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Abstract: With advances in plant genomics, plant phenotyping has become a new bottleneck in plant
breeding and the need for reliable high-throughput plant phenotyping techniques has emerged. In
the face of future climatic challenges, it does not seem appropriate to continue to solely select for
grain yield and a few agronomically important traits. Therefore, new sensor-based high-throughput
phenotyping has been increasingly used in plant breeding research, with the potential to provide
non-destructive, objective and continuous plant characterization that reveals the formation of the final
grain yield and provides insights into the physiology of the plant during the growth phase. In this
context, we present the comparison of two sensor systems, Red-Green-Blue (RGB) and multispectral
cameras, attached to unmanned aerial vehicles (UAV), and investigate their suitability for yield
prediction using different modelling approaches in a segregating barley introgression population
at three environments with weekly data collection during the entire vegetation period. In addition
to vegetation indices, morphological traits such as canopy height, vegetation cover and growth
dynamics traits were used for yield prediction. Repeatability analyses and genotype association
studies of sensor-based traits were compared with reference values from ground-based phenotyping
to test the use of conventional and new traits for barley breeding. The relative height estimation of
the canopy by UAV achieved high precision (up to r = 0.93) and repeatability (up to R2 = 0.98). In
addition, we found a great overlap of detected significant genotypes between the reference heights
and sensor-based heights. The yield prediction accuracy of both sensor systems was at the same level
and reached a maximum prediction accuracy of r2 = 0.82 with a continuous increase in precision
throughout the entire vegetation period. Due to the lower costs and the consumer-friendly handling
of image acquisition and processing, the RGB imagery seems to be more suitable for yield prediction
in this study.

Keywords: barley (Hordeum vulgare ssp. vulgare); remote sensing; unmanned aerial vehicle (UAV);
multi-spectral imagery; RGB imagery; crop height modelling; vegetation cover modelling; growth
dynamics; yield prediction; genotype association study
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1. Introduction

Despite numerous advances in the field of genetics and the application of new molecu-
lar technologies in plant research [1], the genetic gain of major crops has stabilized or even
stagnated in many regions of the world [2,3]. Considering that crop demand is estimated to
double in the first half of this century [4], accelerating yield increases is crucial to overcome
this challenge. Identifying bottlenecks of current approaches in plant breeding and plant
production offers the greatest potential for achieving this goal. In the field of plant breeding,
field phenotyping in terms of high throughput and quality is one of the biggest bottleneck
in breeding programs [5–7].

Saiz-Rubio et al. [8] give an in-depth review on the direction modern farming and
breeding is heading. While there are a variety of technical options to collect data in the
field, satellites [9–12], stationary in-field sensors [13] or ground-based vehicles and farm
robots [14–16] always have a catch and enforce decision making about flexibility, scalability
and the desired data precision. Satellites can cover a large area but usually only within
a rigid time schedule and with a limited spatial resolution. Rover measurements on the
ground are, of course, only economical on a smaller scale but provide a high flexibility in
terms of payload and usable sensor equipment. Although the regulatory take-off weight
and the technically possible payload [17] pose a limit to what flying platforms can carry,
Unmanned Aerial Vehicles (UAVs) provide the possibility for high-resolution multispectral
and even hyperspectral imaging that can still cover a mid-size area with an acceptable
spectral, spatial and temporal resolution [18]. Even larger areas are accessible with fixed
wing drones [19]. UAVs can also be relocated to spatially distributed plots with less effort
and almost no time-loss. They are the closest solution to a semi-continuous field survey.

On the one hand, visual scoring of traits during the growing season such as plant
height or ears per square meter is quite simple but time-consuming and, therefore, limited.
On the other hand, scoring of vegetation cover, disease susceptibility or life history traits
such as time of shooting or maturity is more difficult, depending on human experience,
and, therefore, subjective. Sensor-based phenotyping, in contrast to conventional scoring
of traits, offers a high degree of objectivity, which is a prerequisite for the comparability of
data from different environments, years or populations and would thus be an advantage for
multinational breeders’ working methods. In addition, high-throughput crop phenotyping
approaches using UAV offer attractive solutions for evaluating plots with high spatial
and temporal resolution, leading to an increase in the number of genotypes in mapping
populations and thus more robust statistical evaluation capabilities. In addition, UAV-
based phenotyping, with its high area performance, allows for screening of the breeding
material at very early stages of its development. Breeding selection at this early stage of the
breeding cycle is based on a few rapidly collected traits and thus offers the most potential
for improvement through a better phenotype database provided by UAV. The high temporal
resolution enables the observation of dynamic growth processes and the detection of small
phenotypic differences and thus the extraction of new traits regarding plant architecture
and physiology [20,21]. In order to make optimal use of time series of measurements and
to characterize dynamic growth, it is essential to carry out functional analyses in which
mathematical functions are able to simulate the plant growth pattern [22,23]. Based on
these smoothed growth functions, biologically relevant traits can be extracted and could
become part of a new and more adequate breeding strategy.

The previous focus on specific and final growth phases is mainly due to methodologi-
cal limitations such as destructive trait surveys (e.g., determination of biomass) or simply
lack of experienced staff to phenotype large segregating populations in a dense temporal
interval. Phenotypic dissection by repeated UAV phenotyping could provide informa-
tion on how final yield is formed during the growth phase and how direct and indirect
morphological, physiological, and environmental elements influence yield in different
genotypes [24]. This becomes especially important since breeding for yield improvement
around the globe is based on the empirical selection criterion of yield itself, even though
yield is known to be subject to low heritabilities and high genotype × environment inter-



Remote Sens. 2021, 13, 2670 3 of 30

action [25–27]. Furthermore, the collected spectral and derived spatial data can be used
for yield predictions already during the growth phase [28,29], which may assist decision
making in agribusiness [30]. Traditional methods of measuring yield are destructive, time-
and energy-intensive and cannot be applied to large areas [31]. Pre-harvest yield estimates
could be used to determine input factors such as nutrients, pesticides, and water, and to
forecast upcoming labor- and cost-intensive operations such as harvesting, drying and
storage [32]. In the field of plant breeding, yield prediction at the plot level opens up
a possible scenario of a selection tool that rapidly and efficiently identifies promising
high-yielding genotypes from a large number of early-generation lines even before harvest.
This diagnostic tool would require high heritability and good correlation to grain yield.

Remote sensing techniques are able to use canopy light reflectance to assess yield at
the genotype level without destructive sampling [33]. For this purpose, information on the
reflection of electromagnetic waves from plant canopies is obtained with passive sensors.
The measured reflectance depends on chemical and morphological properties of surfaces
and changes with plant type, biomass, developmental stage, vigor and physiological prop-
erties such as water content and plant pigments [34,35]. Certain plant characteristics are
associated with the absorption of very specific wavelengths of electromagnetic radiation.
Furthermore, the reflection of light at several specific wavelengths can be mapped to dif-
ferent coefficients, called vegetation indices (VIs), which are more environmentally stable
and less susceptible to interference than single wavelength information. For example,
Xue et al. [36] discussed more than 100 VIs for their specific applicability and representa-
tiveness as a function of vegetation of interest, environment and implementation accuracy.

