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Abstract: The Gravity Recovery and Climate Experiment (GRACE) satellite provides time-varying
gravity field models that can detect total water storage change (TWSC) from April 2002 to June 2017,
and its second-generation satellite, GRACE Follow-On (GRACE-FO), provides models from June
2018, so there is a one year gap. Swarm satellites are equipped with Global Positioning System
(GPS) receivers, which can be used to recover the Earth’s time-varying gravitational field. Swarm’s
time-varying gravitational field models (from December 2013 to June 2018) were solved by the
International Combination Service for Time-variable Gravity Field Solutions (COST-G) and the
Astronomical Institute of the Czech Academy of Sciences (ASI). On a timely scale, Swarm has the
potential to fill the gap between the two generations of GRACE satellites. In this paper, using
26 global watersheds as the study area, first, we explored the optimal data processing strategy
for Swarm and then obtained the Swarm-TWSC of each watershed based on the optimal results.
Second, we evaluated Swarm’s accuracy in detecting regional water storage variations, analyzed the
reasons for its superior and inferior performance in different regions, and systematically explored
its potential in detecting terrestrial water storage changes in land areas. Finally, we constructed the
time series of terrestrial water storage changes from 2002 to 2019 by combining GRACE, Swarm, and
GRACE-FO for the Amazon, Volga, and Zambezi Basins. The results show that the optimal data
processing strategy of Swarm is different from that of GRACE. The optimal results of Swarm-TWSC
were explored in 26 watersheds worldwide; its accuracy is related to the area size, runoff volume,
total annual mass change, and instantaneous mass change of the watershed itself, among which
the latter is the main factor affecting Swarm-TWSC. Knowledge of the Swarm-TWSC of 26 basins
constructed in this paper is important to study long-term water storage changes in basins.

Keywords: GRACE; Swarm; GRACE follow on; gap; TWSC; global basins

1. Introduction

The Gravity Recovery and Climate Experiment (GRACE) satellite is the first satellite
mission dedicated to Earth gravity sounding, launched by the National Aeronautics and
Space Administration (NASA) and the German Aerospace Center (DLR). In the decade
since its launch in March 2002, GRACE has been widely used to detect Earth-mass transport,
including total water storage change (TWSC) [1,2], changes in the Antarctic and Greenland
ice caps [3,4], and global sea-level changes [5,6], making important contributions to Earth
science-related research and functioning as an important tool for estimating changes in
terrestrial water reserves. However, in September 2017, one of the batteries in the GRACE-2
satellite failed, and its mission was successfully ended in mid-October 2017 [7,8]. Now, the
GRACE time-varying gravity field model provided by the three major international centers,
the Jet Propulsion Laboratory (JPL), the University of Texas Space Research Institute (CSR),
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and the German Geosciences Research Center (GFZ), is currently up to date only as of
June 2017. The successor to the GRACE mission, GRACE Follow-On (GRACE-FO), was
successfully launched on 22 May 2018 in California, USA, and its measurement principle
is similar to that of GRACE, so its model can be used to continue the study of TWSC.
However, the GRACE-FO time-varying gravity field model data are now published from
June 2018, which means that there is a one-year gap between GRACE and GRACE-FO, so,
valid and reliable data need to be found to fill this gap and ensure the consistency of the
time-varying gravity field information time series.

On 22 November 2013, the European Space Agency (ESA) successfully launched an
Earth observation satellite constellation, Swarm, consisting of three satellites, similar to
the Challenging Mini-satellite Payload (CHAMP) mission. Although its mission is mainly
to monitor the Earth’s magnetic field variations, it can also be applied to study the time-
varying gravity field because it carries high-precision Global Navigation Satellite System
(GNSS) receivers and other key gravity detection equipment, thus filling the observation
gap between GRACE and GRACE-FO [9]. The published Swarm time-varying gravity field
models are the model from December 2013 to June 2019, solved by COST-G, and the model
from December 2013 to October 2018, solved by ASI. The Swarm of both institutions allows
the continuity of GRACE and GRACE-FO observations on a time scale, so it is particularly
important to determine the feasibility and effectiveness of the Swarm-based model to
recover changes in terrestrial water storage. In recent years, several scholars have used the
Swarm time-varying gravity field model to detect water storage changes in basins. Lück
et al. (2018) studied the possibility of Swarm bridging GRACE and GRACE-FO, and the
possibility of using Swarm time-varying gravity field with significantly lower resolution
to replace GRACE time-varying gravity field in missing months [10]. Meyer et al. (2019)
provided a long-term time series of monthly gravity field solutions by combining laser
satellite data, GPS and K/Ka band observations of GRACE mission and GPS observations
of three Swarm satellites. In their study, the lunar gravity field from Swarm was used to
fill the gap between GRACE and GRACE-FO tasks [11]. Li et al. (2019) used the Swarm
time-varying gravity field to estimate terrestrial water storage changes in the Amazon
Basin and the water storage deficit caused by the 2015/2016 drought event. Comparing
GRACE data, hydrological models, and hydrological station data, they found that the
Swarm results were in good agreement with GRACE, hydrological models, and virtual
hydrological station estimates, providing a new and effective way to detect terrestrial water
storage changes and drought events. It also has the potential to replace the GRACE satellite
to detect extreme droughts and floods in the Amazon basin [12]. Cui et al. (2020) compared
Swarm with the GRACE/GRACE-FO models in terms of model accuracy, observation
noise, and inverted TWSC and the results verified that Swarm time-variable gravity field
has the potential to extract TWSC signals in the Amazon River Basin and can serve as a
complement to GRACE/GRACE-FO data for detecting TWSC in local areas [13]. Forootan
et al. (2020) applied time-variable gravity fields (2013 onward) from the Swarm Earth
explorer mission with a low spatial resolution of∼1500 km. A novel iterative reconstruction
approach was formulated based on independent component analysis (ICA) combining
GRACE and Swarm fields. The reconstructed TWSC fields of 2003–2018 were compared
with a commonly applied reconstruction technique and GRACE-FO TWSC fields, and
the results indicated considerable noise reduction and improved long-term consistency of
the iterative ICA reconstruction technique. These models were applied to evaluate trends
and seasonal mass changes (for 2003–2018) within the world’s 33 largest river basins [14].
However, all the research does not define the best Swarm data processing and does not
estimate the potential of Swarm worldly. Therefore, how to preserve the original Swarm
signal as much as possible and how to better detect water storage changes in more basins
will be the focus of ongoing Swarm-based research.

This paper targets 26 regions worldwide (see Figure 1 and Table 1) and explores
regional water storage change time series between December 2013 and June 2017 from
two institutions (ASI and COST-G) under different treatment strategies by computing the
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results of GRACE (GRACE-TWSC) and comparing them with the limits of Swarm in water
storage detection and the optimal processing strategy. Finally, the TWSC of the Amazon,
Volga, and Zambezi Basins is constructed to demonstrate the potential of Swarm to fill the
gap between the two generations of GRACE missions.

