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Abstract: An airgun source in a water reservoir has been developed in the past decade as a green
active source that had been proven effective to derive short-term subsurface structural changes.
However, seasonal water level fluctuation in the reservoir affects the airgun signal, and thus whether
the airgun signals can be used to derive robust seasonal variation in subsurface structure remains
unclear. We use the airgun data observed in the Binchuan basin to estimate the seasonal variation
of seismic travel time and compare the results with those derived from ambient noise data in the
same frequency band. Our main observation is that seasonal change δt/t from airgun is negatively
correlated to the variation of dominant frequency and water table fluctuation in the reservoir. One
possible explanation is that water table fluctuation in the reservoir affects the dominant frequency
of the airgun signal and causes significant phase shift. We also compute the travel time changes
in P-wave from the empirical Green’s function after deconvolving the waveforms from a reference
station that is 50 m from the airgun source. The dominant frequency after deconvolution still shows
seasonal variation and correlates inversely to the travel time changes, suggesting that deconvolution
cannot completely eliminate the source effect on travel time changes. We also use ambient noise
cross-correlation to retrieve coda waves and then derive travel time changes in monthly stacked
cross-correlations relative to a yearly average cross-correlation. We observe that seismic travel
time increases to its local maximum in the end of August. The travel time changes lag behind the
precipitation for about one month. We apply a poroelastic physical model to explain seismic travel
time changes and find that a combined effect from precipitation and evaporation might induce
the seasonal changes as shown in the ambient noise data. However, the pattern of travel time
changes from the airgun differs from that from ambient noise, reflecting the strong effects of airgun
source property changes. Therefore, we should be cautious to derive long-term subsurface structural
variation from the airgun source and put more attention on stabilizing the dominant frequency of
each excitation in the future experiments.

Keywords: airgun; ambient noise; seismic interferometry

1. Introduction

Extensive field observations and lab experiments [1–5] have suggested that slowly
evolving, low-amplitudes phases usually appear before the onset of natural hazards such
as earthquakes, landslides, and volcanic eruptions. A better understanding of the related
crustal deformation and responsible mechanisms of these phases are critical for effective
early warnings of such hazards. Crust deforms under the loading of tectonic and climato-
logical forces. In order to precisely measure the deformation from tectonic loading, we need
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to remove deformation related to climatological forces. Seismic velocity changes are usually
used as a proxy to quantitatively understand crustal deformation. Temporal changes in
seismic velocity can reflect fault zone co-seismic damage and post-seismic healing [6–8],
volcanic eruption [6,9], groundwater level changes [10–12], temperature and atmospheric
pressure variations [13–18], and solid earth and oceanic tidal deformation [17,19–21]. Thus,
high temporal resolution monitoring and high precision measurements of seismic velocity
changes are necessary.

Seismic velocity changes have been estimated through measuring travel time or
phase difference from active sources including explosion [21–25], electronic hammer [26],
airguns [18,27,28], repeating earthquakes [29–34], and dephasing of ambient noise cross-
correlations (CCs) [6,35]. Among these methods, temporal changes in ambient noise
amplitude and heterogeneous distribution of noise sources [12,17] may introduce a bias to
the measurements of seismic velocity changes. The uncertainties in locations of repeating
earthquakes might cause concern to the reliability of the measurements of seismic velocity
changes. Explosions are not environmentally friendly and thus are not possible to operate
in a populated region. In contrast, a large volume airgun array with stable signal excitation
has been suggested as a better method to monitor seismic velocity changes [36].

Since 2011, a permanent seismic source [36–38] has been deployed in a water reservoir
called Dayindian in Binchuan, Yunnan, China, to image velocity structure [39,40] and
monitor seismic velocity changes [8,41–44]. It has been in routine operation since September
2012. The source is composed of four 2000 in3 LongLife airguns manufactured by Bolt Co.,
which can ignite sufficient seismic signal penetrating down to a depth of 10–20 km and
propagating further to tens of kilometers away [36,38]. The four airguns were towed 2 m
below the four corners of a 7 m × 7 m steel frame hanging under a tower crane [37]. The
source causes negligible effects to the wildlife and local communities in terms of ground
shaking and noise pollution [37].

We target the Binchuan region because it is located at the eastern margin of the
collision zone between the Indian and Eurasia plates, accumulating strong shear strain [45],
accommodating millions of people, and experiencing many devastating earthquakes. The
largest one was the M7.75 Yongsheng earthquake which occurred on the Chenghai fault in
1515 [46,47]. This region has recorded numerous earthquakes, including eight events with
magnitude greater than 7, and 70 with magnitudes greater than 6 [48].