For many UAV remote sensing applications, the visible (400–700 nm), near-infrared
(700–1200 nm) and short-wave infrared (>1200 nm) light spectra are measured by multispec-
tral, hyperspectral or conventional Red-Green-Blue (RGB) cameras. Multi- and especially
hyperspectral sensors have a high spectral resolution, but they are usually more expensive
and have a higher weight than commercially available RGB cameras. Moreover, spectral
sensing is more sensitive to ambient lighting conditions than color imaging. Multispectral
sensors are the condensed form of a hyperspectral sensor by (typically) application-specific
band selection, since several wavelength bands in the visible and infrared spectrum, which
can be freely selected via filters, can be recorded and still enable the use of a broad range
of spectral indices [37]. Furthermore, the spectral information obtained with multispec-
tral cameras is more reliable and repeatable through the implementation of radiometric
calibration [38]. Besides VI calculation, multispectral imagers are widely used for crop
monitoring to assess, for example, yield predictions, nutrient status, pigment degradation,
disease severity, and water content [39–43].

However, ultra-high-resolution images from low-cost RGB cameras with a general
high quality of factory color calibration mounted on UAVs offer a wide range of phenotyp-
ing applications too. Despite the fact that RGB imagery has a very limited spectral range
and resolution and is less molecule-specific due to wider spectral bands, several spectral
indices related to the visible range have been proposed for use with UAV imagery, such as
green chromatic coordinate (GCC) [44], excess green (EG) [45] or Normalized Green-Red
Different Index (NGRDI) [46] which are widely used. The high spatial resolution is the
main advantage of RGB sensors, which can be used to reconstruct the 3D structure of the
leaf canopy based on the structure from motion algorithm (SfM) [47] and thus can repro-
duce the morphology of the plot very well. The additional information about the canopy
architecture can then be integrated into the modelling of yield formation and biomass
and has the potential to improve the models [28,48]. On the one hand, many authors
reported that RGB indices outperform spectroradiometric VIs in terms of characterizing
plant growth [49–51], separating vegetation from bare soil [52], assessing nitrogen [27,53]
and detecting foliar diseases [54,55]. This could be in part due to the fact that spectroradio-
metric indices exhibit longer wavelengths in the NIR range than RGB indices and are thus
more susceptible to canopy architecture, which affects the reflective properties of plants,
and soil mixing pixels, which occurs especially at low spatial resolution [56]. On the other
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hand, several studies indicate that NIR-based VIs improve soil-plant discrimination [57,58]
and provide more information about biophysical parameters than RGB-based VIs [59,60].

Agricultural models based on remotely sensed data, such as those for yield estimation,
are increasingly based on machine learning methods. These methods often tend to be
more robust and accurate than conventional correlative methods due to their flexibility
to adapt to the complexity of data through training [61]. Furthermore, the variance of
a variable to be predicted can be explained by either parametric or non-parametric ap-
proaches. The former are easier to interpret due to their predefined structure; the latter
usually require more training but are also more adaptable. Commonly used methods are
multivariate regression [62,63], decision trees [62,64,65], support vector machines [62,65]
or artificial neural networks [28,62,65]. Deep learning methods based on artificial neural
networks represent a particularly complex approach with promising results, but were not
considered in this case due to the complexity of defining their architecture. In this study, a
parametric generalized linear model [66] and a non-parametric random forest model [67]
were attempted.

Despite many promising advances in the field of UAV-assisted high-throughput
phenotyping, breeders have been reluctant to integrate these technologies into their already
successful breeding pipelines in the past, due to its complexity and costs. However, as
knowledge grows at the translational research level between technological and biological
domains, both the complexity of data collection and processing as well as the costs of
technology can be reduced, thus increasing acceptance. In addition, acceptance is raised by
demonstrating the efficiency gains in achieving breeding goals through new innovative
methods [68].

In this context, this study compares UAV-based RGB and multispectral image analyses
in terms of traits suitable for breeding, such as plant height (HEI), vegetation cover (VCOV)
and yield predictions using different modelling approaches during the entire vegetation
period. The temporal grid (weekly) of the trait collection at three test sites was used for the
extraction of growth dynamics traits. Using ground-based phenotyping, it was possible to
quantify the accuracy of UAV-based phenotyping. Repeatability and genotype association
studies were conducted to test the suitability of using conventional and new traits for
barley breeding. Barley was selected as the experimental organism in this study as it serves
as a genetic and phenotypic model plant for temperate cereals such as wheat, spelt, rye
and triticale, while having a high economic relevance. In addition, the results found in this
study using the diverse barley mapping population S42IL [69,70] could be compared with
numerous previously published studies of this population as a kind of validation.

2. Materials and Methods
2.1. Plant Material, Environments, and Growing Conditions

The plant material included 49 wild barley introgression lines (ILs) of the S42IL library
and 11 spring barley cultivars as controls. The S42IL library was derived by an initial
cross between the spring barley cultivar “Scarlett” and the Israeli wild barley accession
ISR42-8 [71], followed by three rounds of backcrossing with “Scarlett” and marker assisted
selection which is described by Schmalenbach et al. [72]. The S42IL population was
conventionally phenotyped in multiple genotype association studies to identify significant
introgression lines for plant height [73–75], early vigor [76], drought stress [70,77–79], and
yield [80], which can be used comparatively for sensor-assisted phenotyping in this study.

In 2019, field experiments were conducted in three environments in Germany lo-
cated at MLU’s experimental field sites in Halle (51◦29′43′ ′N 11◦59′50′ ′E) and Merbitz
(51◦36′32′ ′N 11◦53′43′ ′E) and at the test site of the Institute of Plant Genetics and Crop
Plant Research (IPK) in Gatersleben (51◦48′15′ ′N 11◦15′02′ ′E) (Figure 1). The field trials
were sown in a randomized split-plot design where each genotype was repeated six times,
resulting in 360 plots per environment and 1080 plots in total. The yield plots had a dimen-
sion of 7.5 m2 (1.5 × 5.0 m) with 8 to 10 rows. The number of sown grains per plot was
varied depending on the known germination capacity of the individual line. The target
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seed density was 300 germinating grains per m2. Sowing dates differed across the three
environments. The field trial in Halle (HAL) was sown on 28 February, in Gatersleben (IPK)
on 14 March, and in Merbitz (MER) on 21 March, respectively. Field and disease manage-
ment was carried out in accordance with local practice. The plant-available N content in the
soil (Nmin), which was measured at all environments on 20 February, resulted in more than
100 kg/ha Nmin at all sites. As a conclusion, no additional N fertilizer was applied. More-
over, in MER and IPK plant growth regulators were applied to prevent lodging, in HAL no
application was conducted. The site-specific weather conditions during the year 2019 are
shown in Table S1. All three sites had a high degree of overlap, characterized mainly by
below-average rainfall during the growing season and above-average temperatures during
the summer months.
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Figure 1. Overview of the three field trials in 2019 located in Halle, Merbitz and Gatersleben, Germany, with an exemplary
aerial perspective of the field trial in Halle.