Figure 1. Location map of 26 regions worldwide (The boundary file is from http://hydroweb.theia-
land.fr/?lang=en&basin, accessed on 5 July 2021).

Table 1. The information of the 26 regions.

NO Basin Location NO Basin Location NO Basin Location

1 Yukon North America 10 Nile Africa 19 Lena Asia
2 Mackenzie North America 11 Congo Africa 20 Kolyma Asia
3 Nelson North America 12 Zambezi Africa 21 Amur Asia
4 Mississippi North America 13 Orange Africa 22 Huang He Asia
5 St Lawrence North America 14 Danube Europe 23 Yangtze Asia
6 Amazon South America 15 Euphrates and Tigris West Asia 24 Ganges and Brahmaputra Asia
7 Parana South America 16 Volga Asia 25 Indus Asia
8 Niger Africa 17 Ob Asia 26 Murray Darling Australia
9 Lake Chad Basin Africa 18 Yenisey Asia

2. Materials and Methods
2.1. Materials
2.1.1. GRACE

As discussed in Section 1, the first objective of this research is to get the GRACE-TWSC
of 26 basins so that we can determine the optimal data processing strategy for Swarm. In
this case, we used the RL05 monthly time-variable gravity models with a maximum order of
60, which were provided by CSR from April 2002 to July 2015, the German Research Center
for Geosciences (GFZ) from April 2002 to March 2016, and the Jet Propulsion Laboratory
(JPL) from April 2002 to March 2016. We also used the RL06 time-variable gravity models,
provided by CSR from April 2002 to August 2016 and JPL from April 2002 to August 2016.
All postprocessing methods of the models can be seen in Section 2.2.1; through them, we
can get the monthly 1◦ GRACE-TWSC grid [15]. In addition, we used the RL05 monthly
mass concentration blocks (mascons) [16] from April 2002 to June 2017, developed by
CSR and JPL, as the original TWSC data to be extended. The CSR RL05 mascons, with a
spatial resolution of 0.5◦, are provided in equivalent water depth (cm). These solutions
are derived using only GRACE measurements, such that the model is not influenced by
external geophysical models or data. Moreover, the time-variable regularization applied
in this model ensures that future solutions are not influenced by measurements of past
geophysical signals. This means that we no longer have to apply postprocessing to the
GRACE spherical harmonic solutions or empirical scaling factors, and we can apply these
solutions as is [17].

http://hydroweb.theia-land.fr/?lang=en&basin
http://hydroweb.theia-land.fr/?lang=en&basin
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2.1.2. GRACE Follow-On

The GRACE Follow-On (GRACE-FO) mission has been in operation since May 2018.
Its temporal gravity field model, from May 2018 to June 2019, derived by the CSR, was
employed to estimate the GRACE-FO-TWSC over the basins in this research. More postpro-
cessing details on GRACE-FO, which is similar to GRACE, can be found in Section 2.2.1.

2.1.3. Swarm

The Swarm mission provides another alternative to infer the temporal gravity field
model [10], which could also be used to assess TWSC in the basins of this research. In this
study, the Swarm gravity field models between December 2013 and June 2019 from the ASI,
named ASISwarm, and from COST-G, named COSTSwarm [13], with a maximum degree
of 40, were used to estimate Swarm-TWSC. More details on the Swarm methods can be
seen in Section 2.2.3; through them, we can get the monthly 1◦ Swarm-TWSC grid.

2.2. Methods
2.2.1. Estimation of TWSC Using GRACE and GRACE-FO Gravity Field Models

The specific steps of GRACE and GRACE-FO were as follows: First, the C2,0 term of the
GRACE time-variable gravity field models was replaced by the satellite laser ranging (SLR)
observation data to improve the accuracy of the second order of the spherical harmonic
coefficients [18]. Second, the glacial isostatic adjustment (GIA) was removed using the
ICE-5G (VM2) model [19]. Third, the north–south strips and high-degree noises [20] in
the GRACE and GRACE-FO monthly time-variable gravity field models were removed by
de-stripping (P5M8) and 300 km Gaussian filtering [21]. Then, the GRACE and GRACE-FO
TWSC in the basins was calculated using the following formula:

∆h(λ, ϕ, t) =
aρave

3ρw

L

∑
l=0

2l + 1
1 + kl

l

∑
m=0

Plm(sin ϕ)[∆Clm(t) cos mλ + ∆Slm(t) sin mλ] (1)

where a is the average radius of the Earth, ρave is the average density of the Earth, ρw
is the density of water, λ is the longitude of the Earth, ϕ is the latitude of the Earth, kl
represents the load Love numbers, l is the order of the spherical harmonic coefficient, m
is the degree of the spherical harmonic coefficient, L is the maximum order of the model,
Plm is the normalized Legendre function, and ∆Clm(t) and ∆Slm(t) are spherical harmonic
coefficients of the residual gravity field, which can be obtained from the following formula:

∆Clm(t) = Clm(t)− Cmean
lm

∆Slm(t) = Slm(t)− Smean
lm

(2)

where Clm and Slm are normalized spherical harmonic coefficients, Cmean
lm and Smean

lm are the
average values of spherical harmonic coefficients, and t is the time in months.

Although some errors of the original model data were eliminated by filtering, the real
signal was also weakened. Therefore, the scale method was used to recover the signal
attenuation caused by filtering using the following formula:

M = ∑ (∆ST − k∆SF)
2 (3)

where ∆ST is the (Global Land Data Assimilation System) GLDAS TWSC time variance
from the GLDAS model, ∆SF is the GLDAS TWSC time variance obtained using the
spherical harmonic coefficient calculated by GLDAS after different filtering strategies, and
k is the scale factor of M calculated from the least square. Thus, the time-varying sequence
processed by the same filtering method is multiplied by k, resulting in the recovered time
variance of TWSC.
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2.2.2. Estimation of Average GRACE-TWSC Using Three-Cornered Hat (TCH)

Nowadays, there is no rigorous comparison method to prove which GRACE model is
the most accurate. Therefore, in order to obtain the most information possible about water
storage changes detected by these models, we use the three-cornered hat (TCH) method to
process the GRACE-TWSC of each model, and use the results as water storage changes
detected by GRACE [22].

In the TCH method, it is assumed that there are different observation sequences with
the number N, represented by {Xi}i=1,2,...,N , with i corresponding to different data. In this
research, there are seven GRACE-TWSC time series, so N = 7. Each observation sequence
can be expressed as the following formula:

Xi = Xture + εi, ∀i = 1, 2, . . . , N (4)

where Xture is the real signal and εi is the error of the observation sequence of number i.
Because the true value cannot be obtained, any observation sequence can be selected as the
reference value. The difference sequence between the other observation sequences and the
reference value is obtained as the following formula:

yi = xi − xR = εi − εR, i = 1, 2, . . . , N − 1 (5)

where xR is the arbitrarily selected reference time series. In this paper, the TWSC estimated
by CSR mascons is selected as the reference field. It should be pointed out that the
uncertainty estimation of each time-varying gravity field model will not change with the
selection of reference field.

