X, Y, Z axes,
resulting from the application of MPCA to its corresponding Tsk.
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3.2.1. Railway Track

The track is the part of the railway infrastructure that contains the rails, ballasts,
sleepers, and all the elements on the ground that are relevant to the infrastructure. On the
other hand, the infrastructure components that are not on the track are over it. These spatial
considerations facilitate the segmentation of the railway track when applying different
algorithms that take into account the position of the infrastructure components with
respect to the track. Other authors, such as those in [20], take these same considerations
into account to perform a track segmentation step. Figure 6 shows the results of this process
on a voxelised point cloud Vsk, once the following process is applied:

• Voxelisation: this is performed with a voxel grid greater than the rail height, as rails
will be considered part of the railway track. Let the voxel size and the resulting
voxelised cloud be gvB and Vsk, respectively.

• Track extraction: with an adequate definition of gvB, it can be assumed that track
voxels in Vbsk do not have neighbours, neither just above them nor under them
(neighbours 5 and 22 in Figure 5). Accordingly, voxels that comply with that criteria
are selected. Then, neighbouring voxels whose Euclidean distance is less than clt
are clustered, filtering out clusters with less than pt voxels. Then, voxels in clusters
positioned under the trajectory Tsk are segmented as track voxels. Finally, voxels with
any neighbour in the same height level (neighbours 10–17) segmented as track are
also considered as track voxels. The voxels in Vbsk segmented as track are referred to
as Vbt. The correspondent voxels in Vsk are referred to as Vt.

• Peripherical voxels extraction: voxels from the track limits in the Y direction are
segmented as peripherical voxels, as these voxels do not have relevant information
about the infrastructure. To do so, Vbsk is split into sections perpendicularly to the
X axis, with a width stt. In each section, the Y limits of Vbt are calculated, and the
voxels out of those margins, plus a small distance, rmt, are segmented as peripherical
voxels. The voxels in Vsk segmented as peripherical voxels are referred to as Vp. It is
important to note that this step is not applied in the sectioning process. There, the filter
used in the direction perpendicular to the trajectory in the ground plane considers the
distance to the trajectory. However, this process considers the limits of the railway
track as obtained in the previous step, which are variable depending on the presence
of walls, vegetation, or other types of built obstacles.

• Overpass extraction: at this point of the process a local principal component analysis
is applied in order to analyse the local dimensionality of the point cloud. First, voxels
which meet [Vt ∩ Vp] are selected. Then, PCA is applied to each selected voxel
considering a neighbourhood that includes voxels whose Euclidean distance is less
than d1 from it. Since overpasses are planar elements with a vertical normal vector,
voxels with a Z component in its third eigenvector greater than evtr are selected.
Then, neighbouring voxels whose Euclidean distance is less than clt are clustered, and
groups with less than pr voxels are removed. Finally, voxels in the selected clusters
are segmented as lining voxels. Overpass extraction is necessary because wiring and
overpass are so close that it causes interferences in the wiring segmentation algorithm
if overpasses are not previously removed. The highest part of tunnel linings is also
segmented as an overpass. The voxels in Vsk segmented as lining voxels are referred
to as Vo.
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3.2.2. Masts

This step of the process aims to segment those voxels that belong to masts. In the
same way as for overpass and lining segmentation, a local principal component analysis is
applied, considering, in this case, all the voxels in

[
Vt ∩ Vp

]
. First, PCA is applied to each

selected voxel considering a neighbourhood that includes voxels whose Euclidean distance
is less than d2 from it. Let the eigenvectors obtained at the voxel i be

→
v1,

→
v2,
→
v3. Let the

normalised principal components deviations at voxel i be λ1, λ2, λ3. The mast extraction
process is divided into the following steps, the workflow process of which is represented
in Figure 7:

• Voxels with
→

v1 Z > mz,
→

v1 X < mx, and
→

v1 Y < my are selected. The objective is
the detection of voxels whose neighbourhood has a vertical dispersion. Then, its
neighbours are added. This is necessary because masts are not isolated since they are
in contact with wires. Figure 7a shows the selected voxels.

• The selected voxels are clustered using DBSCAN [29], considering clm distance and
at least one voxel per cluster. Then, clusters that do not meet the “Mast without
cantilever” model specifications are removed. Figure 7b shows the selected clusters.