2.2. Ground Phenotyping Data

The ground-based conventional phenotyping included agronomic and developmental
traits described in Table 1, which were used as ground truth (GT) in this study. Phenotyping
was carried out weekly at all environments parallel to UAV flights. This continuous data
collection enabled the generation of growth curves for HEI and VCOV and the extraction
of new traits based on growth dynamics (2.4). For the reference value HEIGT, mean plot
height was measured for 107 (two replications of the S42IL population and all Scarlett
plots) out of 360 plots for each environment and time point in the field. In addition, the life
history traits time to shooting (SHO), time to heading (HEA) and time to maturity (MAT)
and lodging were phenotyped. All phenotypic data are included in Table S2.

2.3. UAV Data Platforms, Camera Systems and UAV Campaigns

The weekly UAV flights started at the beginning of April and ended after 11 weeks in
HAL and after 12 weeks in IPK and MER with a flight at the developmental stage of full
maturity. This period includes the grain filling as well as the ripening phase of the crops
(Table S3). Two camera systems were used, which differ in terms of costs, weight, modes of
operation and the type of acquired image data.
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Table 1. List of studied traits.

Trait Abbreviation Unit Instrument of
Determination Measurement

Time to shooting SHO days visually
Number of days from sowing until first node noticeable 1 cm
above soil surface for 50% of all plants of a plot, i.e., BBCH

31 [81]

Time to heading HEA days visually Number of days from sowing until awn emergence for 50%
of all plants of a plot, i.e., BBCH 49 [81]

Time to maturity MAT days visually Number of days from sowing until hard dough: grain
content firm and fingernail impression held, BBCH 87 [81]

Canopy height
HEIGT

a/
HEICHM

b/
HEICHMred

c
cm visually/

UAV data (RGB)

Average canopy height of all plants of a plot measured once
a week. UAV RGB Data were used to construct digital

elevation models (DEM), which led to the determination of
growth parameters (HEIGRi

d, HEIGRd
e, HEIMAX

f)

Vegetation cover VCOV % UAV data (RGB,
Multispectral)

Area of a plot covered by plants, which led to the
determination of growth parameters (VCOVGRi

g,
VCOV90

h, VCOVsmoothed
i)

Plot yield YLD kg
Harvester/

UAV data (RGB,
Multispectral)

Grain weight harvesting the whole plot (7.5m2)/ Modelling
based on UAV data, VCOV and HEI

a Canopy height measured in the field (Ground Truth, n = 107 per environment). b Canopy height derived from UAV crop height model
(Crop Height Model, n = 360 per environment). c Canopy height derived from UAV crop height model, reduced to the HEIGT dataset
(n = 107 per environment). d Growth Rate of the Increasing plant height growth phase. e Growth Rate of the Decreasing plant height
growth phase. f Maximum plant height of all measured time points. g Growth Rate of the Increasing vegetation cover growth phase.
h Number of days in which vegetation cover increased from 10 % to 90 %. i Smoothed vegetation cover data.

High-resolution RGB images were captured by a quadrocopter system DJI Phantom
4 Professional (SZ DJI Technology Co. Ltd., Shenzhen, China), which was equipped with
a Zenmuse X4S camera by default (see Table S4), with a 20-megapixel Complementary
Metal Oxide Semiconductor (CMOS) sensor. The 8.8 mm optics focal length yielded in
a ground resolution of 0.82 cm/pixel at a flight altitude of 30 m and of 1.3 cm/pixel at a
flight altitude of 50 m. The cross grid flight scheme at flight altitudes of 30 m and 50 m was
used to obtain a detailed digital elevation model (DEM). With a price of less than 4000 €
and a total weight of about 1.5 kg the Phantom 4 Professional (P4) represents a low-cost
and low-weight UAV in this study.

Multispectral images were captured by the MACAW multispectral camera, (Tetracam
Inc., Chatsworth, CA, USA), which was mounted on the UAV platform DJI Matrice 600 Pro
(SZ DJI Technology Co. Ltd., Shenzhen, China). The camera consists of six independent
CMOS image sensors and optics with an image size of 1280 × 1024 pixels (1.3 MP) each
with 16-bit radiometric resolution. The optics focal length of 9.6 mm resulted in a ground
resolution of 1.5 cm/pixel at a flight altitude of 30 m. The 25 mm diameter bandpass filters
were user-configurable between ~380 and ~1000 nm. For the remote sensing study five
filters of 10 nm full-width at half maximum (FWHM) were selected with center wavelengths
at 670, 700, 740, 780, 900 and one filter of 40 nm FWHM with center wavelengths at 970 nm.

Additional data regarding the specific filter transmission, sensor specifications and
spectral sensitivity of the CMOS are listed in Table S4, according to the manufacturer’s
data (Andover Corporation; Salem, NH, USA). To correct the measured reflectance values
for surface radiance and luminance, an incident light sensor (ILS) with the same custom
filter combination was mounted on the top of the Matrice 600 Pro (M600) to record the
relative strength of down-welling radiation to be integrated into the TIFF image headers.
The M600 was equipped with a Gremsy T3 Gimbal, and an A3 flight controller. With a total
weight of 11 kg and a total price of EUR 35,000 it represents a cost-intensive measuring
platform in this study.
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Both UAVs were controlled by a remote controller and an iPad (Apple Inc., Cupertino,
CA, USA) with the DJI Ground Station Pro app (SZ DJI Technology Co. Ltd., Shenzhen,
China). Details of the individual flight campaigns and the current weather conditions at
the time of the UAV flights are listed in Tables S1 and S4. Geo-referencing of the UAV
images was done by six ground control points (GCPs), equally distributed across the field
trials. After the position of the GCPs were determined using a Trimble R9s GNSS (Global
Navigation Satellite System) receiver (Trimble Ltd., Sunnyvale, CA, USA) with a precision
of 0.02 m, GCPs were not moved during the entire vegetation period.

2.4. UAV Data Processing

The overall workflow of the developed pipeline is presented in Figure 2. Except for
initial pre-processing and photogrammetric processing all operations on the UAV data
were performed in the language and environment for statistical computing R [82]. Special
packages used are mentioned in the corresponding sections.
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2.4.1. Initial Pre-Processing of Multispectral Imagery

The pre-processing of the MACAW imagery was carried out with the image editing
program Pixel Wrench 2 (Tetracam Inc.; Chatsworth, CA, USA) and basically comprised two
steps. The use of six independent sensors, each representing a user-selected wavelength,
causes a spatial offset within the 6-layer TIF file. To correct for this offset, an alignment
was required, which was carried out using an alignment file with fixed individual values
for rotation and scaling of the images for each sensor. Moreover, reflectance values were
obtained as a fraction of the detected incident radiation by using the ILS metadata recorded
at the time of image acquisition. Regarding the low flight altitude of the UAVs and
the thus assumed limited atmospheric influence, no additional atmospheric correction
was conducted.