By using the TCH method, the uncertainty of TWSC estimated by the time-varying
gravity field model of each mechanism can be obtained, and the weighted average result
of TWSC can be obtained by calculating the corresponding weights with the following
formula:

TWSweighted_mean =
N

∑
i

wiTWSi, N = 1, 2, 3 . . . (6)

where TWSi is the TWSC from the time-varying gravity field by each mechanism, and wi
is the weight of uncertainty estimation, which can be obtained from the following formula:

wi =
rii

N
∑

j=1
rjj

(7)

2.2.3. The Optimal Postprocessing Method of Swarm-TWSC

At present, there is no systematic research on how to get the optimal postprocessing
strategy of Swarm-TWSC. Based on this, according to the experience of the GRACE pro-
cessing strategy, we explored the optimal processing method from four factors: filtering
radius, selected order, coefficient substitution, and filtering method.

The Optimal Filtering Radius

In order to explore the optimal filtering radius for Swarm to estimate water reserves in
land area, the filtering radius is set as 400, 600, 800, and 1000 km according to the experience
of the GRACE processing strategy. In order to keep the mathematical analysis principle of
a single variable and retain the original information of the Swarm time-varying gravity
field as much as possible, the coefficients of the gravity field are not replaced and other
methods of filtering are not carried out. The truncation order is 40. ASISwarm-TWSC
and COSTSwarm-TWSC with different filtering radii were obtained and compared with
GRACE-TWSC. In order to quantify the accuracy of Swarm-TWSC, we calculated the
annual trends of Swarm-TWSC and GRACE-TWSC, as well as the correlation coefficient
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and root mean square error between them, taking watershed 1 as an example (see Figure 2
and Table 2).

Figure 2. The Swarm-TWSC time series and the long-time trend with different filtering radius and
GRACE-TWSC’s in Basin 1. The left one is Swarm from ASI and the right one is Swarm from COST.

Table 2. The results of Swarm-TWSC of different filtering radius compared with GRACE-TWSC in Basin 1.

Model ASI COST
Filtering Radius (km) 400 600 800 1000 400 600 800 1000

Trend (−1.69) −9.83 −7.99 −5.09 −3.3 −10.95 −7.21 −4.25 −2.62
Correlation Coefficient (%) 28.93 48.35 59.2 63.84 28.7 53.44 66.44 68.4

RMSE (cm) 37.66 18.07 11.22 8.71 32.44 15.23 10.17 8.37

The Optimal Order Selection

The highest order of the Swarm time-varying gravity field is 40. In order to explore
the optimal truncation order to estimate water reserves in land area, the truncation order is
set to 10, 20, 30, and 40. In order to keep the mathematical analysis principle of a single
variable and retain the original information of the Swarm time-varying gravity field as
much as possible, the coefficients of the gravity field are not replaced and other methods of
filtering are not carried out. The filtering radius is set to 600 km. As shown in the figure
below, ASISwarm TWSC and COSTSwarm TWSC with different orders are obtained and
compared with GRACE-TWSC. In order to quantify the accuracy of Swarm-TWSC, we also
calculate the annual trends of Swarm-TWSC and GRACE-TWSC, as well as the correlation
coefficient and root mean square error between them, taking watershed 1 as an example
(see Figure 3 and Table 3).
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Figure 3. The Swarm-TWSC time series and the long-time trend with different order and GRACE-
TWSC’s in Basin 1. The left one is Swarm from ASI and the right one is Swarm from COST.

Table 3. The results of Swarm-TWSC of different order compared with GRACE-TWSC in Basin 1.

Model ASI COST
Order 10 20 30 40 10 20 30 40

Trend (−1.69) −1.53 −7.25 −8.53 −7.99 −1.06 −6.11 −7.41 −7.21
Correlation Coefficient (%) 64.13 50.4 50.22 48.35 61.43 62.47 55.93 53.44

RMSE(cm) 8.85 15.55 17.83 18.07 8.18 13.29 14.83 15.23

The Optimal Coefficient Substitution

During data processing to detect regional water storage changes with the GRACE
time-varying gravity field, most scholars found that when the C2,0 term provided by SLR
was used to replace the original C2,0 term of the GRACE time-varying gravity field, the
accuracy of GRACE-TWSC was improved. Both Swarm and GRACE mission satellites are
gravity satellites, which can provide monthly resolution gravity field models and have
similar components. Based on this, it is necessary to analyze the coefficient replacement
strategy of the Swarm time-varying gravity field when exploring its potential to detect
changes in regional water reserves and the accuracy of Swarm-TWSC.

In order to explore the optimal coefficient replacement strategy for Swarm to estimate
land water reserves, we had to choose whether to replace the C1,0 coefficient or the C2,0
coefficient or not make any coefficient replacement. In order to keep the mathematical
analysis principle of a single variable and the original information of the Swarm time-
varying gravity field as much as possible, other variables were set as truncation order
of 40, no other filtering method was used, and the filtering radius was set as 600 km.
As shown in the figure below, ASISwarm-TWSC and COSTSwarm-TWSC with different
coefficient replacement strategies were obtained and compared with GRACE-TWSC. In
order to quantify the accuracy of Swarm-TWSC, we also calculated the annual trends of
Swarm-TWSC and GRACE-TWSC, as well as the correlation coefficient and root mean
square error between them, taking watershed 1 as an example (see Figure 4 and Table 4).
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Figure 4. The Swarm-TWSC time series and the long-time trend with different coefficients and
GRACE-TWSC’s in Basin 1. The left one is Swarm from ASI and the right one is Swarm from COST.

Table 4. The results of Swarm-TWSC of different coefficients compared with GRACE-TWSC in
Basin 1.

Model ASI COST
Coefficient C1,0 C2,0 NO C1,0 C2,0 NO

Trend (−1.69) −7.79 14.41 −7.99 −7.01 14.58 −7.21
Correlation Coefficient (%) 49.07 −5.19 48.35 54.71 −11.79 53.44

RMSE(cm) 18.03 28.52 18.07 15.07 24.94 15.23

The Optimal Filtering Method

During data processing to detect changes of regional water reserves by the GRACE
time-varying gravity field model, due to the tracking mode and trajectory of the GRACE
mission satellite, most scholars have found that GRACE-TWSC produces an obvious band
error by using only a Gaussian filter, so the anisotropic filter was added to remove the
band error. The Swarm satellite trajectory does not cover the whole world. Based on this,
it is necessary to analyze whether Gaussian filtering is selected or not when exploring
the potential of the Swarm time-varying gravity field to detect changes in regional water
reserves and the accuracy of Swarm-TWSC.