• Voxels close to each cluster are added to complete the mast. The centroids of the se-
lected clusters define the centres of the masts, but they might be incomplete. Therefore,
all the voxels within the dimensional specifications of the “Mast without cantilever”
model with respect to the centre of the mast are selected, except for the voxels in Vt,
which are not part of the mast segments. Then, those voxels are clustered again using
DBSCAN with the same parameters as in the previous step. Next, the voxels of the
cluster which shares most voxels with the cluster of the mast are added to that mast.
Figure 7c shows the voxels added to each mast.

• Once the mast segmentation process without cantilevers is performed, they are added.
Voxels with

→
v1 X < mcz and X > 0 are selected and grouped using DBSCAN (same
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parameters as before) and discarding voxels in Vp. The objective is the detection of
voxels whose neighbourhood has no dispersion in the trajectory direction. Figure 7d
shows the selected voxels.

• Then, clusters in contact with any mast are added to them as their cantilever. Figure
7e shows the masts and the cantilevers.

• Finally, after wiring extraction, which is presented in Section 3.2.3, masts that are not
in contact with any wire are deleted. The voxels classified as masts without cantilever
are referred to as Vrm, and those classified as masts with cantilever as Vm.
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3.2.3. Wiring

This phase of the process aims to segment those voxels that belong to wires. The first
step is based on the same concept as for masts extraction: applying local PCA. However,
since wires are smaller than masts, it is necessary to apply local PCA to all the voxels that
are in

[
Vt ∩ Vp

]
considering a smaller neighbourhood: d1. Consequently, the eigenvectors

→
v1,

→
v2,
→
v3 and corresponding eigenvalues λ1, λ2, λ3 obtained from PCA are recalculated.

This process is implemented as follows, the workflow of which is shown in Figure 8:

• Selecting voxels with
→

v1 X > wx and X > 0 in
[
Vt ∩ Vm

]
: In this way, voxels whose

neighbourhood has its main dispersion in the trajectory direction are selected. An
example is shown in Figure 8a.

• Clustering: wiring voxels cannot be clustered either by distance or by neighbourhood
because they can be in contact with each other; hence, they are grouped together.
Moreover, wire voxels in contact with masts are segmented as masts, and therefore,
this clustering would cause breakups in wire clusters. Consequently, a different cluster
algorithm is applied considering the wiring casuistry. This algorithm is based on the
proposed process in [30], which is a region growing algorithm that guides the growing
areas. However, the following modification is applied: each cluster has a seed that
is the voxel which define the starting point for the region growing of its cluster. The
point cloud formed by the selected voxels is split into sections perpendicularly to
the X axis. The width of each section is equal to stw. Each section is analysed by
order, assigning its voxel to a cluster existing in a previous section or making a new
cluster. Distances between the voxels in the section under study and the seeds of the
clusters in the previous sections are calculated. Each voxel is assigned to the cluster of
its closest seed in Y if this distance is lower than the width of the wire, specified by
the “Wire” model. The voxels that are not assigned to any cluster are grouped using
DBSCAN. The wire width is used as distance, which is specified by the “Wire” model
with at least one cluster per voxel; this process forms new clusters. Once the section is
analysed, the seeds are updated. The new seed of each cluster is the closest voxel in
this section to the seed of its cluster, measured in Y. In a new cluster, the seed is its
central voxel. Those clusters that do not have propagation do not update their seed.
Lastly, seeds in which the distance to the section under study is greater than distw
are removed; hence, their cluster does not grow anymore. An example is shown in
Figure 8b.

• Filtering clusters: the objective is to remove clusters that are not wires. Three consid-
erations are made, namely, (1) a minimum wire longitude lw; (2) λ1 > λw, rejecting
clusters that are not linear elements; (3) a minimum density equal to dw, avoiding
noise such as vegetation. An example is shown in Figure 8c.

• Classifying wires as catenary, contact, or others: in a railway infrastructure, a contact
wire has a catenary wire over it. From a bird’s eye view, contact and catenary wires
share the same positions (they lay in the same projection on the ground). In order
to do this analysis, the clusters are rasterised, applying an orthonormal projection in
the XY plane. As a result of this rasterisation, a digital image is obtained, retaining
the information of which voxels are contained in each pixel. The size of the pixels is
set to 2

