Evaluation of the J-OFURO3 Sea Surface Net Radiation and Inconsistency Correction
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Processing
2.2. Methodology
3. Results and Discussions
3.1. Evaluation against the In Situ Observations
3.2. Inconsistency Analysis
3.2.1. Inconsistency Examination
3.2.2. Inconsistency Correction
3.3. Spatiotemporal Trend Analysis Based on the Corrected J-OFURO3 Sea-Surface Values
4. Conclusions
- The uncertainties in the J-OFURO3 sea-surface were accepted, with overall R2 values of 0.86 and 0.96, RMSD values of 24.05 and 10.76 Wm−2, and biases of 0.16 and 0.22 Wm−2 at daily and monthly scales, respectively.
- An abrupt increase appearing in approximately 2000 in the J-OFURO3 sea-surface time series was very possibly caused by the replacement of the input data sources from the ISCCP-FD dataset to the CERES-3A dataset.
- A simple correction method is proposed by regressing the radiative components ( and Rli) from the ISCCP-FD dataset to those from the CERES-3A dataset separately, pixel by pixel, and the uncertainties in the sea-surface were decreased remarkably by reducing the bias from 4.67 to 0.27 Wm−2 after correction.
- The tempo-spatial variations in the J-OFURO3 sea-surface were more reasonable after correction especially over tropical seas.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegenthaler, U. The Role of Air-Sea Exchange in Geochemical Cycling; Springer: Dordrecht, The Netherlands, 1986. [Google Scholar]
- Loeb, N.G.; Lyman, J.M.; Johnson, G.C.; Allan, R.P.; Doelling, D.R.; Wong, T.; Soden, B.J.; Stephens, G.L. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci. 2012, 5, 110–113. [Google Scholar] [CrossRef]
- Zhang, X.; McPhaden, M.J. Eastern Equatorial Pacific Forcing of ENSO Sea Surface Temperature Anomalies. J. Clim. 2008, 21, 6070–6079. [Google Scholar] [CrossRef]
- Pinker, R.T. Surface Radiative Fluxes. In Encyclopedia of Remote Sensing; Njoku, E.G., Ed.; Springer: New York, NY, USA, 2014; pp. 806–815. [Google Scholar]
- Tomita, H.; Hihara, T.; Kako, S.i.; Kubota, M.; Kutsuwada, K. An introduction to J-OFURO3, a third-generation Japanese ocean flux data set using remote-sensing observations. J. Oceanogr. 2018, 75, 171–194. [Google Scholar] [CrossRef] [Green Version]
- Kubota, M.; Iwasaka, N.; Kizu, S.; Konda, M.; Kutsuwada, K. Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations (J-OFURO). J. Oceanogr. 2002, 58, 213–225. [Google Scholar] [CrossRef]
- Tomita, H.; Kubota, M.; Iwasaki, S.; Hihara, T.; Kawatsura, A. Introduction of J-OFURO version 2 surface heat flux data set and its analysis over the North Pacific. In Proceedings of the AGU Spring Meeting Abstracts, San Francisco, CA, USA, 9–14 December 2007. [Google Scholar]
- Small, R.J.; Bryan, F.O.; Bishop, S.P.; Tomas, R.A. Air–Sea Turbulent Heat Fluxes in Climate Models and Observational Analyses: What Drives Their Variability? J. Clim. 2019, 32, 2397–2421. [Google Scholar] [CrossRef]
- Masunaga, R.; Nakamura, H.; Kamahori, H.; Onogi, K.; Okajima, S. JRA-55CHS: An Atmospheric Reanalysis Produced with High-Resolution SST. Sola 2018, 14, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.L.; Priestley, K.J.; Loeb, N.G.; Wielicki, B.A.; Charlock, T.P.; Minnis, P.; Doelling, D.R.; Rutan, D.A. Clouds and Earth Radiant Energy System (CERES), a review: Past, present and future. Adv. Space Res. 2011, 48, 254–263. [Google Scholar] [CrossRef]
- Kara, A.B.; Wallcraft, A.J.; Barron, C.N.; Hurlburt, H.E.; Bourassa, M.A. Accuracy of 10 m winds from satellites and NWP products near land-sea boundaries. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Konda, M.; Imasato, N.; Nishi, K.; Toda, T. Measurement of the sea surface emissivity. J. Oceanogr. 1994, 50, 17–30. [Google Scholar] [CrossRef]
- Payne, R.E. Albedo of the Sea Surface. J. Atmos. Sci. 1972, 29, 959–970. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Q.; Qu, Y.; Liang, S. Estimation of the Ocean Water Albedo From Remote Sensing and Meteorological Reanalysis Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 850–868. [Google Scholar] [CrossRef]