In order to explore the optimal filtering method for the Swarm to estimate land water
reserves, two typical non-Gaussian filtering methods, p4m15 and Swen, were selected
according to the maximum order of the Swarm model. In the comparison strategy, adding
p4m15, Swen, and only Gaussian filter was set based on the Gaussian filter. In order to
keep the mathematical analysis principle of a single variable and the original information
of the Swarm time-varying gravity field as much as possible, other variables were set as
truncation order of 40, without replacing the coefficient of the Swarm time-varying gravity
field model, and the filtering radius was set as 600 km. As shown in the figure below,
ASISwarm-TWSC and COSTSwarm-TWSC with different filtering methods were obtained
and compared with GRACE-TWSC. In order to quantify the accuracy of Swarm-TWSC,
we also calculated the annual trends of Swarm-TWSC and GRACE-TWSC, as well as the
correlation coefficient and root mean square error between them, taking watershed 1 as an
example (see Figure 5 and Table 5).
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Figure 5. The Swarm-TWSC time series and the long-time trend with different filtering methods and
GRACE-TWSC’s in Basin 1. The left one is Swarm from ASI and the right one is Swarm from COST.

Table 5. The results of Swarm-TWSC of different filtering methods compared with GRACE-TWSC in
Basin 1.

Model ASI COST
Filtering Method P4M15 SWEN NO P4M15 SWEN NO

Trend (−1.69) −4.86 −20.24 −7.99 −3.41 −15.31 −7.21
Correlation Coefficient (%) 50.35 34.42 48.35 54.84 26.81 53.44

RMSE(cm) 14.85 55.25 18.07 12.93 38.24 15.23

To sum up the above contents, as shown in Figure 6, firstly, using three kinds of
GRACE models and one kind of GRACE-FO model to get each GRACE-TWSC or GFO-
TWSC of 26 Watersheds, then, based on the TCH method, we get the average GRACE-
TWSC. Secondly, by comparing with GRACE-TWSC, get the optimal postprocessing
method obtained by two Swarm models with different filtering radius, different order
selection, different coefficient substitution and different filtering methods in 26 basins. Fi-
nally, combined with the detection results of GRACE, Swarm and GRACE-FO, a long-time
continuous water storage change time series is constructed.

Figure 6. The processing flow of this research. Firstly, get the GRACE-TWSC and GRACE-FO-TWSC,
secondly, based on GRACE-TWSC, compared different results from different Swarm models and
different postprocessing methods, get the Optimal Swarm-TWSC, thirdly, combined GRACE-TWSC,
Swarm-TWSC and GRACE-FO-TWSC, get the GRACE-Swarm-GFO-TWSC.
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3. Results
3.1. The Optimal Postprocessing Method of Swarm-TWSC
3.1.1. The Optimal Filtering Radius

Based on the methods mentioned above, we can get the Swarm-TWSC accuracy with
different filtering radius in 26 basins. To get the optimal filtering radius of Swarm-TWSC,
we summed the average accuracy of Swarm-TWSC with different filtering radius in 26
basins (Table 6) and the optimal filtering radius of each basin (Table 7).

Table 6. The average results of Swarm-TWSC of different filtering radius compared with GRACE-TWSC in 26 basins.

Model ASI COST
Filtering Radius (km) 400 600 800 1000 400 600 800 1000

Correlation Coefficient (%) 21.92 34.13 39.99 43.85 26.96 39.36 44.45 46.36
RMSE (cm) 25.72 12.14 8.26 6.67 19.91 10.24 7.38 6.17

Table 7. The results of each basin about the optimal filtering radius.

Optimal Basins

COST-1000 1, 2, 3, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24
ASI-1000 4, 5, 23, 25, 26
COST-800 12

By comparing the correlation coefficient and root mean square error between Swarm-
TWSC and GRACE-TWSC in 26 watersheds in the world with different filtering radius, and
combining the average results and optimal radius statistics of all watersheds (see Tables 6
and 7), it can be seen that the ASI and COST models have the best performance when the
filtering radius is 1000 km. Comparing the two models, COST has better comprehensive
performance and the COST-1000 filtering radius processing is the best. The strategy
performs best in most regions, and is similar to the optimal strategy in its non-optimal
regions. Therefore, in this paper, the COST model with a 1000 km filtering radius was used
to evaluate the selection of optimal filtering radius for the Swarm time-varying gravity
field model to detect changes in water reserves in land areas.

3.1.2. The Optimal Order Selection

Based on the methods mentioned above, we can get the Swarm-TWSC accuracy with
different order selection in 26 basins. To get the optimal order selection of Swarm-TWSC, we
summed the average accuracy of Swarm-TWSC with different order selection in 26 basins
(Table 8) and the optimal order selection of each basin (Table 9).

Table 8. The average results of Swarm-TWSC of different order compared with GRACE-TWSC in 26 basins.

Model ASI COST
Order 10 20 30 40 10 20 30 40

Correlation Coefficient (%) 44.32 32.31 34.92 34.28 45.81 38.12 40.16 39.37
RMSE (cm) 7.12 11.48 12.10 12.14 6.68 9.90 10.27 10.24

Table 9. The results of each basin about the optimal order.

Optimal Basins

ASI-10 1, 4, 11, 23
COST-10 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26

Two kinds of Swarm models with different truncation orders were selected to calculate
Swarm-TWSC of 26 watersheds in the world, and the correlation coefficients and root mean
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square errors between them and GRACE-TWSC were compared. Combining the average
results and optimal order statistics of all watersheds (see Tables 8 and 9), it can be seen that
ASI and COST models performed best when the truncation order was 10. Comparing the
two models, COST performs better than ASI in most regions, and is similar to ASI in its
non-optimal regions. Therefore, in this paper, the best order of the Swarm time-varying
gravity model is the 10 order COST model.

3.1.3. The Optimal Coefficient Substitution

Based on the methods mentioned above, we can get the Swarm-TWSC accuracy with
different coefficient substitution in 26 basins. To get the optimal coefficient substitution of
Swarm-TWSC, we summed the average accuracy of Swarm-TWSC with different coefficient
substitution in 26 basins (Table 10) and the optimal coefficient substitution of each basin
(Table 11).

Table 10. The average results of Swarm-TWSC of different coefficients compared with GRACE-TWSC
in 26 basins.

Model ASI COST
Coefficient C1,0 C2,0 NO C1,0 C2,0 NO

Correlation Coefficient (%) 34.60 17.24 34.13 39.73 17.61 39.37
RMSE(cm) 12.12 19.29 12.14 10.23 18.31 10.24

Table 11. The results of each basin about the optimal coefficient.