Since the deployment of the airgun array, [18] used one-week hourly-shooting signals
to observe diurnal and semidiurnal P- and S-wave velocity changes. They proposed that
the thermal strains from air temperature changes are the primary cause. The reservoir
water level did not fluctuate significantly during the one-week period. However, we
must consider the effect of water level fluctuation when investigating seasonal changes in
seismic velocity, as it may change a few meters from winter to summer. The authors of [49]
observed that the dominant frequency of airgun data correlates to the changes in water
level in the reservoir, which may potentially affect measurements of travel time changes.
In this study, we use airgun data in the frequency ranges of 2–6 Hz to compute variation
of the dominant frequency and amplitude, derive seasonal changes in seismic velocity,
and explore how water level fluctuation of the reservoir affects seismic velocity changes
through investigating the correlation between seismic velocity changes and variations of
the dominant frequency and amplitude. We also use ambient noise in the same frequency
range to obtain seasonal changes in seismic velocity for coda waves and compare them
with velocity changes for body waves.

2. Airgun Data

The Binchuan airgun array shot a few tests in 2011 and began to operate routinely after
September 2012. On average, a few shots were made every day (Figure S1), accumulating
hundreds to thousands of excitations per year. From June to August, the water level in
the Dayindian reservoir is too low to excite airgun shot because of irrigation for farming
(Figure S1). However, in 2016, water level fluctuation in the reservoir did not affect the
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airgun operation and the average number of daily excitations is also higher than that in
other years. We therefore use the airgun data in 2016 to investigate the seasonal variation
of seismic arrival time of P- and S-waves.

2.1. Source Characteristics

Forty portable three-component short-period stations have been deployed since the
operation of the airgun source, and we selected 14 stations with clear body wave arrivals
to compute travel time change (Figure 1). Each station is equipped with a Güralp 40 T
sensor (a flat response from 0.5–100 Hz) and a RefTek 130 data logger. We convert daily
data from MiniSEED to sac and merge them if there is more than one segment in a day. We
then extract all airgun signals from the original dataset, starting from the shooting time to
20 s after that.

We first inspect the waveform recorded at the nearest station CKT, which is ~50 m
from the airgun source. A near-field airgun wavelet is composed of primary pulse and
bubble pulse (Figure 2). Primary pulse is generated by high-pressure gas releasing into
the water and is usually in high energy with a wide bandwidth, e.g., 7 to 30 Hz (Figure 2).
It was mostly used in shallow oil and gas exploration. In comparison, bubble pulse is
generated by the oscillation of bubbles after high-pressure gas was released into the water.
It is in a relatively low-frequency band from 2 to 6 Hz [36,38], so it was often used in deep
seismic exploration (Figure 2).

We compute power spectral density of the bubble pulse and define the frequency
with the maximum power spectral density as the dominant frequency. We observe that the
dominant frequency of the bubble pulse decreases in the summer at the reference station
(Figure 3a) and others (Figures 3b,c and S2), similar to the reports in [49]. In fact, the towing
depth of the airgun array decreases in summer when water in the reservoir was used
for farming. An experimental study from [50] also indicates that the dominant frequency
decreases when the towing depth of the airgun array decreases. Such variation in frequency
content is quite common. For instance, at a global scale, seasonal or multi-decadal variation
of storm activities have been reported to cause long-term variation in noise frequency
content [51,52]. It has been suggested that temporal variation of frequency content can
cause apparent seismic velocity change [53]. In addition to the dominant frequency, we
also observe that the maximum amplitude in the bubble pulse window decreases in the
summer, which is similar to the reports in [50].



Remote Sens. 2021, 13, 2421 4 of 21

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 21 
 

 
Figure 1. Short-period stations (red triangle) installed during the airgun source excitation experiment. Red text above the 
triangle denotes the station name. The black stars mark the location of the airgun array. 

Figure 1. Short-period stations (red triangle) installed during the airgun source excitation experiment. Red text above the
triangle denotes the station name. The black stars mark the location of the airgun array.
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Figure 2. Original near-field waveform (a) recorded by a reference station CKT. The signal from 0 to 0.3 s is the primary 
pulse (gray area marked as primary). The signal from 0.6 to 2 s is bubble pulse. (b) The spectrogram of the waveform in 
(A). The primary pulse is in high energy and in a wide bandwidth, e.g., 7–30 Hz. The bubble pulse is in a relatively low 
frequency bandwidth, 2–6 Hz. 