- Cheng, J.; Cheng, X.; Liang, S.; Niclòs, R.; Nie, A.; Liu, Q. A Lookup Table-Based Method for Estimating Sea Surface Hemispherical Broadband Emissivity Values (8–13.5 μm). Remote Sens. 2017, 9, 245. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Cheng, X.; Meng, X.; Zhou, G. A Monte Carlo Emissivity Model for Wind-Roughened Sea Surface. Sensors 2019, 19, 2166. [Google Scholar] [CrossRef] [Green Version]
- Hogikyan, A.; Cronin, M.F.; Zhang, D.; Kato, S. Uncertainty in Net Surface Heat Flux due to Differences in Commonly Used Albedo Products. J. Clim. 2020, 33, 303–315. [Google Scholar] [CrossRef]
- Venugopal, T.; Rahman, H.; Ravichandran, M.; Ramakrishna, S. Evaluation of MODIS/CERES downwelling shortwave and longwave radiation data over global tropical oceans. In Proceedings of the Spie Asia-Pacific Remote Sensing of the Atmosphere, Clouds, and Precipitation VI, New Delhi, India, 9 May 2016. [Google Scholar]
- Thandlam, V.; Rahaman, H. Evaluation of surface shortwave and longwave downwelling radiations over the global tropical oceans. SN Appl. Sci. 2019, 1, s42452–s43019. [Google Scholar] [CrossRef] [Green Version]
- McPhaden, M.J.; Busalacchi, A.J.; Cheney, R.; Donguy, J.-R.; Gage, K.S.; Halpern, D.; Ji, M.; Julian, P.; Meyers, G.; Mitchum, G.T.; et al. The Tropical Ocean-Global Atmosphere observing system: A decade of progress. J. Geophys. Res. Oceans 1998, 103, 14169–14240. [Google Scholar] [CrossRef]
- Harada, Y.; Kamahori, H.; Kobayashi, C.; Endo, H.; Kobayashi, S.; Ota, Y.; Onoda, H.; Onogi, K.; Miyaoka, K.; Takahashi, K. The JRA-55 Reanalysis: Representation of Atmospheric Circulation and Climate Variability. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 269–302. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suarez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Zhang, Y.-C.; Rossow, W.B.; Oinas, A.A.L.a.V. The New Long-term, Global, 3-hourly, high-resolution ISCCP-FH Atmospheric Radiative Transfer Flux Profile Product. In Proceedings of the Symposium to Celebrate William B. Rossow’s Science Contribution and Retirement, Columbia University, New York City, NY, USA, 6–8 June 2017. [Google Scholar]
- Berry, D.I.; Kent, E.C. A New Air–Sea Interaction Gridded Dataset from ICOADS with Uncertainty Estimates. Bull. Am. Meteorol. Soc. 2009, 90, 645–656. [Google Scholar] [CrossRef] [Green Version]
- Pagnani, M.; Galbraith, N.; Diggs. OceanSITES format and Ocean Observatory Output harmonisation: Past, present and future. In Proceedings of the Egu General Assembly Conference, Vienna, Austria, 12–17 April 2015; pp. 854–863. [Google Scholar]
- Bowman, K.P.; Phillips, A.B.; North, G.R. Comparison of TRMM rainfall retrievals with rain gauge data from the TAO/TRITON buoy array. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Meyers, G.; Ando, K.; Masumoto, Y.; Murty, V.S.N.; Ravichandran, M.; Syamsudin, F.; Vialard, J.; Yu, L.; Yu, W. RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction*. Bull. Am. Meteorol. Soc. 2009, 90, 459–480. [Google Scholar] [CrossRef] [Green Version]
- Bourlès, B.; Lumpkin, R.; McPhaden, M.J.; Hernandez, F.; Nobre, P.; Campos, E.; Yu, L.; Planton, S.; Busalacchi, A.; Moura, A.D.; et al. The Pirata Program. Bull. Am. Meteorol. Soc. 2008, 89, 1111–1126. [Google Scholar] [CrossRef]
- Steele, K.; Burdette, E.; Trampus, A. A System for the Routine Measurement of Directional Wave Spectra from Large Discus Buoys. In Proceedings of the OCEANS’78, Washington, DC, USA, 6–8 September 1978. [Google Scholar]
- Jia, A.; Liang, S.; Jiang, B.; Zhang, X.; Wang, G. Comprehensive Assessment of Global Surface Net Radiation Products and Uncertainty Analysis. J. Geophys. Res. Atmos. 2018, 123, 1970–1989. [Google Scholar] [CrossRef]
- Rutan, D.A.; Kato, S.; Doelling, D.R.; Rose, F.G.; Nguyen, L.T.; Caldwell, T.E.; Loeb, N.G. CERES Synoptic Product: Methodology and Validation of Surface Radiant Flux. J. Atmos. Ocean. Technol. 2015, 32, 1121–1143. [Google Scholar] [CrossRef]
- Eberly, L.E. Correlation and Simple Linear Regression. Radiology 2003, 227, 617–622. [Google Scholar]