Optimal Basins

COST-C1,0 1, 2, 3, 5, 12, 13, 15, 16, 17, 18, 19, 20
COST-NO 4, 6, 7, 8, 9, 10, 11, 14, 21, 22, 23, 24, 25, 26

By selecting different SLR coefficients to replace the original model coefficients, we
calculated the Swarm-TWSC of two Swarm models to detect changes of water reserves
in 26 basins around the world, and compared their correlation coefficients and root mean
square errors with GRACE-TWSC. Combining the average results of all basins and the
statistics of the optimal coefficient replacement strategy (see Tables 10 and 11), we can see
that the original C2,0 term of the ASI and COST models are more suitable for Swarm. For
the model itself, the accuracy of replacing the C2,0 term of the SLR model is reduced, and
replacing the C1,0 coefficient of the original Swarm model with the C1,0 term of the SLR
model can slightly improve the accuracy of the Swarm model. Comparing the two models,
the comprehensive performance of COST is better, and the basic effect of the COST model is
the same as that of replacing the C1,0 coefficient, only without any coefficient replacement,
taking into account the average performance of 26 watersheds. As a result, we used SLR to
replace the C1,0 item of the COST model when evaluating the optimal coefficient selection
of the Swarm time-varying gravity field model to detect changes in water reserves in land
areas.

3.1.4. The Optimal Filtering Method

Based on the methods mentioned above, we can get the Swarm-TWSC accuracy with
different filtering method in 26 basins. To get the optimal filtering method of Swarm-
TWSC, we summed the average accuracy of Swarm-TWSC with different filtering method
in 26 basins (Table 12) and the optimal filtering method of each basin (Table 13).
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Table 12. The average results of Swarm-TWSC of different filtering methods compared with GRACE-
TWSC in 26 basins.

Model ASI COST
Filtering Method P4M15 SWEN NO P4M15 SWEN NO

Correlation Coefficient (%) 29.69 22.06 34.13 34.38 26.98 39.37
RMSE (cm) 14.82 25.28 12.14 12.16 18.64 10.24

Table 13. The results of each basin about the optimal coefficient.

Optimal Basins

COST-P4M15 1, 2, 5, 13, 23
COST-NO 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26

The Swarm-TWSC of water storage changes in 26 basins around the world for both
Swarm models was obtained by selecting different filtering methods and calculating
strategies, and comparing their correlation coefficients and root mean square errors with
GRACE-TWSC (see Tables 12 and 13), combining the average results of all basins and the
statistics of the optimal filtering methods. It can be seen that both ASI and COST models
have the highest accuracy when using only Gaussian filtering methods. The COST model
performs better overall than the ASI model, and performs best in most areas when using
only Gaussian filtering, and the results are not too different from the optimal results in
other areas. Therefore, in this paper, only Gaussian filtering is used to evaluate the optimal
filtering strategy for the Swarm time-varying gravity field model to detect water storage
changes in terrestrial areas.

Combining the above results, the optimal data processing strategy for detecting water
storage changes in land areas with the Swarm model is to replace the C1,0 term of the COST
model of order 10 with the C1,0 term of the SLR model, and then do 1000 km Gaussian
filtering. The Swarm-TWSC in this paper was obtained by this processing strategy.

3.2. Applicability Analysis of Swarm-TWSC

Based on the optimal data processing strategy of the Swarm model for detecting water
storage variability in terrestrial areas obtained in Section 3.1, Swarm-TWSC was calculated
for 26 areas and compared with GRACE-TWSC in terms of correlation coefficient and
root mean square error to evaluate the capability of the Swarm model for water storage
detection.

The magnitude and accuracy of Swarm’s water storage potential are closely related
to the characteristics of the area under study. To this end, this paper is based on water
storage trends detected by the GRACE time-varying gravity field model for 26 major global
basins between December 2013 and June 2017, i.e., GRACE-TWSC, and the basin area,
average annual runoff within the basin, and annual and instantaneous changes in basin
water storage are calculated for each basin. The results can be seen in Figure 7 and Table 14.
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Figure 7. GRACE-TWSC and Swarm-TWSC time series and long-term (December 2013 to June 2017)
trend plots for 26 areas.

Table 14. Statistical table of water storage change information in 26 basins.

NO Basin Area
(10,000 km2)

Runoff
(km3)

GRACE-
Trend

(cm/Year)

Average
Mass

Change
(km3)

Swarm-
Trend

(cm/Year)

Correlation
Coefficient

(%)

RMSE
(cm)

1 Yukon 83.5 200.6 −1.69 −14.11 −0.77 62.44 4.03
2 Mackenzie 180.5 357.2 −1.1 −19.86 0.47 55.97 4.45
3 Nelson 115 74.7 −1.21 −13.91 2.68 −1.62 5.88
4 Mississippi 323 599.5 1.02 32.95 1.64 58.3 3.94
5 St Lawrence 30 332.39 0.9 2.7 2.77 29.14 5.95
6 Amazon 691.5 6906.38 −2.11 −145.91 −2.59 93.55 4.92
7 Parana 310.3 800 2.79 86.57 0.40 42.85 6.29
8 Niger 209 200 −0.26 −5.43 −0.10 58.86 3.12
9 Lake Chad Basin 100 450 −0.23 −5.06 0.50 61 5.43
10 Nile 335 81 −0.6 −20.1 −0.48 70.14 4.38
11 Congo 401 1292.98 −0.07 −2.807 −0.67 57.66 3.46
12 Zambezi 138 311.1 −1.68 −23.18 −0.27 71.56 6.86
13 Orange 102 15.45 −0.2 −2.04 −0.15 5.36 5.65
14 Danube 81.7 203 −0.31 −2.53 1.61 32 4.96
15 Euphrates and Tigris 104.8 62.06 4.91 51.46 −0.87 39.45 4.39
16 Volga 138 254.18 1.43 19.73 1.19 81 3.56
17 Ob 297 385 1.97 58.51 0.86 77.13 3.89
18 Yenisey 260.5 625.36 −0.75 −19.54 −0.62 74.67 3.22
19 Lena 249 540 −0.41 −10.21 −0.5 57.62 4.16
20 Kolyma 64.4 123 0.14 0.90 −0.42 39.37 5.62
21 Amur 185.5 346.5 −0.89 −16.51 0.52 3.64 4.34
22 Huang He 79.5 58 −0.93 −7.39 0.12 −8.31 4.79
23 Yangtze 180 1160 0.75 13.5 −0.33 53.41 4.03

24 Ganges and
Brahmaputra 132.6 165.4 −3.09 −40.97 −2.09 73.56 6.05

25 Indus 116.55 207 −0.63 −7.34 −0.65 52.06 4.73
26 Murray Darling 100 5.99 0.63 6.3 −1.58 −1.68 5.26
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From Figure 7 and Table 14, we can find that the accuracy of Swarm is different in
different basins. To get the result more clearly, we analyze it in three aspects which are
trend, correlation classification and cycle repetition time. We can get the long-time accuracy
of Swarm by compared the TWSC trend with GRACE, get the total accuracy of Swarm by
compared the correlation coefficient with GRACE, and get the periodic accuracy of Swarm
by summed the similar period with GRACE-TWSC time series.