3 msw. With this image, each cluster is studied independently. For each cluster,
adjacent pixels in the horizontal direction are added to make it wider. In this way,
it is considered a range search equal to msw from the wire. After that, pixels that
contain voxels of the wire under study and voxels of the other wires are evaluated.
The wire with the highest percentage of shared pixels, measured in the shorter of both,
is classified as its couple only if this percentage is greater than perw. A couple of wires
is formed by a contact wire and the catenary wire over it. Then, the Z of each wire
and its couple is calculated, considering only the voxels corresponding to the pixels
that the wires have in common. The wire with the highest Z is classified as catenary;
otherwise, it is classified as contact wire. Additionally, considering that a wire might
be wrongly classified as several wires, those wires with the same couple are grouped
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since they must be the same wire. Nevertheless, verification is necessary after the
droppers’ extraction: contact–catenary couples must have droppers between them.
Droppers are the element that joins catenary and contact wires. Finally, clusters that
are neither catenary nor wire are classified as other wires only if they are in contact
with any mast. Otherwise, their voxels are not segmented as wires. An example is
shown in Figure 8d. The voxels classified as wires are referred to as Vw.
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3.2.4. Droppers

This step aims to segment droppers using the previous results. Droppers are the
element that joins catenary and contact wires. A schematic representation of this process is
shown in Figure 9. Dropper segmentation process works as follows:

• Voxels inside the bounding box of contact and catenary wires in
[
Vt ∩ Vm ∩ Vw

]
are selected. Figure 9a shows this step.
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• Neighbours of the selected voxels are added. This step aims to include voxels of
catenary and contact wires that are in contact with droppers. Figure 9b shows an
example with the selected voxels and their neighbours.

• Clustering is performed using DBSCAN, considering cld distance and at least one
cluster per voxel.

• Clusters that do not have common voxels with any pair of contact–catenary wiring
are removed. They must have common voxels with both wires. Moreover, clusters
that do not meet the “Dropper” model specifications are also removed.

• Lastly, selected clusters are classified as droppers, removing Vw. Each dropper voxel
is associated with a cluster and each cluster with a catenary–contact pair. An example
with the classified droppers is shown in Figure 9c. The voxels classified as droppers
are referred to as Vd.
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3.2.5. Signage Elements

In contrast to the methods explained above, which aim to segment elements that are
in contact with others, this sign segmentation process aims to segment isolated elements.
Thus, voxels in

[
Vt ∩ Vm ∩ Vw ∩ Vd

]
are selected. Then, neighbouring voxels whose

Euclidean distance is less tan cls are clustered. Next, clusters with any voxel from Vp are
removed. This process is shown in Figure 10a.
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These clusters are classified as traffic signs, traffic lights, or marks if meeting the
specifications of “Sign”, “Traffic Light”, or “Mark” model, respectively. To have more
resolution, points from Ci in each cluster are retrieved from their voxels and compared
with the models. However, since their coordinates have not been modified, they are referred
to as X, Y, Z axis. This process is shown in Figure 10b.

As it is shown in Table 1, some models consider distances between the point cloud of
the model and the element under study. To do this process correctly, they must be centred
on the same point. For this reason, the centre of coordinates of each cluster is modified by
applying Equation (2) to the points of the element under study. It allows the points centred
in its centre of mass to be represented in the XY directions, setting its highest point to Z = 0.
This results in an easier comparison, avoiding problems with poles of variable length. The
point cloud of the model is the centre in the same way. This process is shown in Figure 10c.

Pi x′ Pi y′ Pi z′ = Pi x Pi y Pi z − Px Py Pz max (2)

The specifications of the models are applied in the following order, and the selected
cluster has to meet all of them:

• Orientation: this is defined by the eigenvectors obtained by applying PCA to the
cluster and the specified ones. Its deviation to the model is measured as the angle
between these eigenvectors and the vectors of the model. This process is shown in
Figure 11a.

• Shape: it includes the normalised eigenvalues. Its process is shown in Figure 11b.
• Dimensions: first, they are measured as the ranges of the cluster in the XYZ direc-

tions. If the element does not meet the required tolerance, they are measured in their
eigenvector’s directions. In other words, if the ranges do not meet with the element
oriented using the trajectory, it is oriented using its own dimensionality. The range
parameter considered in each new dimension is the range parameter of their principal
XYZ direction. It is necessary because some signage elements may be slightly tilted in
their principal direction. This process is shown in Figure 11c.