 
Figure 3. Seasonal variation of the dominant frequency (red) and P-wave signal amplitude (blue) for the reference station 
(a) and other receivers (b and c). They decrease in the summer and correlate to each other. 

2.2. Airgun Data Quality 
We interpolate the airgun signals to 0.001 s/sample and bandpass all waveforms with 

a 2–6 Hz filter, the dominant frequency band of the bubble pulse [38]. With the single shot 
data, we can observe clear P-wave and S-wave arrivals up to 30 km with apparent veloc-
ities of 5.5 km/s and 2.8 km/s, respectively (Figure 4), consistent with previous observa-
tions [38].  

When inspecting the waveforms throughout the entire year, we observe strong clock 
drifts in the reference station CKT and other receivers, approximately from day 230 in 
2016 (Figure 5a,c and Figure S3). Because the differential times are nearly the same among 
all stations (Figure S4), it is mostly attributed to the timing log system of the airgun array. 
In additional to that, sensors in the 53273 and 53277 also have timing problem. To fix the 
clock drift, we determine P-wave arrival time at each station through a polarization anal-
ysis introduced by [54]. For a three-component airgun waveform in the passband of 2–30 
Hz at station 53278 (Figure 6a), we first convert each component to an analytic signal. 

 

Figure 2. Original near-field waveform (a) recorded by a reference station CKT. The signal from 0 to 0.3 s is the primary
pulse (gray area marked as primary). The signal from 0.6 to 2 s is bubble pulse. (b) The spectrogram of the waveform in
(A). The primary pulse is in high energy and in a wide bandwidth, e.g., 7–30 Hz. The bubble pulse is in a relatively low
frequency bandwidth, 2–6 Hz.
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Figure 3. Seasonal variation of the dominant frequency (red) and P-wave signal amplitude (blue) for the reference station
(a) and other receivers (b,c). They decrease in the summer and correlate to each other.

2.2. Airgun Data Quality

We interpolate the airgun signals to 0.001 s/sample and bandpass all waveforms with
a 2–6 Hz filter, the dominant frequency band of the bubble pulse [38]. With the single
shot data, we can observe clear P-wave and S-wave arrivals up to 30 km with apparent
velocities of 5.5 km/s and 2.8 km/s, respectively (Figure 4), consistent with previous
observations [38].

When inspecting the waveforms throughout the entire year, we observe strong clock
drifts in the reference station CKT and other receivers, approximately from day 230 in 2016
(Figures 5a,c and S3). Because the differential times are nearly the same among all stations
(Figure S4), it is mostly attributed to the timing log system of the airgun array. In additional
to that, sensors in the 53273 and 53277 also have timing problem. To fix the clock drift, we
determine P-wave arrival time at each station through a polarization analysis introduced
by [54]. For a three-component airgun waveform in the passband of 2–30 Hz at station
53278 (Figure 6a), we first convert each component to an analytic signal.
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Correlation coefficient between a P-wave template and the vertical SHZ component. (c) Maximum value of differential of
rectilinearity constrains the rough arrival time of P-wave. (d) Rectilinearity of the vertical component. The rectilinearity of
P-wave is close to 1.

va(t) = v(t) + iH(v(t)) (1)

ea(t) = e(t) + iH(e(t)) (2)

na(t) = n(t) + iH(n(t)) (3)

in which v(t), e(t), and n(t) are vertical, east-west and north-south components. H rep-
resents Hilbert transform. i is

√
−1. We then define a 0.02 s moving window and a 0.01 s

moving step and compute the covariance matrix between windowed three-components
va1, ea1, and na1 as:

C(t) =

 va1v∗a1 va1e∗a1 va1n∗a1
ea1v∗a1 ea1e∗a1 ea1n∗a1
na1v∗a1 na1e∗a1 na1n∗a1

 (4)

where the asterisks represent complex conjugation. We compute three eigenvalues λ1, λ2,
and λ3 from the covariance matrix and calculate the rectilinearity R [55,56] through:

R =
(λ1 − λ2)

2 + (λ1 − λ3)
2 + (λ2 − λ3)

2

2(λ1 + λ2 + λ3)
2 (5)

It has a value of 1 when the signal is linearly polarized and a value of 0 when it
is unpolarized.
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Due to interference of noise in the airgun signals, we cannot directly determine the
P-wave arrival time from the maximum of rectilinearity in different moving windows. We
first select a P-wave template and compute moving window correlation coefficient between
the template and each raw vertical waveform. We then select points with correlation
coefficient greater than 50% of the maximum value (Figure 6b). Among these points, we
determine an arrival time with the maximum differential rectilinearity (Figure 6c). From
the arrival time to 0.5 s after it, we finally determine the P-wave arrival time from the
maximum value of the rectilinearity (Figure 6d).