From the perspective of long-term trends (see Figure 7 and Table 14), Swarm-TWSC
and GRACE-TWSC show the same trend of increased and decreased water storage in
basins 1, 4–8, 10–13, 16, 17, 19, 24, and 25, and the other basins have the opposite results.

In order to reflect the closeness of the correlation between variables, we use the
correlation coefficient in this paper (see Table 15). The correlation coefficient is calculated
by the product-difference method based on the deviation of two variables from their
respective means, and reflects the degree of correlation between them by multiplying the
two deviations. To get the periodic accuracy of Swarm-TWSC in 26 basins, we get the cycle
repetition time of each basin between GRACE-TWSC and Swarm-TWSC (see Table 16).

Table 15. Correlation classification.

Correlation
Classification

Negative
Strongly

Negative
Weakly Irrelevant Positive

Weakly
Positive
Strongly

Correlation
Coefficient (%) [−100, 80) [−80, 30) [−30, 30] (30, 80] (80, 100]

Table 16. Statistical table of cycle repetition time of 26 basins (December 2012 to June 2017).

NO Basin
Cycle

Repetition
Time (Year)

NO Basin
Cycle

Repetition
Time (Year)

NO Basin
Cycle

Repetition
Time (Year)

1 Yukon 3 10 Nile 3 19 Lena 3
2 Mackenzie 2.5 11 Congo 3 20 Kolyma 2.5
3 Nelson 2.5 12 Zambezi 3 21 Amur 1
4 Mississippi 3 13 Orange 0.5 22 Huang He 0.5
5 St Lawrence 1.5 14 Danube 3 23 Yangtze 2.5
6 Amazon 3.5 15 Euphrates and Tigris 2.5 24 Ganges and Brahmaputra 3
7 Parana 3 16 Volga 3.5 25 Indus 2.5
8 Niger 3 17 Ob 3 26 Murray Darling 1
9 Lake Chad Basin 2.5 18 Yenisey 3

From the perspective of correlation coefficient statistics (see Table 17), the region with
a strong positive correlation between Swarm-TWSC and GRACE-TWSC is basin 6; the
watersheds with weak positive correlation are basins 1, 2, 4–12, 14, 15, 17–20, 23, 24, and 25;
and the watersheds that are not relevant are basins 3, 5, 9, 13, 16, 21, 22, and 26.

From Figure 6, we can compare the performance of Swarm-TWSC and GRACE-TWSC
in terms of periodicity (see Tables 16 and 17). By counting the periodic repetition time
periods of the two results and calculating their repetition time ratios, we can see that Swarm
performs better in basins 1–4, 6–12, 14–20, and 23–25, with the same periodic repetition
ratio above 70%, and performs worse in basins 5, 13, 21, 22, and 26.

The long-term trend of water storage changes in land areas is the combination of the
two satellite sounding results, and to some extent covers abrupt errors at certain points in
time (which can be considered coarse deviations, such as those created by unspecified in-
strumentation failure, etc.); the correlation between the two results can assess the reliability
of the Swarm sounding results. The degree of deviation can measure the accuracy of the
Swarm composite value, i.e., the accuracy of the detected water storage height variation
value, and the validity of the detection results can be measured by comparing the same
length of variation of Swarm-TWSC with the periodic fluctuation of GRACE-TWSC and
the increased or decreased time of water storage variation, thus calculating the similar
proportion of its periodic variation.
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Table 17. Statistics of accuracy indicators of Swarm-TWSC in 26 watersheds.

NO Basin Trend Relevance Similar Period
Ratio

1 Yukon Same Positive Weakly 86
2 Mackenzie Conversely Positive Weakly 71
3 Nelson Conversely Irrelevant 71
4 Mississippi Same Positive Weakly 86
5 St Lawrence Same Irrelevant 43
6 Amazon Same Positive Strong 100
7 Parana Same Positive Weakly 86
8 Niger Same Positive Weakly 86
9 Lake Chad Basin Conversely Positive Weakly 71

10 Nile Same Positive Weakly 86
11 Congo Same Positive Weakly 86
12 Zambezi Same Positive Weakly 86
13 Orange Same Irrelevant 14
14 Danube Conversely Positive Weakly 86
15 Euphrates and Tigris Conversely Positive Weakly 71
16 Volga Same Positive Strongly 100
17 Ob Same Positive Weakly 86
18 Yenisey Same Positive Weakly 86
19 Lena Same Positive Weakly 86
20 Kolyma Conversely Positive Weakly 71
21 Amur Conversely Irrelevant 29
22 Huang He Conversely Irrelevant 14
23 Yangtze Conversely Positive Weakly 71
24 Ganges and Brahmaputra Same Positive Weakly 86
25 Indus Same Positive Weakly 71
26 Murray Darling Conversely Irrelevant 29

Comparing these three measures, among the 26 major global land basins studied in
this paper (see Table 17), we can get the conclusions (Figure 8 and Table 18), Swarm has
the best performance in basins 6, 12, and 16 and the second-best accuracy in basins 1, 4,
7, 8, 10, 11, 17, 18, 19, 24 and 25, and can be used when the GRACE series satellites are
not available. Swarm could replace GRACE to detect water storage changes in the above
basins. The accuracy of Swarm-TWSC is very bad in basins 3, 5, 13, 21, 22, and 26, so
it is not recommended to use the original Swarm satellite time-varying gravity field to
recover the water storage changes in these basins. For regions 2, 9, 14, 15, 20, and 23, on
the whole, Swarm can detect the periodic change of water reserves certain completely and
correctly. However, because the change value of water reserves detected by Swarm may
have gross errors at some time points, Swarm-TWSC and GRACE-TWSC have opposite
long-term change trends of water reserves. If these gross errors are eliminated, such as
basin 2, and if only Swarm-TWSC between 2015 and 2017 is used, the change of water
reserves during this period can be detected correctly. Therefore, this paper suggests that
the Swarm time-varying gravity field can be selectively used to detect changes in water
reserves in these basins if there are no GRACE series satellites or other effective means of
detection.
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Figure 8. The accuracy classification map of water storage change detection in 26 basins by Swarm.
Among them, red represents the area where Swarm is fully available, green represents the area where
Swarm is available, cyan represents the area where Swarm can be selectively used, and orange line
represents the area where Swarm is not available.

Table 18. Statistics on the applicability of Swarm-TWSC in 26 basins.