• Similitude with a template point cloud: this similitude is evaluated as the distance
between the clouds, calculated as shown in Equation (3), being A the n points of the
model and B the m points of the cluster under study. These distances are measured
using k-nearest neighbours [31]. The point clouds of the models only include the
highest part of the signs, with a small part of the pole. Consequently, points under
study below the lowest point of the model are not included. Moreover, signage ele-
ments might be oriented in opposite directions. Hence, if the cluster does not meet the
distance specification, it is rotated 180◦ on axis Z. If it still does not meet the require-
ment, the same process is repeated by orienting the cluster using its eigenvector’s
directions, following the same reasoning as in the previous step. This process is shown
in Figure 11d.

distance = max
(

distances(A, B)2, distances(B, A)2
)

(3)
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Table 1. Models used in the segmentation process to define the parameters of the algorithms and to analyse clusters of points comparing them with the specifications of each model. The
dimensions of the models are defined in X, Y, Z. Their shapes are defined by the eigenvalues obtained applying PCA. Their orientation is defined by the eigenvectors obtained applying
PCA, represented in a 3 × 3 matrix, being sorted by columns. The deviation to those eigenvectors is defined in degrees. The template is a set of points formed by the points of a given
element manually extracted from the data and the distance to that template is calculated with Equation (3).

Models Dimensions X, Y, Z [m] Shape
(Eigenvalues PCA)

Orientation
(Eigenvectors PCA)

Tolerance Orientation
[Degrees] Template Tolerance Distances to

the Template [m2]

Sign
0.34± 0.14

1.1± 0.3
5± 1

0.96± 0.03
0.03± 0.02
0.01± 0.01

0 0 1
0 1 0
1 0 0

7
10
10

No -

Traffic light
2± 1

0.65± 0.2
−

0.92± 0.05
0.07± 0.05
0.01± 0.05

0 − −
0 − −
1 − −

15
−
−

Yes
(3 templates) 0.03

Mark
0.25± 0.1
0.35± 0.1
−

−
−
−

0 0 1
0 1 0
1 0 0

15
25
25

Yes
(2 templates) 0.001

Mast without cantilever
1.2± 1.2

0.75± 0.75
10± 4

0.85± 0.15
−
−

0 − −
0 − −
1 − −

20
−
−

No -

Wire
−
0.3
−

−
−
−

− − −
− − −
− − −

−
−
−

No -

Dropper
−

1± 1
−

−
−
−

− − −
− − −
− − −

−
−
−

No -

Rail
−
0.3
−

−
−
−

− − −
− − −
− − −

−
−
−

No -

Pair of rails
−

0.74
−

−
−
−

− − −
− − −
− − −

−
−
−

No -
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dimensions; (d) checking the distance to the point cloud of the model. 

The segmentation of signs that are hung from masts has also to be considered, and it 
follows a different process. As these signs are made of retroreflective materials, the inten-

Figure 11. Signage elements classification process: (a) checking the orientation; (b) checking the form; (c) checking its
dimensions; (d) checking the distance to the point cloud of the model.

The segmentation of signs that are hung from masts has also to be considered, and it
follows a different process. As these signs are made of retroreflective materials, the intensity
attribute of their points is clearly distinguishable from their surroundings. Accordingly,
this process analyses each mast as segmented in Section 3.2.2, normalising the intensity
values of their voxels. An intensity histogram with hs bins is computed. If the percentage
of voxels in the last bin is greater than psig, it means that there are signs in that mast. In that
case, the first local minimum in the histogram is calculated. Then, voxels in the bins with
an intensity higher than the first local minimum are clustered. Next, clusters with less than
pr voxels are discarded. Finally, the voxels in the selected clusters and their neighbours are
segmented as signs on that mast. Figure 12 shows segmented signs on a mast and their
normalised intensity histogram.
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3.2.6. Rails

Currently, different rail segmentation algorithms developed based on changes in the
track height have been developed [32,33]. However, because of the track irregularity, slopes
along the railway may cause false positives, and irregularities in the ballast distribution
might produce false negatives. Consequently, in order to avoid those errors, this method
uses contact wiring as reference for the segmentation of the rails. The contact wire position
with respect to the rail is constant; therefore, it is used to make a rough approximation of the
position of both rails. In addition, this allows a semantic relationship between contact wires
and rails to be assigned. Thus, this algorithm assigns a rails pair to each catenary–contact
wiring couple. It is implemented as follows, with the schematic workflow process shown
in Figure 13:

• Contact wire with rails under it: since wires start and end in a mast but not the rails,
it is necessary to verify which portion of the wire is over the rails. A contact wire
does not have rails under it from its last contact with a cantilever to its contact with
a mast. Additionally, in that part of the wire, there are no droppers. Consequently,
the ends of the wire are analysed. If they are in contact with a mast or there are no
droppers between them and its closest cantilever, that wire part is not considered for
rail segmentation purposes. This process is shown in Figure 13a.