As subtle subsurface changes cannot be reflected by direct P wave arrival changes, we
then align P-wave arrivals through correcting travel time difference from the first shot. The
airgun waveforms are significantly improved after clock drift correction (Figure 5b,d). We
still observe that S-wave coda at 3–6 s (Figure 5d) varies in amplitude and duration, which
is attributed to the effect of changing airgun array.

We then stack all the waveform at each station for the entire year as the reference
waveform (Figure 5b,d), and derive differential time by a modified moving-window cross-
spectrum method that will be introduced in the following section. We cannot use the entire
time-series to compute delay time between one single shot and the reference because of the
changes in the airgun array. We thus investigate how delay time changes for the time-series
between P-wave initial arrival and S-coda wave, which is 0.7–3 s in Figure 5d.

3. A Modified Moving-Window Cross-Spectrum method

We follow the method of Moving-Window Cross-Spectral (MWCS) [30,57] to compute
the phase shift between stacked reference and current airgun signals. For a reference and a
current airgun signal at station CKT with the center time at 0.5 s and window length of 0.6 s
(Figure 7a), two segments are mean-adjusted and cosine-tapered before transforming into
the spectral domain. The cross-spectrum, X( f ), between the two segments is constructed as:

X( f ) = Fre f ( f )·F∗cur( f ). (6)

where Fre f ( f ) and F∗cur( f ) are Fourier-transformed representations of the windowed ref-
erence and current signals. ∗ denotes complex conjugation. f is the interested frequency
range. We can represent the cross-spectrum, X( f ), as:

X( f ) = |X( f )|·eiφ, (7)

φ = φd( f ) + φc, (8)

where φd( f ) represents frequency-dependent phase shift of a current signal relative to the
reference one. φc represents a constant phase shift.

To quantify the reliability of the estimations of phase shift, φd( f ) and φc, we compute
the cross-coherence C( f ) (Figure 7b) between their energy densities as:

C( f ) =

∣∣∣X( f )
∣∣∣√∣∣∣Fre f ( f )

∣∣∣2·|Fcur( f )|2
, (9)

where the overlines represent 5-point smoothing.
The values of φc and φd( f ) can be derived from the unwrapped phase of the cross-

spectrum (Figure 7c). The frequency-dependent phase shift φ( f ) between the reference
and the current airgun signals is linearly proportional to frequency φd( f ) = 2π f δt so that
the cross-spectrum can also be represented as:

X( f ) = |X( f )|·ei(m f+φc), (10)

m = 2πδt, (11)
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where the time delay δt is estimated from the slope m of a weighted linear regression
of phase φd( f ) in frequency of interest. We estimate a constant phase shift φc from the
intercept of the linear regression. The slope m (Figure 7c) is estimated as:

m =
∑n

i=1 wi fiφi

∑n
i=1 wi f 2

i
, (12)

where n is number of samples within the frequency range. The weight function wi for
linear regression at the ith sample in the frequency of interest is:

wi =

√
C2

i
1− C2

i
·
√
|Xi| . (13)

The associated error em for the slope is:

em =

√√√√∑
i

(
wi fi

∑i wi f 2
i

)2

σ2
φ, (14)

in which σ2
φ is the squared misfit of the data to the modelled phase shift.