NO Basin Result NO Basin Result

6 Amazon Fully available 25 Indus Available
16 Volga Fully available 9 Lake Chad Basin Applicable
12 Zambezi Fully available 2 Mackenzie Applicable
7 Parana Available 23 Yangtze Applicable

17 Ob Available 15 Euphrates and Tigris Applicable
18 Yenisey Available 20 Kolyma Applicable
24 Ganges and Brahmaputra Available 14 Danube Applicable
10 Nile Available 5 St Lawrence Not available
1 Yukon Available 13 Orange Not available
8 Niger Available 21 Amur Not available
4 Mississippi Available 3 Nelson Not available

11 Congo Available 26 Murray Darling Not available
19 Lena Available 22 Huang He Not available

3.3. Reasons for Applying Swarm-TWSC

Swarm satellites have constant accuracy in detecting water storage changes in different
basins and different detection capabilities in different basins, which is caused by the
different characteristics of the basins. The size of the watershed affects the number of
Swarm-TWSC statistical grid points, and the regional water storage variation we obtained
is the sum of water storage variation for all grid points. According to statistical theory, in
general, the more statistics of equal precision are introduced, the more reliable the results.
Therefore, the size of the watershed area affects the accuracy of Swarm detection of regional
water storage. In general, the most important factor that causes mass changes in basins is
changes in water, and surface water is the main component of the total water, while the size
of annual runoff represents the total amount of annual surface water in basins. The quality
change of basins detected by Swarm has a certain relationship with the size of runoff, so we
also included it in the factors that cause good or bad effects of water storage detection by
Swarm. Swarm detects total water storage variation in basins, so it is necessary to analyze
this indicator to study the applicability of Swarm. Based on the trend of water storage
changes in basins detected by GRACE, the average annual change of water storage can
be obtained, combined with the size of the basin, and the applicability of Swarm can be
assessed by this indicator. In addition, it is necessary to analyze the degree of water storage
change in each basin when assessing the detection capability of Swarm in different basins.

To synthesize the above analysis, in order to evaluate the capability of Swarm to detect
water storage changes in terrestrial areas, this paper studied four aspects: area of each
watershed, annual runoff volume, annual mass change of water storage, and transient
change of water storage, as shown in Table 19. The table shows the size and area ranking
of each watershed, the size and ranking of annual runoff in each watershed, the size and
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ranking of overall quality change in each watershed, and the size and ranking of the
instantaneous change in water storage in each watershed.

Table 19. Statistical table of watershed area, annual runoff, annual change, instantaneous change information and ranking
for 26 watersheds.

NO Basin
Area

(10,000
km2)

Rank Runoff
(km3) Rank

Average
Mass Change

(km3)
Rank Instantaneous

Change (cm) Rank Result
Rank

6 Amazon 691.5 1 6906.38 1 −145.91 1 13.66 1 1
16 Volga 138 14 254.18 14 19.73 10 4.61 5 2
12 Zambezi 138 13 311.1 13 −23.18 7 9.96 2 3
7 Parana 310.3 5 800 4 86.57 2 4.83 4 4

17 Ob 297 6 385 9 58.51 3 3.8 8 5
18 Yenisey 260.5 7 625.36 5 −19.54 11 3.38 12 6

24 Ganges and
Brahmaputra 132.6 15 165.4 19 −40.97 5 8.94 3 7

10 Nile 335 3 81 21 −20.1 8 3.75 9 8
1 Yukon 83.5 22 200.6 17 −14.11 13 4.22 6 9
8 Niger 209 9 200 18 −5.43 20 1.97 22 10
4 Mississippi 323 4 599.5 6 32.95 6 3.59 10 11

11 Congo 401 2 1292.98 2 −2.81 22 3.02 18 12
19 Lena 249 8 540 7 −10.21 16 2.57 19 13
25 Indus 116.55 16 207 15 −7.34 18 3.1 16 14
9 Lake Chad Basin 100 20 450 8 −5.06 21 3.35 13 15
2 Mackenzie 180.5 11 357.2 10 −19.86 9 2.75 21 16

23 Yangtze 180 12 1160 3 13.5 15 3.15 15 17

15 Euphrates and
Tigris 104.8 18 62.06 23 51.46 4 3.06 17 18

20 Kolyma 64.4 25 123 20 0.90 26 3.35 14 19
14 Danube 81.7 23 203 16 −2.53 24 3.83 7 20
5 St Lawrence 30 26 332.39 12 2.7 23 3.47 11 21

13 Orange 102 19 15.45 25 −2.04 25 1.08 26 22
21 Amur 185.5 10 346.5 11 −16.51 12 1.6 24 23
3 Nelson 115 17 74.7 22 −13.91 14 2.69 20 24

26 Murray Darling 100 21 5.99 26 6.3 19 1.76 23 25
22 Huang He 79.5 24 58 24 −7.39 17 1.52 25 26

According to the ranking of Swarm detection results, Swarm can be used to detect
water storage changes in the first 14 basins. In terms of basin area assessment, there are
11 watersheds in the top 14. Therefore, it can be judged that basin area size is a factor
that affects the Swarm detection results. However, it does not mean that the larger the
watershed, the stronger the swarm detection ability. For example, watershed 21 ranks 10th
in area, but Swarm cannot detect its changes accurately. On the other hand, basin 1 ranks
22nd in area, but it has better Swarm detection results (9th). Therefore, it can be determined
that other factors also affect the Swarm detection results.

It can be seen from the influence of annual runoff on Swarm’s detection ability that 9
of the top 14 basins have the best detection effect, which indicates that annual runoff does
affect Swarm’s ability to detect regional water reserves. However, similar to the analysis of
basin areas, the size of annual runoff is not the only factor that affects the detection results.
For example, although the annual runoff of the Yangtze River Basin ranks third, its Swarm
detection results were poor (17th), and although the runoff of Nile ranks 21st, its detection
results were better (8th).

In analyzing whether the Swarm’s ability to detect regional water reserve changes is
related to the total change of annual water reserve of the basin itself, among the basins
with a Swarm detection effect, there are 10 in the top 14. Similar to the analysis of the first
two factors, the total change of annual water reserve can indeed affect Swarm’s detection
ability, but it is not the only factor. For example, the annual change of water reserves in
watershed 15 is very large (ranking 4th), but Swarm’s detection effect is poor (18th), and
the annual change of water reserves in watershed 11 is small (22nd), but the detection
result is good (12th).
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The instantaneous change of water reserves in a basin in numerical value is the stan-
dard deviation and in graphical form is the amplitude of GRACE-TWSC. According to the
statistical results, among the watersheds with good Swarm detection effect, 10 watersheds
rank in the top 14 in terms of instantaneous variation of water reserves. Similar to the
analysis of the first three factors, the instantaneous change of water reserves can indeed
affect Swarm’s detection ability, but it is not the only factor. For example, the annual change
of water reserves in watershed 11 is small (ranked 22nd), but Swarm’s detection results are
better (ranked 12th), and the instantaneous water reserves in watershed 14 are large (7th),
but Swarm’s detection ability is poor (20th).