- Bo, J.; Xiuxia, L.; Hongkai, C.; Shunlin, L.; Qiang, L.; Jie, C. Inter-comparison and evaluation of ten sea-surface net radiation estimates. J. Geophys. Res. Atmos. 2020. Submitted. [Google Scholar]
- Minnis, P.; Harrison, E.F.; Stowe, L.L.; Gibson, G.G.; Denn, F.M.; Doelling, D.R.; Smith, W.L., Jr. Radiative climate forcing by the mount pinatubo eruption. Science 1993, 259, 1411–1415. [Google Scholar] [CrossRef] [PubMed]
- Buchard, V.; Randles, C.A.; da Silva, A.M.; Darmenov, A.; Colarco, P.R.; Govindaraju, R.; Ferrare, R.; Hair, J.; Beyersdorf, A.J.; Ziemba, L.D.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies. J. Clim. 2017, 30, 6851–6872. [Google Scholar] [CrossRef]
- Kato, S.; Loeb, N.G.; Rose, F.G.; Doelling, D.R.; Rutan, D.A.; Caldwell, T.E.; Yu, L.; Weller, R.A. Surface Irradiances Consistent with CERES-Derived Top-of-Atmosphere Shortwave and Longwave Irradiances. J. Clim. 2013, 26, 2719–2740. [Google Scholar] [CrossRef]
- Liu, C.; Allan, R.P.; Mayer, M.; Hyder, P.; Loeb, N.G.; Roberts, C.D.; Valdivieso, M.; Edwards, J.M.; Vidale, P.L. Evaluation of satellite and reanalysis-based global net surface energy flux and uncertainty estimates. J. Geophys. Res. Atmos. 2017, 122, 6250–6272. [Google Scholar] [CrossRef] [PubMed]
- Cook, K.H.; Vizy, E.K. Examining multidecadal trends in the surface heat balance over the tropical and subtropical oceans in atmospheric reanalyses. Int. J. Climatol. 2019, 40, 2253–2269. [Google Scholar] [CrossRef]
- Allan, R.P.; Liu, C.; Loeb, N.G.; Palmer, M.D.; Roberts, M.; Smith, D.; Vidale, P.L. Changes in global net radiative imbalance 1985-2012. Geophys. Res. Lett. 2014, 41, 5588–5597. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.T.; Li, W.; Li, L.; Ming, Y. Top-of-atmosphere radiative contribution to unforced decadal global temperature variability in climate models. Geophys. Res. Lett. 2014, 41, 5175–5183. [Google Scholar] [CrossRef] [Green Version]
- Kosaka, Y.; Xie, S.P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 2013, 501, 403–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meehl, G.A.; Teng, H.; Arblaster, J.M. Climate model simulations of the observed early-2000s hiatus of global warming. Nat. Clim. Chang. 2014, 4, 898–902. [Google Scholar] [CrossRef] [Green Version]
- Arora, A.; Rao, S.A.; Chattopadhyay, R.; Goswami, T.; George, G.; Sabeerali, C.T. Role of Indian Ocean SST variability on the recent global warming hiatus. Glob. Planet. Chang. 2016, 143, 21–30. [Google Scholar] [CrossRef]
- Kinter, J.L.; Miyakoda, K.; Yang, S. Recent Change in the Connection from the Asian Monsoon to ENSO. J. Clim. 2002, 15, 1203–1215. [Google Scholar] [CrossRef]
Network | Site No | Observation Frequency | Time Span | URL |
---|---|---|---|---|
OS | 6 | 1 h | 2000–2018 | dods.ndbc.noaa.gov/oceansites/ accessed on 27 May 2021 |
TAO | 15 | Daily | 2000–2016 | www.pmel.noaa.gov/gtmba/pmel-theme/pacific-ocean-tao accessed on 27 May 2021 |
RAMA | 6 | Daily | 2004–2016 | www.pmel.noaa.gov/gtmba/pmel-theme/indian-ocean-rama accessed on 27 May 2021 |
PIRATA | 7 | Daily | 2006–2016 | www.pmel.noaa.gov/gtmba/pmel-theme/atlantic-ocean-pirata accessed on 27 May 2021 |
UOP | 21 | 1 h | 1988–2016 | uop.whoi.edu/index.html accessed on 27 May 2021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Jiang, B.; Li, X.; Peng, J.; Liang, H.; Li, S. Evaluation of the J-OFURO3 Sea Surface Net Radiation and Inconsistency Correction. Remote Sens. 2021, 13, 2403. https://doi.org/10.3390/rs13122403
Chen H, Jiang B, Li X, Peng J, Liang H, Li S. Evaluation of the J-OFURO3 Sea Surface Net Radiation and Inconsistency Correction. Remote Sensing. 2021; 13(12):2403. https://doi.org/10.3390/rs13122403
Chicago/Turabian StyleChen, Hongkai, Bo Jiang, Xiuxia Li, Jianghai Peng, Hui Liang, and Shaopeng Li. 2021. "Evaluation of the J-OFURO3 Sea Surface Net Radiation and Inconsistency Correction" Remote Sensing 13, no. 12: 2403. https://doi.org/10.3390/rs13122403
APA StyleChen, H., Jiang, B., Li, X., Peng, J., Liang, H., & Li, S. (2021). Evaluation of the J-OFURO3 Sea Surface Net Radiation and Inconsistency Correction. Remote Sensing, 13(12), 2403. https://doi.org/10.3390/rs13122403