σ2
φ =

∑i(φi − 2π f δt)2

n− 1
(15)

All the above steps are used to compute one data point at the time 0.5 s in Figure 7d,e.
If we obtain delay-time δt and constant phase shift φc estimations for all moving windows,
we can further estimate how they vary with the travel time. For each measurement with
window centered at j second,

δtj = a + btj, (16)

where b corresponds to the relative time change δtj/tj. The estimation for b is:

b =
∑ pj

(
tj − 〈t〉

)
δtj

∑ pj
(
tj − 〈t〉

)2 , (17)

where pj = 1/e2
m and 〈t〉 = ∑ pjtj/ ∑ pj. The error eb of the slope is

e2
b =

1

∑ pj
(
tj − 〈t〉

)2 . (18)

Linear regression of phase shift φc over the travel time constrains φc/t (Figure 7d).
Linear regression of delay time δt over different moving window constrains δt/t (Figure 7e).
In the following section, we investigate how δt/t changes seasonally.
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Figure 7. Procedures of the moving-window-cross-spectrum to compute the delay time. (a) Airgun segments center at 0.5 s
with length of 0.6 s from the reference and a current airgun signal of station CKT in the passband of 2 to 6 Hz. The gray area
marks the selected segments. (b) The cross-coherency between two selected signals. (c) Phase change over the interested
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delay time δt from the frequency-dependent phase shift φ/2π f . We can also compute a frequency-independent phase shift
φc from the intercept of the linear regression. (d) The constant phase shift φc over different moving window. Steps in (a–c)
estimate one point centering at 0.5 s. Looping through different moving window, we can estimate constant phase shift in
different travel time φc/t. (e) Similar to (d) but for delay time.

4. Results
4.1. δt/t Derived Directly from Corrected Airgun Waveforms

A critical point in the MWCS analysis is the selection of the length of the moving
window. The window length needs to be short to satisfy a constant time shift and to obtain
a relative high temporal resolution. On the other hand, the window length needs to be
long enough to ensure an accurate measurement, as well as avoid cycle skipping. Thus,
the tradeoff between the temporal resolution and the accuracy of seismic velocity measure-
ments can help to constrain the window length. Previous studies [17,58,59] suggested that
the window length needs to be equal or larger than the longest period of interest, which is
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0.5 s in this study. We computed δt/t of P-wave at station 53278 (Figure S5) using different
lengths (i.e., 0.5, 0.6, 0.7, 0.8 s) of moving windows and found that the estimation of δt/t is
more stable when the moving window is longer than 0.5 s. We thus use a moving window
of 0.6 s to compute the differential time for all stations.

The other important parameter in linear regression of delay time over moving window
is the window of P-wave arrivals (Figure S6). Rather than selecting the begin and end time
of P-wave from the raw airgun signal, we handpick them from the diagram of delay time
verse travel time. We first visually inspect and determine the rough arrival time of P-waves.
We then select the begin and end time of P-wave based on the linearity of delay time in
different moving windows.

Because the arrivals of S-wave are not as obvious as those of P-waves (Figure 4), we
only investigate how the arrival time of P- and P-coda wave changes. We observe that
δt/t fluctuates between −5% to 5% for all stations (Figure 8) The error bars represent
standard deviation of δt/t in one day. For δt/t measurements of P-wave arrivals on
uncorrected waveforms, we observe strong uncertainties after the day 220 (Figure S7). After
clock drift correction, δt/t measurements show smoother seasonal change. Considering
the uncertainty of correction imposed through this procedure, we conclude that δt/t
measurements are more reliable for days before 220 than after. Although scattering varies
at different stations, nearly all of them show an abrupt increase near days 150 and decrease
around days 220 (Figure 8). For closer stations from the source, such as 53277 and 53278,
measurements on signals shot within the same day are constrained in a narrow δt/t range.
For farther stations, such as 53276, 53264 and 53258, measurements have relatively large
uncertainty. We can barely observe clear P-wave arrivals for stations farther than 20 km
except the station 53266, in which we observe clear travel time changes.
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4.2. δt/t Derived after Deconvolution of the CKT Waveform

Deconvolution has usually been used to remove the source effect of the airgun. For
instance, [18] and [28] deconvolve a receiver station from a reference station to retrieve
the empirical Green’s function, based on which they measure the relative time delay to
compute diurnal and semidiurnal seismic velocity change in the Binchuan basin. However,
when the airgun excitation conditions change significantly, including the towing depth and
firing pressure, the deconvolution cannot eliminate the source effect [43]. To investigate
whether deconvolution can eliminate the source effect, we apply a frequency-domain water
level deconvolution method [18,60] to construct empirical Green’s functions and measure
seismic velocity changes in P-wave.