2.4.2. Photogrammetric Processing

Photogrammetric data processing of the gained UAV imagery was performed in
Agisoft Metashape Professional (Version 1.5.2.7838, Agisoft LLC, St. Petersburg, Russia)
using its built-in SfM algorithm, which enables the three-dimensional reconstruction of the
scene based on common feature points of overlapping images [47]. As two different camera
systems with distinct spatial-spectral resolution were used, the Agisoft workflow was run
using different settings to achieve best results, respectively. The workflow of orthomosaic
generation consisted of four main processing steps: image alignment, generation of dense
point cloud, digital elevation model (DEM) generation, and final orthomosaic generation.
The imagery was georeferenced during the alignment process by manually identifying six
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GCPs within the raw geometry UAV images and applying Agisoft’s optimization function.
The individual settings for processing the datasets are summarized in Table S5.

2.4.3. Crop Height Model (CHM) and Vegetation Index (VI) Calculation

Crop height models (CHMs) were derived from high-resolution RGB DEMs generated
in Agisoft Metashape Professional by subtracting the pixel values of the first bare soil DEM
at each test site from subsequent DEMs’ pixel values to gain absolute HEI. HEICHMred
represents a subset of CHM reduced to the 107 plots where HEICHM was captured in the
field. VIs were calculated according to Table 2 and further subdivided into the following
groups with regard to their sensitivity: single band, pigment, water content and physiology.
All raster calculations were implemented using the raster package [83].

Table 2. Spectral vegetation indices (VIs) tested in this study. “R” denotes the reflection in indicated wavebands; RGB
channels are represented in terms of corresponding spectral regions.

Index Index Full Name Platform Group/Sensitivity Formula Reference

B1-NIR1 Near infrared band 1 Multi Single band R780-

more information see
Table S4

B2-RED Red band Multi Single band R670-

B3-RE1 Red edge band 1 Multi Single band R700

B4-RE2 Red edge band 2 Multi Single band R740

B5-NIR2 Near infrared band 2 Multi Single band R900

B6-WA Water band Multi Single band R980

EVI2 Enhanced vegetation
index 2 Multi Pigments 2.5 ∗ (R780−R670)

(R780+2.4+R670+1)
Jiang et al. [84]

NDVI Normalized difference
vegetation index Multi Pigments (R780−R670)

(R780+R670)
Rouse et al. [85]

ND-NIR1RE1 Normalized difference
NIR1-RE1 Multi Pigments (R780−R700)

(R700+R700)
-

ND-NIR1RE2 Normalized difference
NIR1-RE2 Multi Pigments

(R780−R740)
(R070+R740)

(R070 + R740)
-

ND-NIR2RED Normalized difference
NIR2-RED Multi Pigments

(R900−R670)
(R900+R670)

(R900 + R670)
-

ND-NIR2RE1 Normalized difference
NIR2-RE1 Multi Pigments

(R900−R700)
(R900+R700)

(R900 + R700)
-

ND-NIR2RE2 Normalized difference
NIR2-RE2 Multi Pigments

(R900−R740)
(R900+R740)

(R900 + R740)
-

NDWI Normalized difference
water index Multi Water content (R900−R980)

(R900+R980)
Penuelas et al. [86]

PSSRa Pigment Specific
Simple Ratio Pigments R780

R670 Blackburn [87]

SR980_R700 Simple Ratio Multi Water content R980
R700

RDVI Renormalized difference
vegetation index Multi Pigments (R780−R670)

(R780+R670)0.5 Roujean et al. [88]

RENDVI
Red edge

normalized difference
vegetation index

Multi Pigments (R740−R700)
(R740+R700)

Gitelson et al. [89]

REP Red edge position Multi Physiology 700 + 40 (
R670+R780

2 )−R700
(R740−R700)

Guyot [90]

RVSI Red edge vegetation
stress index Multi Physiology (R700−R740)

2 − 733 Horler et al. [91]

VOG Vogelmann ratio Multi Pigments R740
R700 Vogelmann et al. [92]

B1-R Red RGB Single band Rred -

B2-G Green RGB Single band Rgreen -
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Table 2. Cont.

Index Index Full Name Platform Group/Sensitivity Formula Reference

B3-B Blue RGB Single band Rblue -

EG Excess greenness RGB Pigments 2 ∗ Rgreen− (Rred + Rblue) Nijland et al. [44]

GCC Green chromatic
coordinate RGB Pigments Rgreen

(Rgreen+Rred+Rblue)
Nijland et al. [44]

NGRDI Normalized green red
difference index RGB Pigments (Rgreen−Rred)

(Rgreen+Rred)
Zarco-Tejada et al. [93]

RGBVI Red green blue
vegetation index RGB Pigments (Rgreen2−Rred∗Rblue)

(Rgreen2+Rred∗Rblue)
Bendig et al. [94]

TGI Triangular greenness
index RGB Pigments −0.5[(190(Rred− Rgreen)

−120(Rred− Rblue)] Hunt et al. [95]

VARI Visible atmospheric
resistant index RGB Pigments (Rgreen−Rred)

(Rgreen+Rred−Rblue)
Gitelson et al. [96]

2.4.4. Soil Masking

To reduce bare soil interference for spectral feature extraction during the first devel-
opmental stages of the plants, Otsu’s method was applied to high-contrast NDVI and EG
images (Table 2). Otsu’s method is an adaptive, nonparametric and therefore unsupervised
thresholding algorithm for image segmentation based on grayscale histograms [97] that is
proven to be suitable for separating plant and bare soil pixels [52]. Assuming a bimodal
histogram, the algorithm determines a threshold at which the within-class variance of
the resulting two classes becomes minimal. Pixels assigned to the lower index intensity
class in this way were treated as soil pixels, masked and excluded from further process-
ing. The method was implemented using the auto_thresh function of the autothresholdr
package [98]. The resulting masks were then applied to spectral bands and VIs of the same
platform, date and place.

2.4.5. Vegetation Cover (VCOV) Derivation

Soil masking for VCOV derivation was varied as Otsu’s method would still result in
the presence of blend pixels, which were desired for the acquisition of the spectral features,
but not for relative vegetation fraction estimation. Therefore, a stricter discrimination was
required. Only Pixels of the RGB imagery above a fixed GCC VI threshold of 0.38 were
treated as plant pixels. In contrast, the multispectral imagery was masked by applying the
base R k-means algorithm with four cluster centers to NDVI images, resulting in a more
dynamic threshold. Only pixels belonging to the highest NDVI cluster were treated as
plant pixels. Based on these threshold, binary images are calculated and used as vegetation
masks in the further processing of the image data.