• Rough rails: Vsk is rasterised, applying an orthonormal projection in XY plane. Pixels
corresponding to the segment of the wire with rails are selected. Then, the digital
image is analysed column by column (moving forward along the X axis) selecting
pixels at both sides of wire pixels where rails are supposed to be, knowing the distance
between one rail and its pair, and also knowing that the contact wire is in the middle
of both. This distance is defined by the “Pair of rails” model. To obtain a rough
segmentation of the rails, pixels at a distance less than msr from the pixels where
the rail is supposed to be are also included. The right and left pixels are organised
separately. Next, voxels corresponding to the selected pixels and segmented as Vt are
chosen. These voxels contain rails and their surroundings.

• Filtering each rough rail by height individually: each rail is analysed individually,
applying MPCA to orient and section it in the rail direction, with str as the section
width. Then, a histogram of Z coordinates in each section is computed. The largest
bin is considered the ground height. Therefore, voxels with a lower Z coordinate
are removed.

• Filtering the pair of rails by distance: in order to remove false negatives caused by
irregularities in the track, voxels that do not have the rail pair at the right distance
are removed. This process is performed in the digital image. The image is analysed
column by column (moving forward along X axis), saving pixels that have any pixel of
its rail pair at the correct distance. Voxels corresponding to those pixels are segmented
as rails.

• Refining rails: As rails are continuous elements always in contact with the track,
it is not possible to determine their limits in Vsk with a voxel size gv. Hence, after
the merging section process. shown in Section 3.3, Ci points corresponding to the
extracted voxels are denoised. Each rail is individually analysed. Their points are
oriented using MPCA and sectioned in the direction of the rails, with str as the section
width. Then, a Y histogram is computed in each section detecting the largest bin, its
width being br. The Y of the largest bin is the average Y of the rail. Then, points whose
distance in Y to that position is lower than rails width are selected. Finally, track points
are removed by deleting points with a lower Z than the mean Z of the selected voxels.
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Figure 13. Rail segmentation workflow: (a) contact wire coloured in green corresponding to the rails under study; (b) rails
and its surrender. Left rail coloured in yellow and right rail in red; (c) rail filtered by height. Rough rails coloured in green,
left rail coloured in yellow, and right rail in red; (d) rails filtered by the distance between them. Starting rails coloured
in green, left rail coloured in yellow, and right rail in red; (e) rails refined in Ci. Starting rails coloured in green, left rail
coloured in yellow, and right rail in red.

3.3. Merging Sections

The processes described above are applied to each Vsk in such a way that each Vsk
is segmented as an independent cloud. This process aims to merge the sections and



Remote Sens. 2021, 13, 2332 20 of 30

obtain the indices of points in the original clouds Ci corresponding to the segmented
voxels. The indices of the elements segmented correspond to their Vsk, and therefore,
they are recalculated, obtaining the indices corresponding to its Vi. Then, the merging
process consists of comparing the elements in Vsk with the elements in Vs(k−1) until the
last section, saving the indices of new elements and classifying them as the same element
where applicable. This process distinguishes three types of elements: points, continuous
elements, and elements dependent on continuous elements.

Point elements are analysed individually. An element in Vsk is added only if none of
its voxels are at any element of the same type in Vs(k−1). This step is necessary because
there may be an overlap between sections.

Continuous elements are the contact wires, catenary, and other wires. The objective
is to determine which elements in Vsk are the continuation of the elements segmented
in Vs(k−1). To that end, each element in Vsk is compared with the elements of the same
type in Vs(k−1). The distances from the first voxel of the element under study to the last
voxels of the elements in Vs(k−1) are measured. To be merged, these distances in X and Y
must be lower than msx and msy, respectively. If there are several elements that meet these
requirements, it is assigned to the wire with more common voxels (there is overlap between
sections). If there is a tie, it is assigned to the wire with less distance in Y. In the case of
contact–catenary pair, it is only considered the one which best meets the requirements.

Dependent elements of continuous elements are rails and droppers. These elements
are joined to their correspondent contact–catenary pair.