G =
R·S∗

max
(
|S|2, cmax

(
|S|2

)) , (19)

in which R and S are Fourier spectrum of the receiver and source signals, respectively. We
treat the recording at the reference station CKT as the source signal. The asterisk represents
the complex conjugation. c ranges from 0.01% to 1%, depending on the signal-to-noise ratio.
We use a same value 0.01% as of [18] because of high-quality of our datasets. We finally
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invert frequency-domain Green’s function G to time-domain time-series through inverse
Fourier transform. If deconvolution can completely remove source effect, we should
observe constant dominant frequency within one-year cycles, and seasonal change should
be in the same magnitude with these values measured from ambient noise, which is usually
less than 1%. After deconvolution, we observe that the dominant frequency of P-wave in
these empirical Green’s functions correlates inversely to the delay time change (Figure 9).
The dominant frequency still shows seasonal variation, which causes obvious phase shift
and affects the differential time calculation. Thus, deconvolution cannot eliminate the
source effect on computation of differential time.
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To investigate the effect of deconvolution, we also compare δt/t of P-wave in original
airgun waveforms and the empirical Green’s functions (Figure 10). We do not correct
airgun data through procedures described above before retrieving of the empirical Green’s
function. If all receivers and the reference station share exactly same clock drift, the decon-
volution will eliminate the clock drift effect. If not, we might observe large uncertainties
of δt/t measurements on Green’s functions. For station 53268, we observe that δt/t from
airgun signals correlates inversely to that from the empirical Green’s functions. For other
stations, they are positively correlated to each other. For the stations 53268 and 53274, we
observe large uncertainty of δt/t at day 280 from the Green’s functions, which may reflect
different clock drifts in these stations from the reference station CKT.
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5. Discussion
5.1. The Magnitude of δt/t Change from Airgun

Almost 5% travel time change in P-wave from airgun measurement is huge compared
to ~0.2% S-wave velocity decrease after the 2004 Parkfield earthquake [7] and ~0.4%
increase due to thermoelastic strain increase in the San Jacinto fault area [17]. However, it is
in the same magnitude with observations from [61] who observed an abrupt 4% co-seismic
velocity decrease for P wave after the Wenchuan mainshock. The reason why travel time
change for P-wave is a lot larger than that for S-wave is still not well known. Before
attempting to elucidate possible mechanisms for such discrepancy, we first need to inspect
that our obtained δt/t reflects subsurface variation or not.

Seismic travel time changes computed from ambient noise cross-correlation is a typical
method to monitor the magnitude and trend of property change in the shallow crust. In
the following section, we use ambient noise cross-correlation to compute seasonal change
in seismic coda wave and compare its magnitude and trend with these from airgun data. If
the magnitude and trend of seismic travel time changes from airgun are similar to these
from ambient noise, we may suggest that the seismic travel time changes in P-wave from
airgun are related to crustal property change. Otherwise, they are related to the source.

5.2. δt/t from Ambient Noise

If seismic travel time change is due to shallow crust property change, we should
observe similar trend of travel time change for P-wave from airgun and S-wave from
ambient noise. To verify the travel time changes derived from the airgun source, we
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compute seismic travel time changes from ambient noise for coda waves in the passband
of 2–6 Hz for 91 pairs of stations with the interstation distance less than 30 km (Figures 11
and S6). We first scan MiniSEED data into MSNoise [62], downsample to 20 Hz, remove
earthquakes and airgun signals by the root-mean-square (RMS) temporal normalization,
and reduce the effect of heterogeneous distributions by spectral whitening. We then
compute daily CCs and construct a monthly CC through stacking and averaging CCs in
the past one month before the selected date. We stack and average CCs in the entire year to
construct a reference CC. We finally compute the delay time between monthly CCs and the
reference CC with a moving window of 3 s and a step of 1 s. We do not follow a similar
monthly stacking procedure in the previous airgun computation because of high similarity
of waveforms of airgun. If similar procedure is followed in the computation of travel time
changes for airgun data, the final seasonal variation will be smoother, but the magnitude
and trend will not change significantly. We define the starting time of the coda window as
one time of interstation distance and specify the width of the window as 30 s.

We compare the trave time changes in three pairs among station CKT, 53265 and 53268
(Figure 11a,b). Similar travel time changes among all station pairs reflect the robustness of
δt/t derived from ambient noise. Indeed, 29 out of 91 station pairs show similar magnitude
of δt/t, from −0.1% to 0.1% (Figure S8b). Station pairs with seasonal changes in seismic
travel time distribute in a broad region, up to 30 km from the reservoir (Figure S8a).
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Figure 11. dt/t(%) measurements (b) from ambient noise among CKT, 53265 and 53268 (a) and dt/t(%) measurements from
airgun at the station 53268 (c).