2.4.6. Plotwise Feature Extraction

Plotwise orthomosaic features were extracted using the RSAGA package, which
provides access to geocomputing and terrain analysis functions of the geographical infor-
mation system SAGA within R [99]. SAGA version 6.2.0 was used. Plot polygon shapefiles
of the field trials were created with the MiniGIS software by Geo-Konzept (Adelschlag,
Germany). After applying a −0.2 m buffer to each plot polygon shapefile to account for
boundary effects, summary statistics such as arithmetic mean and the 95% quantile of the
plots were extracted. The VCOV feature was estimated by extracting the mean value of the
masked GCC and NDVI orthomosaics described above.

2.5. Statistical Analysis

Further data analysis was performed using the plot polygon’s 95% quantile of CHM
orthomosaics and the mean value of VI orthomosaics and VCOV orthomosaics.
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2.5.1. Ground Truth Validation

To assess the accuracy of canopy height determined by UAV imagery (HEICHM)
Pearson’s coefficient of correlation (r) and the root mean square error (RMSE) of HEICHM
and HEIGT was calculated (formula see 2.5.3) for each point in time and across the entire
vegetation period.

2.5.2. Growth Rate Modelling

Multi-temporal measurements enable the calculation of growth rates of HEI and
VCOV data by applying the smoothing and extraction of trait (SET) method implemented
in the growthPheno R package [22]. According to Brien et al. [22] the best smoothing
method, which results in fitting the observed data to natural cubic smoothing splines by
direct smoothing was selected.

In addition to the smoothing method, the degrees of freedom (DF) for the fitting
procedure must be specified. For HEI, DF = 5 provided the best results, with 10 up to
11 observations made across the year (Figure S1). Based on the smoothed HEI values, the
absolute growth rates (AGR) according to Brien et al. [22] were calculated. The smoothed
HEI and AGR values, plotted to identify growth dynamics, appeared to be homogenous.
Two different growth phases could be identified. The first growth phase is characterized
by a steady increase of the growth rate up to the maximum and the second by a steady
decrease of the growth rate. Based on this definition, the slope between the endpoints of
the increasing growth phase (HEIGRi) and decreasing growth phase (HEIGRd) were used as
a trait for plant growth proxies. In addition, the maximum canopy height (HEIMAX) across
all UAV flights was recorded and is referred to as HEI in this study.

For the VCOV estimation, we used two sets of data: one based on the RGB images and
the other based on the NDVI values of the multispectral images (Figure S2). The discrimi-
nation between soil and plant pixels is described in detail in soil masking in Section 2.4.4.
The VCOV estimation resulted in smoothed vegetation cover data (VCOVsmoothed), which
were used in yield prediction modelling. We obtain the best results with DF = 3, based
on 4–6 observations. We extracted two traits based on these time series data. For the first
trait, the increasing homogeneous growth phase was selected and the slope (VCOVGRi)
was calculated, as was done for HEI. The second trait is represented by the number of
days during which the VCOV increased from 10% to 90% (VCOV90). For this purpose, the
days of year on which the smoothed VCOV values of 10% and 90% were reached were
interpolated and subtracted from each other.

2.5.3. Yield Prediction

Spectral traits (Table 2) as well as the spatial traits HEI and VCOV of the two presented
imaging systems were used to assess their ability to predict plot yield. In doing so, both
systems were considered independently in order to compare their suitability for prediction.
Since CHM could only be derived from RGB imagery, it was not used in multispectral yield
prediction. The modelling of plot yield included three approaches:

Approach 1: Applying a single linear regression model for each trait at a single time point
Approach 2: Including all measured and derived traits of the same time point as predictors
in a multiple regression
Approach 3: Extending the multiple regression model across multiple time points, resulting
in a multi-temporal stacked prediction

For multiple regression in approaches 2 and 3, an elastic-net regularized generalized
linear model (GLM) and a random forest model were fitted. Both were implemented
using the tidymodels framework [100]. The elastic-net regularized GLM algorithm linearly
combines L1 (lasso) and L2 (ridge) regularization penalties in a multiple linear model. It
was applied using the glmnet package [66] as engine with penalty held at 0.001 and a
mixture of L1 and L2 held at 0.5. Prior to model building, predictors were centered and
scaled, a prerequisite for successful regularization.
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The random forest algorithm is a robust ensemble learning method for classification
as well as regression that constructs a variety of decision trees or regression trees based
on a randomly chosen subset of the data and a randomly chosen subset of features for
each derived tree. In regression, the prediction corresponds to the average prediction of all
regression trees [67]. The two hyperparameters ntree (the number of trees to grow) and
mtry (the number of variables randomly sampled as candidates at each tree split) were
held constant at ntree = 1000 and mtry = npredictors/3.

Single trait-yield correlations were evaluated by calculating the coefficient of deter-
mination (r2). For multiple linear regression, the RMSE was captured as well. The r2 and
RMSE were calculated as:

r2 = 1− ∑n
i=1 (xi − yi)

2

∑n
i=1 (xi − x)2

and

RMSE =

√
∑n

i=1 (yi − xi)
2

n

where xi is the actual plot yield, x is the average actual plot yield, yi is the predicted plot
yield and n is the number of observations. Multiple regression metrics were extracted and
averaged over a tenfold cross-validated model fit.

GLM variable estimates were extracted from the best cross-validated fit and their
corresponding percentage values were calculated as fraction of the overall absolute esti-
mate sum.

Yield predictions for the genotype association study were collected over a ten times
repeated tenfold elastic-net GLM cross-validation where predictions of the independent
validation subset were kept and averaged for each plot.

2.5.4. Genotype Association Study

Prior to the genotype association study the Repeatability (R2) as a measure of the
proportion of genotypic variation in the total phenotypic variance was calculated using the
lme4 package [101] for each trait at each point in time as:

R2 =
VG

VP/r

where VG and VP are the genotypic and the total phenotypic variance and r is the number
of repetitions (r = 6 in this study) per genotype. The genotype association study was then
conducted as Dunnett’s test [102], comparing the UAV trait of each genotype to the control
cultivar Scarlett using the glht package for general linear hypotheses [103]. To reduce
type I error probability due to multiple comparisons [104], the Bonferroni adjustment was
applied to the model summary and the significant threshold was set at p < 0.01.

3. Results
3.1. Canopy Height Determination

The correlations of HEICHM and HEIGT across all dates are shown in Figure 3. In the
three environments HAL, IPK and MER correlations of 0.82, 0.89, and 0.91 were attained,
resulting in an overall correlation of r = 0.87 using the 95% CHM plot quantile. Moreover,
Figure 3 and Figure S3 demonstrate that the maximum height was reached before MAT. As
it is known for barley, the ears start to bend over during maturation and, thus, the height
decreases. Despite primarily strong correlations, HEIGT was generally underestimated by
the UAV, as it is shown in Figure S3.
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The use of the 95% CHM plot quantile shows the smallest absolute deviations from
HEIGT. A drawback of using the 95% CHM plot quantile for height estimation was that
isolated and vertically growing plants in plots of genotypes where lodging occurred,
resulted in an overestimation of the overall plot height. These caused lower correlations to
the HEIGT data, as can be seen in the late acquisition period in HAL and IPK (Figure S3).
That complicates the simple automated detection of lodged plots and in some cases a
manual check, by looking at the variation of CHM information in the entire plot, would
be necessary.

