Attention Multi-Scale Network for Automatic Layer Extraction of Ice Radar Topological Sequences
Abstract
:1. Introduction
1.1. Background
1.2. Motivation
1.3. Contribution
- (1)
- An efficient MsANet is proposed, with approximately 12 million (M) fewer parameters than the state-of-the-art DL method, using an improved 3D convolution network as the backbone, to realize end-to-end estimation of ice layers in radar tomographic sequences without manually extracting complex features and which is easily migrated to other types of datasets.
- (2)
- A multi-scale module, which can supplement the modeling ability of networks, is introduced to the deep network to capture and express a wider range of sequence information of radar tomographic slices, to use more useful information and better match the ground truth.
- (3)
- An improved 3D attention module is introduced in the proposed network, which is first used in radar tomographic sequences. It is combined with a multi-scale module to form an attention multi-scale module that can adaptively distribute weights to key boundary locations with global context and learn critical features, so that prediction results are more consistent with the ground truth, without the need for other networks for further feature extraction and reasoning.
2. Related Work
3. Materials and Methods
3.1. Data and Data Collection Process
3.2. Network Framework
3.3. Architecture of C3D-M
3.4. Multi-Scale Module
3.5. 3D Attention Module
4. Experiment and Discussion
4.1. Datasets and Settings
4.2. Ablation Experiments
4.2.1. Choice of the Backbone Network
4.2.2. Multi-Scale Module
4.2.3. 3D Attention Module
4.3. Comparison and Discussion with Other Methods
4.4. Visualization of Results
4.5. Extended Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mackay, A. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (ICPP AR4). J. Environ. Qual. 2008, 37, 2407. [Google Scholar] [CrossRef]
- Randolph Glacier Inventory 6.0. Available online: http://www.glims.org/RGI/randolph60.html (accessed on 21 April 2021).
- Gilbert, A.; Flowers, G.E. Sensitivity of Barnes Ice Cap, Baffin Island, Canada, to climate state and internal dynamics. J. Geophys. Res. Earth Surf. 2016, 121, 1516–1539. [Google Scholar] [CrossRef] [Green Version]
- England, J.; Smith, I.R. The last glaciation of east-central ellesmere island, nunavut: Ice dynamics, deglacial chronology, and sea level change. Can. J. Earth Sci. 2000, 37, 1355–1371. [Google Scholar] [CrossRef]
- DeFoor, W.; Person, M. Ice sheet–derived submarine groundwater discharge on Greenland's continental shelf. Water Resour. Res. 2011, 47, W07549. [Google Scholar] [CrossRef]
- Nick, F.; Vieli, A. Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat. Geosci. 2009, 2, 110–114. [Google Scholar] [CrossRef]
- Fretwell, P.; Pritchard, H.D. Bedmap2: Improved Ice Bed, Surface and Thickness Datasets for Antarctica. Cryosphere 2013, 7, 375–393. [Google Scholar] [CrossRef] [Green Version]
- Morlighem, M.; Williams, C.N. BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett. 2017, 44, 11051–11061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltrami, H.; Taylor, A.E. Records of climatic changes in the Canadian Arctic: Towards calibrating oxygen isotope data with geo-thermal data, Global Planet. Change 1995, 11, 127–138. [Google Scholar]
- Grootes, P.M.; Stuiver, M. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 1993, 366, 552–554. [Google Scholar] [CrossRef]
- Souney, J.M.; Twickler, M.S. Core handling, transportation and processing for the south pole ice core (spicecore) project. Ann. Glaciol. 2020, 62, 118–130. [Google Scholar] [CrossRef]
- Bogorodsky, V.V.; Bentley, C.R. Radioglaciology, 1st ed.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1985; pp. 8–10. [Google Scholar]
- Nixdorf, U.; Steinhage, D.; Meyer, U. The newly developed airborne radio-echo sounding system of the awi as a glaciological tool. Ann. Glaciol. 1999, 29, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Conway, H.; Hall, B.L. Past and Future Grounding-Line Retreat of the West Antarctic Ice Sheet. Science 1999, 286, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Bamber, J.L.; Layberry, R.L. A new ice thickness and bed data set for the Greenland ice sheet. J. Geophys. Res. 2001, 106, 33773–33780. [Google Scholar] [CrossRef]
- Anschütz, H.; Sinisalo, A. Variation of accumulation rates over the last eight centuries on the East Antarctic Plateau derived from volcanic signals in ice cores. J. Geophys. Res. 2011, 116, D20103. [Google Scholar] [CrossRef] [Green Version]