5.3. Possible Mechanism of δt/t from Ambient Noise

Travel time changes from ambient noise are usually related to environmental parame-
ters changes, such as precipitation or water table fluctuation, temperature, and air pressure.
To explore the correlation between the travel time changes and each environmental param-
eter (Figure 12), we requested such environmental data from one meteorological station in
Lijiang, 150 km from the airgun source, from China Meteorological Data Service Center
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(http://data.cma.cn, accessed on 8 May 2021). We also compared the travel time changes
to the water table fluctuation in the reservoir (Figure 12a).

We first observe that air pressure increases and correlates to the travel time change in
the long-term trend (Figure 12b), which is opposite to [15], showing that seismic velocity
increased with air pressure. Temperature increases in the summer and usually causes
seismic velocity increase with a time lag of months [17]. However, we do not observe clear
short-term and long-term correlation between the temperature and travel time changes
(Figure 12d). Precipitation affects travel time changes through water mass loading or
pore pressure changes. Water mass loading affects the travel time instantaneously, but
the pore pressure causes travel time change with months of time lag. We compute a
10-day moving average value for the precipitation (Figure 12c). We observe that major
precipitation (Figure 12c) occurs at day 200 in the summer. Seismic travel time changes
increase to a local maximum at day 230 and lag behind the maximum precipitation for
about one month, which is similar to the observation in [12].

To investigate if the pore pressure affects seismic velocity change, we use a poroelastic
model to estimate seasonal variation of seismic travel time in 2016. The authors of [63]
proposed a solution for the one-dimension fully coupled diffusion equation, which was
used for understanding seismic travel time changes [12,59,64]. Assuming water diffuses in
the vertical direction with constant hydraulic diffusivity, we can compute the pore pressure
changes P(h, T) at h kilometer depth from the surface on day T as:

P(h, T) =
n

∑
i=1

δpi er f c

[
h√

4c(n− i)δT

]
, (20)

in which n is the number of time increments δT from the day of the rainfall to the time T;
δpi is the ground water load changes (ρ·g·δhi) at the sampled instant Ti = iδT. We compute
δhi by using precipitation subtracting evaporation in 2016 (Figure S9). δT is set to 1 day
in second. er f c[·] is the complementary error function. c is the hydraulic diffusivity. The
depth h is set to 500 m, which is the maximum depth sensitivity of surface waves in the
frequency ranges of 2–6 Hz. A mathematical transfer function from [12,59,64] to compute a
synthetic seismic travel time change:

δt
t syn

(T) =
〈

δt
t
(T)
〉
+

cov
(

δt
t (T), P(T)

)
var(P(T))

·(P(T)− 〈P(T)〉), (21)

where δt
t syn is synthetic seismic travel time change;

〈
δt
t (T)

〉
is the average over observed

seismic travel time change. We find the optimal diffusivity c value of 0.01 m2/s (Figure 12f)
through minimizing the residual σ2(c):

σ2(c) =
1
n
·

n

∑
t=1

(
δt
t
(T)− δt

t syn
(T, c)

)2
, (22)

where n is number of days. Overall, the synthetic seismic travel time change correlates to
the observed one (Figure 12e). The climatological data are from a Lijiang station, around
150 km from the study region. The discrepancy between synthetic results and the observed
ones might be due to the uncertainty of the climatological data.

We also investigated the effect of noise amplitude change on seismic travel time
measurements. To compute the noise amplitude of ambient noise in the passband of
2–6 Hz, we remove airgun signals from the original dataset and calculate root-mean-square
amplitude of the noise (Figure S10). We observed that ambient noise amplitude increases
in the summer when the water level in the reservoir decreases. The increasing noise
amplitude in the summer might be related to active anthropogenic activities. We do not
observe an obvious correlation between seismic travel time changes and variation of noise

http://data.cma.cn
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amplitude, so we conclude that changes in noise amplitude introduce negligible effects on
velocity changes.
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We finally propose that pore pressure change from a combined effect of precipitation
and evaporation causes seismic travel time changes in coda waves in the ambient noise
cross-correlations.

5.4. Difference of δt/t from Ambient Noise and Airgun

Changes of 5% in travel time from airgun are a lot larger than 0.1% changes from
ambient noise.