Finally, Ci element indices are extracted from Vs indices as the points inside each voxel.
As a result, the information obtained after applying the segmentation process is not

organised by sections. For each Ci, the indices of each element are grouped, identifying the
type of element. Moreover, elements belonging to the same track, such as contact wires,
catenary wires, rails, and droppers, are grouped together in the same structure. Figure 14
shows how the segmentation obtained is organised.
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Figure 14. Output data structure: track n is the structure with the elements of the track number n in a Ci, formed by its rails,
contact, catenary, and droppers. Element type X is a structure with all the elements in Ci of a certain class, namely, signs,
traffic lights, marks, masts, or signs in masts.
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4. Results

This section shows the results from the application of the defined methodology to
the case study data. Moreover, this section also describes the process used to validate
the methodology.

First, it is important to introduce the values of the parameters used throughout
the processes described in Section 3. Some of these parameters are based on previous
knowledge of the geometry of railway infrastructure and its assets, while others have
been adjusted empirically. Their values are shown in Table 2. Then, Table 1 shows the
specifications of the geometry models used in the segmentation process.

Table 2. Values of the parameters involved in the methodology.

Process Parameter Value Parameter Value

General
gv 0.1 m Elements Table 2
d1 0.3 ∗ gv m d1 0.6 ∗ gv m

Sectioning ls 100 m curs 5 m
ws 20 m ovs 5 m

Track segmentation

rmt 0.5 m gvB 0.3 m
stt 3 ∗ gv m pt 3/gvB voxels/cluster
clt 1.3 ∗ gv m pr 100/gv voxels/cluster

evtr 0.7

Masts segmentation
mz 0.7 mx 0.5
my 0.5 mcx 0.5
clm 1.5 ∗ gv m perw 50%

Wiring segmentation

wz 0.5 lw 9 m
wlat 0.7 wd 0.7/gv voxel/m
stw 0.2 m distw 4 m
msw 0.1 m

Droppers
segmentation clt 0.2 ∗ gv m ps 100/gv voxels/cluster

Signs on masts segmentation psig 2% cls 1.3 ∗ gv m
hs 20 pr 2/gv voxels/cluster

Rails segmentation msr 0.75 m str 0.5
br 0.02 m

Merging msx 10 m msy 2 m

The validation process is carried out in different randomly selected Ci, evaluating
9.6 km of track line, which represents 11% of the data. To evaluate the results, each selected
Ci is manually analysed, annotating the elements to be segmented and then comparing
with the segmentation results. An example of a segmented Ci is shown in Figure 15. Several
segmented Ci presenting different situations are shown in Appendix A.

The analysis of the elements is recorded in a confusion matrix shown in Tables 3 and 4.
It compares the manually analysed ground truth data with the segmented point cloud
results. Here, point elements such as masts or signs are considered as individual objects,
and continuous elements such as rails and wiring are measured in length units.



Remote Sens. 2021, 13, 2332 22 of 30

Remote Sens. 2021, 13, x FOR PEER REVIEW 31 of 41 
 

 

𝑻𝑪𝒊 Sectioned trajectory corresponding to 𝑪𝒊 𝑻𝒔𝒌 Sectioned trajectory corresponding to 𝑪𝒔𝒌 𝑽𝒊 Voxelised cloud formed by all 𝑪𝒔𝒌 of 𝑪𝒊 𝑽𝒔𝒌 Voxelised 𝑪𝒔𝒌 𝒕𝒔 Timestamp of each point in a point cloud 𝑰 Intensity value of each point in a point cloud 𝑽𝒃𝒔𝒌 Voxelised 𝑽𝒔𝒌 used in ground segmentation 𝒗𝟏ሬሬሬሬ⃗ , 𝒗𝟐ሬሬሬሬ⃗ , 𝒗𝟑ሬሬሬሬ⃗  Eigenvectors result of applying PCA to voxel i and its neighbourhood 𝛌𝟏, 𝛌𝟐, 𝛌𝟑 Eigenvalues result of applying PCA to voxel i and its neighbourhood 𝑽𝒃𝒕 Voxels in 𝑽𝒃𝒔𝒌 segmented as track 𝑽𝒕 Track voxels 𝑽𝒑 Peripherical voxels 𝑽𝒐 Overpass voxels 𝑽𝒓𝒎 Mast without cantilever voxels 𝑽𝒎 Mast voxels 𝑽𝒘 Wire voxels 𝑽𝒅 Dropper voxels 

Appendix A. 