Furthermore, individual time points showed a large variation in correlation coefficients
between HEICHM and HEIGT ranging from r = 0.09 in HAL on 104 DAS to r = 0.93 in MER
on 68 DAS and in HAL on 89 DAS, which is shown in Figure S3.

For a direct statistic comparison in the sense of breeding (repeatability and concor-
dance of genotype associations) between the conventional and new phenotyping method, a
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subset of the HEICHM dataset was formed (HEICHMred), which was reduced to the 107 iden-
tical plots of the HEIGT dataset. The repeatabilities of HEICHM, HEICHMred and HEIGT in
Figure S4 showed the same trends between individual time points with high values of
up to R2 = 0.98 almost across the whole growing period. Before SHO, repeatability was
low and began to increase with the height growth around SHO to find the maximum and
reach a plateau at HEA until ripening began and the repeatability decreased again. It
should be emphasized that HEICHM generally showed better repeatability than HEIGT
and HEICHMred, except at late plant developmental stages in HAL, where HEIGT showed
slightly better repeatability (Figure S4). The repeatability of HEICHMred fluctuated slightly
and was on the same scale as HEIGT even at those times points where the canopy height
measured in the field was clearly underestimated by UAV (e.g., HAL on 89, 95 DAS, IPK on
104, 111 DAS, MER on 84, 90 DAS).

Figure S4 shows the repeatability of three traits that represent the results of the
growth curve analysis made possible by UAV phenotyping. Therefore, raw HEICHM
were smoothed (Figure S1) to identify homogeneous growth phases and to determine
the growth rates within the homogeneous growth. The increase in growth rate (HEIGRi)
occurred between 59–85 DAS in HAL, 34–61 in MER and 62–83 DAS in IPK. The decrease
in the growth rate (HEIGRd) was between 85–120 DAS in Halle, 61–103 DAS in MER and
83–111 DAS in IPK.

Moderate to high repeatabilities of these parameters ranging from R2 = 0.59 for HEIGRd
in IPK to R2 = 0.98 for HEIGRi in HAL show that phenotypic variation can be explained
by genotype and thus be used in breeding. HEI modelling over time based on UAV
phenotyping revealed reliable results and the GR parameters were therefore integrated
into the yield estimation model.

The subsequent Dunnett test to identify statistically significant genotype associations
for all HEI traits revealed a large number of S42ILs that differ significantly from Scarlett
(Figure S5). The highest significant differences were found between SHO and HEA at
all environments, where the difference in growth was the greatest as no plant growth
regulator was applied and no lodging occurred during this period. In general, the HEICHM
dataset reached the highest significance and several lines were constantly detected over the
measurement period. In comparison, the reduced HEIGT and HEICHMred datasets showed
less significant results, which shows the great advantage of the UAV phenotyping, which
can cover a larger sample size. Furthermore, the same lines with a significant HEI could
be detected for the calculated growth parameters and for HEIMAX. Again, HEIGRi, which
represents the period of increasing HEI and therefore the time between SHO and HEA,
showed the highest significance.

3.2. Vegetation Cover

The vegetation cover (VCOV) was determined using both RGB and multispectral
imagery to compare the two methods. To identify early vigor genotypes single time points of
VCOV were used for smoothing (Figure S2) and subsequently extracting growth parameters.

The estimation of VCOV by the RGB imagery resulted in higher consistency across
sequential flights with a later saturation and a lower rate of outliers (Figure S2), which pro-
vided a more reliable dataset compared to the VCOV values determined by multispectral
imagery. The VCOV values of the multispectral dataset appeared to have a poorer quality
due to the greater scatter and outlier rate. In MER VCOV showed the greatest variation
across both determination methods, but nevertheless it can be seen across all datasets that
the population average of the S42ILs is slightly above the performance of Scarlett.

Inaccuracies can be mitigated by smoothing the growth curve and still allow growth
trends to be identified. In order to identify fast growing genotypes, the smoothed vegetation
cover data (VCOVsmoothed) were used to estimate the growth parameters VCOVGRi and
VCOV90. The calculated repeatabilities show differences between environments (Figure S6).
Across all VCOV traits, the highest repeatability of R2 = 0.94 was estimated in HAL at
81 DAS by the RGB imagery. Furthermore, in HAL and especially in IPK, high and
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consistent repeatabilities (R2 = 0.47–0.94) over time could be detected. In some cases, higher
repeatability was detected with the raw VCOV data and in some cases with the smoothed
VCOV data, which does not reveal a consistent trend. Nevertheless, MER showed the
lowest repeatabilities (R2 = 0–0.36).

The repeatabilities of the growth parameters VCOVGRi and VCOV90 were in the
same order of magnitude as the repeatabilities on individual measurement days, so that it
made sense, with the exception of MER, to carry out a Dunnett test to identify significant
genotype associations on the basis of the VCOVsmoothed data. The Dunnett test revealed one
significant line in HAL and in IPK based on multispectral determination of VCOVsmoothed
and three significant lines based on RGB determination of VCOVsmoothed only in IPK
(Figure S6). Unfortunately, there is no overlap of significant lines across sites or datasets,
although decreased p-values of some lines indicate the same tendencies.

3.3. Yield Prediction

The measured plot yield was the target value of the yield modelling and is shown in
Figure 4. The highest yields were found in IPK, with an average yield of 4.43 kg/7.5 m2

(=̂59.1 dt/ha), followed by MER with 4.01 kg/7.5 m2 (=̂53.5 dt/ha) and HAL with
3.73 kg/7.5 m2 (=̂49.7 dt/ha). HAL showed the highest coefficient of variation with
CV = 0.27, followed by MER with CV = 0.16 and IPK with CV = 0.12.
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In order to predict plot yield as accurately as possible, three different approaches were
tested. In the following, only the results of the GLM models are described and the results
of the corresponding RF models, which generally reflected the same trends, are included in
Figure S7.

In approach 1, the linear regression of plot yield based on a single trait and a single
time point revealed strong differences in predictive performance between the individual
traits and time points (Figure 5a). For Figure 5a, the two VIs with the highest r2 values
per environment and imagery dataset were selected and plotted across all environments,
resulting in four and five VIs for the multispectral and RGB imagery datasets, respectively.
The highest r2 values of the RGB data set were detected at all three environments shortly
before MAT with r2 = 0.55, r2 = 0.37 and r2 = 0.21 in HAL, MER and IPK, respectively
(Figure 5a,d). In the multispectral dataset, high r2 values were detected both around
HEA and shortly before MAT, which were of the same order of magnitude as in the RGB
dataset, except the high predictive power of the multispectral data at 47 DAS in MER. HAL
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generally had the highest and IPK the lowest r2 values. In some cases, the r2 increased after
precipitation, especially in the multispectral dataset, for example at HAL 61 DAS, IPK 70
DAS and 92 DAS and in MER 84 DAS.