Combining the above analyses, the four factors all influence Swarm’s ability to detect
changes in water storage in basins. In order to quantify the degree of influence of various
factors, we calculated the correlation coefficients between the rankings of various factors
and the Swarm detection effect so as to count the proportion of influence of the factors on
the detection results (see Table 20).

Table 20. Statistics on the degree of influence of different factors on Swarm-TWSC in 26 watersheds.

Area Yearly Runoff Total Mass
Change

Instantaneous
Mass Change

Correlation Coefficient (%) 58.75 52.33 60.96 77.8
Impact ratio (%) 23.66 20.99 24.45 31

The results show that Swarm detects regional water storage changes on land mainly
related to transient changes in regional water storage, followed by total mass change, the
area of basins, and finally annual runoff.

3.4. Long-Time GRACE-Swarm-GRACE-FO-TWSC

Based on the results above, we use GRACE, Swarm and GFO to construct the long
time series of about 17 years in the Amazon basin, the Volga basin and the Zambezi basin
(Figure 9).

Figure 9. The GRACE-Swarm-GFO-TWSC time series and long-term (April 2002 to June 2019) in
the Amazon basin, the Volga basin and the Zambezi basin. The blue line is the GRACE-TWSC time
series, the red line is the Swarm-TWSC, the orange line is the GFO-TWSC and the green line is the
long time TWSC trend of each basin.
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The results show that the GRACE-Swarm-GFO-TWSC time series in these three basins
with good continuity. The TWSC in the Amazon basin is increased by 0.38 cm per year, in
the Volga basin is 0.21 cm per year and 0,18 cm per year in the Zambezi basin.

4. Discussions

In this paper, we first calculated seven GRACE-TWSCs based on seven GRACE time-
varying gravity field models, and then used the weighted average method to obtain the
time series of water storage changes in 26 major basins around the world to represent the
true values of regional water storage changes. Although each GRACE model was checked
for accuracy and can be used to detect regional TWSC, there are differences among the
seven results and it is difficult to say which model is the best. In this paper, in order to
explore the potential of Swarm to detect water storage, we tried to find a GRACE-TWSC
with the highest accuracy as the true value, so a weighted average method was used to
determine the average of the seven models’ results. Although this approach may weaken
the accuracy of the optimal model for part of the time period, it takes into account the
combined detection capability of the seven results as much as possible, which is more
convincing for multiple regions and long time periods.

Based on the data processing experience of GRACE-TWSC, the optimal filter radius,
truncation order, coefficient replacement method, and filtering method of the two Swarm
models were analyzed for Swarm-TWSC, and the results show that the optimal data
processing strategy is to replace the COST model of order 10 with the C1,0 term of the SLR
model when the Swarm model is used to detect water storage changes in land areas, and
then use 1000 km Gaussian filtering. This conclusion is different from the classical data
processing strategy of using the GRACE model to detect water storage changes, which
may be related to the different principles, satellite configurations, satellite trajectories, and
measurement accuracy of the two satellites in measuring the Earth’s time-varying gravity
field.

Based on the optimal data processing strategy of the Swarm time-varying gravity field
model, Swarm-TWSC was calculated for 26 basins and compared with GRACE-TWSC, and
the applicability of Swarm in detecting water storage changes in each basin was analyzed
by comparing several accuracy indices (correlation coefficient, root mean square error, and
period repetition rate) to determine the credibility of Swarm-TWSC in each basin. The
results demonstrate that Swarm-TWSC is fully usable in 3 of the 26 basins worldwide,
usable in 11, appropriately usable in 6, and not usable in 6. In this paper, the overall
water storage changes in the whole basin are analyzed, but not from a spatial perspective;
however, this conclusion does not hinder the utility of reference for other scholars.

Based on the accurate performance of Swarm in detecting water storage changes in
26 watersheds around the world, this paper conducted a statistical analysis in four aspects,
watershed area, runoff magnitude, total annual mass change, and transient change, and
found that the accuracy of Swarm-TWSC is related to all four factors, with the transient
change of watershed mass as the main factor. This finding is convenient for scholars to
compare the usability of Swarm when they use it for other studies of new areas.

In this paper, only Swarm-TWSC is compared with GRACE-TWSC, because both
exploration models essentially represent water storage changes calculated using a time-
varying gravity field model from satellite measurements, and in terms of results, both
calculate the total regional mass change. In summary, this paper gives an optimal data
processing strategy to systematically explore the potential of Swarm in detecting regional
water storage changes and analyzes the reasons for the differences in its performance
accuracy in different basins. This paper provides some guidance for future research on
Swarm in water storage detection.

Although some conclusions have been obtained in the study of TWSC in 26 basins or
other regions, there are still some shortcomings. For the regions with insufficient precision
of Swarm-TWSC, the next step is to use GRACE-TWSC as the true value to explore the
correlation with Swarm-TWSC, and establish the system difference model of the two types
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of satellite detection results according to the correlation, then the accuracy of swarm TWSC
can be improved.

5. Conclusions

With global climate change, extreme climate disasters and desertification are becom-
ing more and more serious. Therefore, it is of great significance to carry out long-term
continuous monitoring of total water storage change. Previous studies are mostly based on
the GRACE or GRACE-FO model to restore the change of water reserves, but because there
is a gap between the two detection results, they are unable to build a continuous total water
storage change time series. Based on this, this paper introduces a Swarm time-varying
gravity field model to fill the gap.

First of all, in order to get the optimal results of detecting total water reserves based
on the Swarm time-varying gravity field model, this paper evaluates the results of the
two models from four aspects: the optimal filtering radius, the optimal model order, the
optimal coefficient replacement and the optimal filtering method. It is found that the
optimal swarm data processing strategy is to replace the C1,0 term of the COST model of
order 10 with the C1,0 term of the SLR model, and then do 1000 km Gaussian filtering.

Secondly, based on Swarm’s optimal data strategy, the water storage change time
series of 26 basins in the world are calculated and compared with GRACE-TWSC. It is
found that Swarm performs differently in different basins. Therefore, in order to accurately
detect the potential of Swarm to detect water reserves, this paper discusses the basin area,
runoff, annual change and instantaneous change. It is found that the instantaneous change
of basins is the main reason affecting the detection accuracy of Swarm.

Finally, taking the Amazon basin, Volga basin and Zambezi basin as examples, com-
bined with GRACE, Swarm and GRACE-FO, a long-term continuous total water storage
change time series is constructed.

The research results of this paper will provide a theoretical and results reference for
the water storage change research based on Swarm, and have a certain significance for the
detection of floods, drought and desertification caused by regional long-term changes of
water reserves.
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