 
Figure 15. Results of the segmentation method: masts are represented in gold colour. Each contact wire has a different 
colour, matched by its correspondent rail. Each catenary has also a random colour. Other wires are coloured in pink, 
droppers in black, and marks in magenta. 

The analysis of the elements is recorded in a confusion matrix shown in Error! Ref-
erence source not found. andError! Reference source not found.. It compares the manu-

Figure 15. Results of the segmentation method: masts are represented in gold colour. Each contact wire has a different
colour, matched by its correspondent rail. Each catenary has also a random colour. Other wires are coloured in pink,
droppers in black, and marks in magenta.

Table 3. Confusion matrix of continuous elements measured in metres.

Real
Predicted

Rail [m] Contact [m] Catenary [m] Other Wire [m] No Class [m]

Rail [m] 37474 0 0 0 90
Contact [m] 0 21348 0 2900 134

Catenary [m] 0 0 21198 3050 134
Other wire [m] 0 100 100 24929 1838

No class [m] 6 0 0 5 -

Table 4. Confusion matrix of point elements measured in number of elements.

Real
Predicted Dropper Mast Traffic Light Sign Mark Sign Mast No Class

Dropper 5597 0 0 0 0 0 910
Mast 0 435 0 0 0 0 9

Traffic Light 0 0 14 0 0 0 1
Sign 0 0 0 15 0 0 2
Mark 0 0 0 0 59 0 3

Sign mast 0 0 0 0 0 23 4
No class 8 5 0 0 0 1 -

Using the results in the confusion matrix, precision, recall, and f1 score metrics are
calculated for each element. They are defined in Equations (4)–(6).

precision =
true positives

true positives + f alse positives
(4)
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recall =
true positives

true positives + f alse negatives
(5)

f 1 score = 2 ∗ precision ∗ recall
precision + recall

(6)

In Table 3, these metrics are shown for all the segmented elements.
Finally, the processing time is also analysed and expressed in terms of second/metre.

Each step of the process is also analysed, expressing its time as a percentage of the total
time. (Table 5). The processing time of the different steps is summarized in Table 6.

Table 5. Precision, recall, and F1 score.

Element Precision Recall F1 Score

Rail 99.98% 99.76% 99.87%
Contact 99.53% 87.56% 93.16%

Catenary 99.53% 86.94% 92.81%
Other wires 80.72% 92.44% 86.18%

Dropper 99.86% 86.02% 92.42%
Masts 98.86% 97.97% 98.42%

Traffic light 100.00% 93.33% 96.55%
Sign 100.00% 88.24% 93.75%
Mark 100.00% 95.16% 97.52%

Sign in mast 95.83% 85.19% 90.20%

Table 6. Processing time.

Process Time

Total process 1.96 s/m
Loading point cloud 1.71%

Sectioning 1.14%
Voxelised 6.36%

Segmentation 90.79%
Selecting section 1.88%

Track 4.01%
Local PCA 11.88%

Masts 41.17%
Wiring 7.69%

Droppers 0.57%
Signs 6.51%
Rails 16.68%

Merging sections 0.05%
Indexes from Vi to Ci 0.35%

5. Discussion

This section discusses the results of the segmentation process, highlighting the strengths
and weaknesses of the described methodology.

The objective of this work is to develop a fully automated railway segmentation
method able to work in several railway infrastructure scenarios in a large case study
dataset, analysing the rails as well as many relevant assets of the infrastructure. The results
show precision, recall, and F1 score metrics higher than 99% for rail segmentation, which is
a clearly positive result, considering that the dataset has different railway lane settings, with
two or three railway tracks, with railway crossings and switches. In these switches, this
algorithm can segment all the rail tracks and group them, storing the information of each
track separately given their correspondent contact wire, catenary wire, and droppers, which
are also stored offering complete contextual information of the assets. Comparing these
results with related work in [18], in which only rails are analysed, the results presented in
this paper have a similar precision and a greater recall in a similar scenario with several
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train tracks. The results of our work are also similar to the ones obtained by [20] in a less
complex scenario with only one rail track.

Results also show a good segmentation of the different wiring elements. The precision
on the segmentation of contact and catenary wires is higher than 99%, and the F1 score
is higher than 90%. Other wires present an F1 score higher than 85%. Comparing these
results with those obtained in [21], the precision obtained is the same, but the F1 score
in this study is lower. Nevertheless, as shown in the confusion matrix in Table 3, most
segmentation errors appear between different wiring classes, while the approach in [21]
only analyses catenary wires. The main source of error here lies in the analysis of small
sections of wires that cannot be properly classified as contact or catenary and are assigned
to the “other wire” class.