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 31 
 

 

 
Figure 5. Yield prediction comparison. (a) Predictive accuracy of single trait using linear regres-
sion (SLM). (b) Yield prediction performance of the GLM models, based on the daily merged da-
tasets. RSQ (r2) and RMSE (root mean square error) were used as quality criterion for prediction 
accuracy. (c) Temperature at the time of the UAV campaign and the cumulative precipitation of 
the last 3, 6 and 9 days before the UAV campaign. (d) Distribution of plant developmental stages 
of the spring barley population S42IL across the vegetation period. 

In approach 2, yield predictions simultaneously included a number of RGB, multi-
spectral and morphology traits (HEI and VCOV) at a single time point. The predictive 
power increased, but was still subject to large fluctuations between the time points (Figure 
5b). The curves of the prediction accuracy between the RGB and the multispectral data set 

Figure 5. Yield prediction comparison. (a) Predictive accuracy of single trait using linear regression (SLM). (b) Yield
prediction performance of the GLM models, based on the daily merged datasets. RSQ (r2) and RMSE (root mean square
error) were used as quality criterion for prediction accuracy. (c) Temperature at the time of the UAV campaign and the
cumulative precipitation of the last 3, 6 and 9 days before the UAV campaign. (d) Distribution of plant developmental
stages of the spring barley population S42IL across the vegetation period.
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In approach 2, yield predictions simultaneously included a number of RGB, multispec-
tral and morphology traits (HEI and VCOV) at a single time point. The predictive power
increased, but was still subject to large fluctuations between the time points (Figure 5b).
The curves of the prediction accuracy between the RGB and the multispectral data set
showed similar fluctuations within a range between r2 = 0.03 and r2 = 0.6. The highest
prediction accuracy was detected at all 3 sites in the last third of the vegetation period and
reached values of r2 = 0.6, r2 = 0.5 and r2 = 0.29 in the RGB imagery in HAL, MER and IPK,
respectively (Figure 5b,d). The RMSE is contrary to the r2 and ranges from 0.51 kg/plot in
HAL (89 DAS, RGB) to 0.28 in IPK (92 DAS, Multi), which corresponds to an error of 13.7%
and 6.3%, respectively.

Approach 3 included all traits and time points simultaneously to model plot yield.
With this approach, the prediction accuracy increased with each additional day of mea-
surement and clearly exceeded the prediction accuracy at the end of the vegetation period
compared to the second approach (Figure 6). Prediction accuracy of all yield estimation
models generally showed an asymptotic trend. However, the timing and the level of
prediction accuracy differed between environments and imagery datasets. The trends in
prediction accuracy between the environments and the RGB and multispectral datasets
were retained from approach 2, but at a higher level. High r2 values were also detected
shortly before MAT and reached the highest value in HAL with r2 = 0.82, followed by
r2 = 0.65 in MER and r2 = 0.55 in IPK. Nevertheless, the high r2 values in HAL had a
larger RMSE than MER or IPK. The error term of the regression models of the multi-
spectral dataset was between 0.24 and 0.39 kg/plot (=̂6.4–10.4%) in HAL, between 0.27
and 0.35 kg/plot (=̂6.7–8.7%) in MER and between 0.26 and 0.33 kg/plot (=̂5.9–7.5%) in
IPK. The RMSE of the RGB based regression models ranged in HAL between 0.23 and
0.45 kg/plot (=̂6.1–12.1%), in MER between 0.24 and 0.32 kg/plot (=̂6.1–8.0%) and in IPK
between 0.23 and 0.33 kg/plot (=̂5.2–7.6%). The absolute estimation error was smallest
in IPK, despite the lower r2, because the CV of the measured yield is lowest (Figure 4).
Although IPK had the lowest r2 value, the absolute estimation error is the smallest because
the CV of the measured yield is the smallest (Figure 4).
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To get a deeper understanding, which traits were selected for yield prediction (ap-
proach 3), the effect sizes of the traits were extracted and visualized in Figure 7 and listed
in Table S6. Therefore, VIs were grouped according to Table 2. This reveals the importance
of trait groups, for yield estimation over time and general trends can be identified. For
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example, in the RGB dataset, the importance of HEI and VCOV initially increases and later
decreases over the vegetation period. The pigment-classified VIs seem to play a greater role
in yield estimation across environments and datasets at the beginning of the vegetation
period than at the end.
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Table S6 shows that with increasing dataset size over the vegetation period, the
number of traits selected by the predictive model also increased while the impact of each
single estimator per trait decreased. As the prediction performance across all environments
increased over time, apparently diversification of the selected traits improved prediction
performance. However, this relationship seems to be limited, as at the end of the growing
season the number of selected traits for the model continued to increase, while the r2

values stagnated.
Interestingly, canopy height (HEI) information is important for yield prediction within

the RGB dataset starting from the beginning (Figure 7) and moreover, canopy heights from
all stages of development were selected for modelling, not just the most recent canopy
height, especially in HAL (Table S6). On the contrary, at MER and IPK, where canopy height
at the end of the vegetation period showed minimal variation due to the application of
growth regulators, early height information (with more variability) was selected for yield
prediction until the end.

VCOV was the second morphological trait extracted from the UAV imagery and was
included in both RGB and multispectral datasets as determined by different methods. The
trait was phenotyped very early in the vegetation period and was still present in almost all
yield models across environments and datasets (Figure 7). In HAL, the VCOV at 55 DAS
appeared frequently in yield models, in MER at 34 and 40 DAS and in IPK at 42 and
49 DAS. The VCOV estimates were especially high in the RGB dataset, exceeding 30%
in the 47 DAS yield model in MER. In the RGB dataset, the sum of the VCOV estimates
reached its maximum in the early yield models around SHO. However, it should be taken
into account that at this time the prediction accuracy had not yet reached its maximum. In
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the multispectral dataset, VCOV played a smaller role, but was nevertheless detected in
yield models over the entire vegetation period with constant VCOV estimates between 2%
and 14% without a discernible maximum across the vegetation period.

Nevertheless, the spectral information represents the largest percentage of the esti-
mates. In yield modelling based on the multispectral dataset, this proportion represents
91.2% on average across environments and time points. On the one hand individual bands
and VIs (simple ratios and normalized VIs) showed high effects that were environment-
specific. In MER, for example, the NDWI (water content VI) showed large effects between
7.4−20.2% across the entire vegetation period and was thus crucial for yield prediction
(Table S6). At the other environments, however, this VI hardly seemed to play a role.

The VOG (Pigment VI) showed larger effects in HAL and IPK up to the last yield
models and seemed to be less weighted in MER and did not appear in the last three yield
models. On the other hand, the PSSRa (Pigment VI) and REP index (Physiology VI) seemed
to be less environments-specific, as performance was similar across sites, with PSSRa
showing larger estimates than REP. In the yield models based on the RGB dataset, the
estimates of the spectral information had a lower relevance with 75.5% on average across
environments and time points compared to the multispectral dataset. The three individual
bands as well as the six calculated VIs were equally important for the yield models.