Changing of noise source property and shallow crustal structures are two major factors
causing such change. A change of 0.1% seismic travel time may better reflect structural
change in shallow crust than that from airguns. First, [12,17] proposed that changes in
ambient noise source property cause a bias on travel time measurements, but the effect
is negligible. Second, when measuring seismic travel time change for coda wave from
ambient noise, we usually use a longer time window to include all possible scattered
waves and multiple reflections, which better sample the crustal structure than direct P-
wave arrivals. We need to understand the property change in the airgun source before
investigating the correlation between δt/t and subsurface structural change.

5.5. Mechanism of δt/t Change from Airgun

To understand the effect of the change in source property on travel time measurements,
we compare seasonal change in travel time to the dominant frequency (Figure 13). We
observe that δt/t is inversely correlated to the dominant frequency of P-wave and water
level fluctuation in the reservoir. One possible explanation is that water table fluctuation
in the reservoir causes signal frequency content change so that we can observe phase
shift. The authors of [65] observed that signal amplitude changes are positively correlated
to significant travel time delay, which is opposite to our observation. Since the change
in source property cause significant effect on deriving seasonal change in seismic travel
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time, we should put more attention on stabilizing dominant frequency of airgun signals in
further experiments.
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Figure 13. δt/t at the station 53278 is inversely correlated to the dominant frequency of P-wave from airgun (a) and the
water table fluctuation (b).

6. Conclusions

We computed seismic travel time changes δt/t in the Binchuan basin and adjacent
area, estimated seasonal change in the dominant frequency and signal amplitude, and
determined how they correlate with the water level changes in the reservoir. The airgun
signals exhibit 5.5 km/s and 2.8 km/s in apparent P- and S-wave velocities, respectively.
Because S-wave is strongly interfered from multiple reflections and reverberations, we
thus only investigated how seismic velocity of P-wave changes. We observed that the δt/t
correlates to the variation of dominant frequency and water table fluctuation in the reservoir.
One possible explanation is that water table fluctuation affects the dominant frequency of
airgun signals so that we can measure obvious phase shift. We also investigated seismic
travel time changes in P-wave in the empirical Green’s function and found that the δt/t
correlates inversely to the frequency change.

We computed 91 pairs of ambient noise cross-correlation to derive how seismic travel
time changes in the passband of 2–6 Hz. We observed that the travel time changes increase
to its local maximum in the end of August, but the variation of seismic velocity does not
correlate with the changes in the water table in the reservoir. The seismic velocity changes
lag behind the precipitation for about one month. We applied a poroelastic physical model
to explain seismic travel time changes and found that a combined effect from precipitation
and evaporation matches the observations. The optimal diffusivity to explain seismic travel
time changes is 0.01 m2/s. Changes in ambient noise amplitude introduce negligible effects
on seismic travel time changes.

Supplementary Materials: The supplementary materials are available online at https://www.mdpi.
com/article/10.3390/rs13122421/s1. Figure S1: Airgun excitation time from 2011 to 2020 (Up) and
the number of average daily excitation (Down). From June to August, the water level in the reservoir
is too low so it is not suitable for the airgun to operate. Data is more complete in 2016 than other.
The number of average daily excitation is 7 times/day in 2016, Figure S2: Continued, Figure S3:
Different Airgun shots in 2016 at different stations. We observe strong clock drifts, Figure S4: Delay
time of P-wave arrivals relative to the time in the first day of 2016, Figure S5: Seismic travel time
change for station 53278 using different moving windows. We observe that the estimation of seismic
travel time change is more stable when the length of the window is longer than 0.5 s, Figure S6:
Determination of window for P-wave arrivals. We inspect the waveform to get a rough estimate
of the begin and end time of P-wave arrivals. We then handpick the exact arrival time of P-wave
based on the linearity of data points in the diagram of delay time verse travel time in different

https://www.mdpi.com/article/10.3390/rs13122421/s1
https://www.mdpi.com/article/10.3390/rs13122421/s1
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days, Figure S7: δt/t measurements on P-wave arrivals at four stations with or without clock drift
correction, Figure S8: (a) Station pairs with similar seasonal changes of seismic travel time distribute
in a broad region, at most 30 km from the reservoir. (b) 29 out of 91 station pairs show similar seismic
travel time change δt/t. Figure S9: Precipitation substracts evaporation. Figure S10: Ambient noise
amplitude increases in the summer when the water level in the reservoir decreases. The increasing
noise amplitude in the summer might be related to active anthropogenic activities.
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