The other elements analysed are point elements. For these kinds of elements, the F1
score metric is also good, with results over 90% for all the elements.

In short, the results obtained in this work show the good performance of the method.
Furthermore, it is important to consider the length of the dataset used in this paper, which
processes 90 km of railway infrastructure data. This is considerably longer than other
datasets in similar works (550 m by [20] or 2 km by [18,21]). This validates the performance
of the methodology in large-scale datasets, which present more variable scenarios and
dispositions of the assets for the infrastructure.

6. Conclusions

This work presents a fully automated methodology that extracts relevant assets of the
railway infrastructure, such as rails, wiring and signs, traffic lights, and marks, from 3D
point cloud data. First, clouds are preprocessed by sectioning them with a defined longitude
and curvature, removing points far from the infrastructure, and then voxelising the selected
points. Second, each section is segmented, starting with a railway track segmentation,
followed by a sequential application of segmentation processes for the aforementioned
elements. Finally, sections are merged and continuous elements such as rails and wires are
contextually linked in the complete dataset.

The proposed method is applied to a 90 km long railway dataset. It is validated
in randomly selected sections of 200 m long, covering 11% of the whole dataset in the
validation process, to consider different dispositions of the railway environment. The
results obtained prove the performance of the algorithm, showing an F1 score higher than
99% for rails segmentation, higher than the 90% for every other segmented element.

There are interesting future research lines from this work. First, this methodology
can be followed by processes that export the required geometric and semantic information
to generate infrastructure information models, following standards such as the Industry
Foundation Classes (IFCs) to collect as-is models following a BIM methodology. Then, it is
also interesting to analyse the segmented assets further, to check their condition, extracting
parameters that can assist to the inventory of the infrastructure, or develop preventive
or predictive maintenance activities. Finally, the large amount of segmented data can be
used to prepare a complete and labelled dataset that can feed supervised machine learning
models, saving most of the effort required for generating a manually labelled dataset and
allowing faster development of artificial intelligence methods for semantic segmentation
of the infrastructure.
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Glossary

Ci Raw point cloud i
Csk Sectioned point cloud (k subdivisions of Ci )
Pi Point of a point cloud
T Trajectory of the mobile mapping vehicle
TCi Sectioned trajectory corresponding to Ci
Tsk Sectioned trajectory corresponding to Csk
Vi Voxelised cloud formed by all Csk of Ci
Vsk Voxelised Csk
ts Timestamp of each point in a point cloud
I Intensity value of each point in a point cloud
Vbsk Voxelised Vsk used in ground segmentation
→
v1,

→
v2,
→
v3 Eigenvectors result of applying PCA to voxel i and its neighbourhood

λ1, λ2, λ3 Eigenvalues result of applying PCA to voxel i and its neighbourhood
Vbt Voxels in Vbsk segmented as track
Vt Track voxels
Vp Peripherical voxels
Vo Overpass voxels
Vrm Mast without cantilever voxels
Vm Mast voxels
Vw Wire voxels
Vd Dropper voxels
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Figure A1. Railway switch: masts are represented in gold colour. Each contact wire has a different colour (yellow, green, 
and red), matched by its correspondent rail. Each catenary has also a random colour. Other wires are coloured in pink, 
droppers in black, signs in yellow, and marks in magenta. 

Figure A1. Railway switch: masts are represented in gold colour. Each contact wire has a different colour (yellow, green,
and red), matched by its correspondent rail. Each catenary has also a random colour. Other wires are coloured in pink,
droppers in black, signs in yellow, and marks in magenta.
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Figure A2. Railway under an overpass: masts are represented in gold colour. Each contact wire has a different colour (green
and red), matched by its correspondent rail. Each catenary has also a random colour. Other wires are coloured in pink,
droppers in black, and marks in magenta.
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Figure A3. Tunnel entrance segmentation: masts are represented in gold colour. Each contact wire has a different colour 
(green and red), matched by its correspondent rail. Each catenary has also a random colour. Other wires are coloured in 
pink, droppers in black, and marks in magenta. 

Figure A3. Tunnel entrance segmentation: masts are represented in gold colour. Each contact wire has a different colour
(green and red), matched by its correspondent rail. Each catenary has also a random colour. Other wires are coloured in
pink, droppers in black, and marks in magenta.
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