- Freeman, G.J.; Bovik, A.C.; Holt, J.W. Automated detection of near surface Martian ice layers in orbital radar data. In Proceedings of the 2010 IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI), Austin, TX, USA, 23–25 May 2010; IEEE: New York, NY, USA. [Google Scholar]
- Mitchell, J.E.; Crandall, D.J.; Fox, G.C. A semi-automatic approach for estimating near surface internal layers from snow radar imagery. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, VIC, Australia, 21–26 July 2013; IEEE: New York, NY, USA. [Google Scholar]
- Gifford, C.M.; Finyom, G. Automated Polar Ice Thickness Estimation from Radar Imagery. IEEE Trans. Image Process. 2010, 19, 2456–2469. [Google Scholar] [CrossRef] [PubMed]
- Crandall, D.J.; Fox, G.C.; Paden, J.D. Layer-finding in radar echograms using probabilistic graphical models. In Proceedings of the 21st International Conference on Pattern Recognition (ICPR), Tsukuba, Japan, 11–15 November 2012; IEEE: New York, NY, USA, 2012. [Google Scholar]
- Lee., S.; Mitchell, J.; Crandall, D.J. Estimating bedrock and surface layer boundaries and confidence intervals in ice sheet radar imagery using MCMC. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; IEEE: New York, NY, USA. [Google Scholar]
- Xu, M.; Crandall, D.J.; Fox, G.C. Automatic estimation of ice bottom surfaces from radar imagery. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; IEEE: New York, NY, USA. [Google Scholar]
- Berger, V.; Xu, M. Automated Ice-Bottom Tracking of 2D and 3D Ice Radar Imagery Using Viterbi and TRW-S. IEEE JSTARS 2019, 12, 3272–3285. [Google Scholar] [CrossRef]
- Al-Ibadi, M.; Sprick, J.; Athinarapu, S. DEM extraction of the basal topography of the Canadian archipelago ICE caps via 2D automated layer-tracker. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; IEEE: New York, NY, USA. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: New York, NY, USA. [Google Scholar]
- He, M.; Li, B.; Chen, H. Multi-scale 3D deep convolutional neural network for hyperspectral image classification. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; IEEE: New York, NY, USA. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Springer: Cham, Switzerland. [Google Scholar]
- Song, L.; Zhang, S.; Yu, G.; Sun, H. TACNet: Transition-Aware Context Network for Spatio-Temporal Action Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; IEEE: New York, NY, USA. [Google Scholar]
- Zhang, W.; He, X. A Multi-Scale Spatial-Temporal Attention Model for Person Re-Identification in Videos. IEEE Trans. Image Process. 2020, 29, 3365–3373. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Ba, J.L.; Ryan, K. Show, attend and tell: Neural image caption generation with visual attention. In Proceedings of the 32nd International Conference on International Conference on Machine Learning (ICML), Lille, France, 6–11 July 2015. [Google Scholar]
- Yang, X.; Zhang, B.; Dong, Y. Spatiotemporal Attention on Sliced Parts for Video-based Person Re-identification. In Proceedings of the 2018 IEEE Visual Communications and Image Processing (VCIP), Taichung, Taiwan, 9–12 December 2018. [Google Scholar]
- Woo, S.; Park, J.; Lee, J. Cbam: Convolutional block attention module. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Springer: Cham, Switzerland. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A. Non-local Neural Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H. Dual Attention Network for Scene Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3141–3149. [Google Scholar]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder—Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078. Available online: https://arxiv.org/pdf/1406.1078v3.pdf (accessed on 12 March 2020).
- Kamangir, H.; Rahnemoonfar, M.; Dobbs, D. Deep Hybrid Wavelet Network for Ice Boundary Detection in Radra Imagery. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; IEEE: New York, NY, USA. [Google Scholar]
- Cai, Y.H.; Hu, S.B. End-to-end classification network for ice sheet subsurface targets in radar imagery. Appl. Sci. 2020, 10, 2501. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Fan, C.; Paden, J.D. Multi-Task Spatiotemporal Neural Networks for Structured Surface Reconstruction. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; IEEE: New York, NY, USA, 2018. [Google Scholar]
- Tran, D.; Bourdev, L.; Fergus, R. Learning Spatiotemporal Features with 3D Convolutional Networks. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Spain, 7–13 December 2015; IEEE: New York, NY, USA, 2015; pp. 4489–4497. [Google Scholar]
- Paden, J.; Akins, T. Ice-Sheet Bed 3-D Tomography. J. Glaciol. 2010, 56, 3–11. [Google Scholar] [CrossRef] [Green Version]
- CReSIS. Available online: http://data.cresis.ku.edu/ (accessed on 12 December 2020).
Parameter | Value |
---|---|
Radar carrier-frequency | 195 MHz |
Signal bandwidth | 30 MHz |
Transmit pulse duration | 3 μs |
TX antennas | 7 Dipoles |
RX antennas | 15 Dipoles |
Pulse repetition frequency (PRF) | 12 kHz |
Effective storage PRF 3 beams multiplexed, 13 stacked pulses | 307 Hz |
Average Mean Error (Pixels) | Fc 128-512 Fc 512-64 | Fc 128-256 Fc 256-64 | Fc 128-128 Fc 128-64 | Conv 1 × 4 × 4 Fc 512-64 | Conv 1 × 4 × 4 Fc 256-64 | Conv 1 × 4 × 4 Fc 128-64 |
---|---|---|---|---|---|---|
Air | 6.51 | 7.04 | 6.95 | 5.78 | 6.15 | 6.6 |
Bed | 16.16 | 16.85 | 17.51 | 15.21 | 14.81 | 16.59 |
Sum | 22.67 | 23.89 | 24.46 | 20.99 | 20.96 | 23.19 |
Method | 1 × 1 × 1 | 3 × 3 × 3 | 5 × 3 × 3 | Average Mean Error (Pixels) | ||
---|---|---|---|---|---|---|
Air | Bed | Sum | ||||
Baseline | 6.15 | 14.81 | 20.96 | |||
Multi-scale | √ | √ | 6.3 | 14.71 | 21.01 | |
√ | √ | 5.96 | 14.69 | 20.65 | ||
√ | √ | 6.22 | 14.69 | 20.91 | ||
√ | √ | √ | 6.04 | 14.45 | 20.49 |
Method | Average Mean Error (Pixels) | ||
---|---|---|---|
Air | Bed | Sum | |
Baseline | 5.53 | 14.46 | 20.15 |
3-branch Msk | 5.59 | 14.00 | 19.59 |
4-branch Msk | 5.64 | 13.89 | 19.53 |
Method | Average Mean Error (Pixels) | |||||
---|---|---|---|---|---|---|
PAM3D | CAM3D | Block 3 | Block 4 | Air | Bed | Sum |
6.04 | 14.45 | 20.49 | ||||
√ | √ | 5.84 | 14.12 | 19.96 | ||
√ | √ | 5.97 | 14.29 | 20.26 | ||
√ | √ | √ | 5.63 | 14.31 | 19.94 | |
√ | √ | √ | 5.62 | 14.11 | 19.73 | |
√ | √ | √ | √ | 5.43 | 14.23 | 19.66 |
C1C2C6C7 | C8 | Average Mean Error (Pixels) | ||
---|---|---|---|---|
Air | Bed | Sum | ||
5.85 | 13.95 | 19.8 | ||
√ | 5.66 | 13.4 | 19.06 | |
√ | √ | 5.43 | 14.23 | 19.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Liu, D.; Xie, J.; Yang, J.; Cui, X.; Lang, S. Attention Multi-Scale Network for Automatic Layer Extraction of Ice Radar Topological Sequences. Remote Sens. 2021, 13, 2425. https://doi.org/10.3390/rs13122425
Cai Y, Liu D, Xie J, Yang J, Cui X, Lang S. Attention Multi-Scale Network for Automatic Layer Extraction of Ice Radar Topological Sequences. Remote Sensing. 2021; 13(12):2425. https://doi.org/10.3390/rs13122425
Chicago/Turabian StyleCai, Yiheng, Dan Liu, Jin Xie, Jingxian Yang, Xiangbin Cui, and Shinan Lang. 2021. "Attention Multi-Scale Network for Automatic Layer Extraction of Ice Radar Topological Sequences" Remote Sensing 13, no. 12: 2425. https://doi.org/10.3390/rs13122425
APA StyleCai, Y., Liu, D., Xie, J., Yang, J., Cui, X., & Lang, S. (2021). Attention Multi-Scale Network for Automatic Layer Extraction of Ice Radar Topological Sequences. Remote Sensing, 13(12), 2425. https://doi.org/10.3390/rs13122425