With the aim of optimizing yield predictions, further model approaches were tested
by merging the collected data in different ways. One approach was to merge the RGB and
multispectral datasets to combine the good features of the two camera systems. However,
r2 and RMSE of the GLM or RF models showed no significant improvement across all three
environments (Figure S7c). Another approach was to merge the datasets across all three
environments and to carry out the modelling to end up with holistic models for RGB and
multispectral imagery. In this approach, the RF model seemed to perform much better than
the GLM model, with no difference between the two camera systems (Figure S7d). The
final prediction performance of the GLM model (r2 = 0.68) represents an average of the
environment-specific model performances. The final approach was the total combination
of the all available datasets that resulted in one model. The prediction performance of the
GLM model increased up to r2 = 0.73, approaching the RF model (r2 = 0.75), but again no
strong increase in predictive performance was evident from the data fusion (Figure S7d).

Another criterion for the prediction accuracy was the repeatability calculation, which
was carried out with the predicted values and the ground true yield (YLDGT, measured
in the field). Figure S8 reveals that the highest repeatability by far could be calculated at
a consistently high level in IPK. The repeatability of the predicted yield showed a small
variation across the vegetation period from R2 = 0.81 (42 DAS) to R2 = 0.91 (70 DAS) of the
multispectral and R2 = 0.85 (49 DAS) to R2 = 0.95 (62 DAS) of the RGB dataset, but did not
reach the high repeatability of R2 = 0.96 of the YLDGT data. In HAL and MER significantly
lower repeatabilities were calculated, ranging from R2 = 0.07 to R2 = 0.56 with an increasing
trend during the vegetation period. The repeatability of the YLDGT data were also at a low
level of R2 = 0.66 in HAL and R2 = 0.57 in MER.

The subsequent genotype association study conducted with the predicted yield from
the stacked dataset approach 3 confirmed the results of the repeatability analysis. In HAL
and MER, based on YLDGT data, the Dunnett-test revealed only line S42IL-143 with a
significant difference in yield to Scarlett, while no significant lines were detected with the
modelled yield data (Table S7). Therefore, only the Dunnett-test results of the field trial
in IPK are shown in Figure S9. In IPK a total of nine significant lines were detected in
the YLDGT data. In the multispectral dataset, 9 significant lines were detected across the
11 models generated over the vegetation period, but only 6 lines matched those found in
the YLDGT dataset. This implies that the three remaining S42 lines were false positives.
The false positives S24IL_105, S24IL_121 and S24IL_138 were only detected between the
beginning and the middle phase of the vegetation period (49-83 DAS).

In addition, the significant lines S42IL-111, S42IL-126 and S42IL-176 from the YLDGT
dataset were false negatives that could not be confirmed by the modelled yield data
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at any time point. The results of the Dunnett test based on the yield prediction of the
RGB dataset revealed 12 significant lines across the 12 models, with four false positive
lines (S24IL_103, S24IL_105, S24IL_121, S24IL_138) and 1 false negative line (S42IL_111),
resulting in 7 overlapping lines with YLDGT. The comparison of the predicted yield with
YLDGT showed that the lack of difference in estimated yield between the false negatives
and the cultivar Scarlett was due to an overestimation of the predicted yield of the false
negatives (Table S8). For instance, the yield of line S24IL_111 was overestimated even
across the two datasets, although the line showed a very strong negative effect in the
YLDGT dataset.

4. Discussion
4.1. Canopy Height Determination

The correlations of HEICHM and HEIGT were slightly below the correlations observed
in similar studies [48,105,106], which could be due to the fact that the plant height showed
a relatively small variation when using plant growth regulators. Without the use of plant
growth regulators, as was the case in HAL, plots suffered lodging and the determination of
the height was difficult with both the UAV and the ruler, which led to an inaccurate measure-
ment. Moreover, the HEIGT measurements in the field cannot be seen as a general standard
for canopy height determination due to the subjectivity of the measurement [107,108].

The general underestimation of plant height by the UAV is an already known issue in
the determination of crop height by the SfM algorithm [106,109]. An exact determination
is assumed to be mainly impeded by plant movement as it prevents the SfM algorithm
from finding common pixels on the top plant level of different images, the so-called tie-
points. This effect is, therefore, more likely to occur with increasing canopy height and
under windy conditions. In addition, during the shoot elongation phase between SHO
and HEA, when the main tillers elongate, the canopy is very thin, resulting in the greatest
underestimation of HEICHM. That indicates that thinner plant stock reduces the probability,
to detect tie-points at the top of the canopy. It is more likely that tie-points occur at a lower
level, where leaves form a denser canopy. Unfortunately, no simple correlation between the
underestimation and some of these sources of error could be detected as they all overlap to
varying degrees at different times.

The low correlation coefficient of individual time points at the late acquisition period
in HAL could be explained by the missing possibility to reliably detect lodged plots, as
it is mentioned in 3.1. This was mainly observed in HAL, as only there no plant growth
regulators were applied to prevent lodging. To some extend this is also the case in IPK. In
addition, the DEM generation was partly erroneous in the last three datasets for IPK and
it was impossible to create high-quality DEMs. The troubleshooting was very laborious
and, retrospectively, hardly possible. As the flight parameters and settings have not been
changed and the environmental conditions were similar to the previous flights, these factors
can be excluded. A possible cause could be the unconscious movement of GCP between
92 DAS and 98 DAS by farming machines, which could have caused the high inaccuracy of
GCP in the final DEM model, highlighting the importance of GCP consistency.

The repeatability analysis revealed lower repeatabilities in the early plant develop-
ment, which could be explained by the reduced variation in the phenotype. However, in
late plant development, lodging, which does not affect all plots equally due to environ-
mental factors, could be a further error term. In a comparison of repeatabilities between
HEICHM, HEIGT and HEICHMred, HEICHM generally shows the highest values, which on the
one hand indicates that it is possible to determine the relative HEI at individual time points
with a high degree of accuracy using UAV. Absolute HEI determination, on the other hand,
is subject to various sources of error and therefore only possible with a lower degree of
accuracy. Moreover, the higher repeatability of HEICHM compared to HEICHMred indicates
that an increased sample size increased the statistical power, which can be achieved by
using UAVs to determine canopy height in practice.
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The results of the Dunnett test show a strong overlap of detected significant lines
between HEICHM, HEIGT and HEICHMred and most of these lines were already known
from previous publications [74–78,110]. In addition, HEIMAX and the calculated growth
parameters HEIGRi also show a high overlap of detected significant lines. This overlap
demonstrates that the accuracy of plant height determination using UAV and SfM algo-
rithms is very useful for plant breeding under certain conditions.

In order to obtain high correlations to the true crop height, the correct flight conditions
(no wind, correct flight altitude and image overlap) and a variation in canopy height are
required, as the correlation coefficient is highly dependent on the trait variation and is
therefore species- and population-specific. In addition, the determination of absolute height
has a inaccuracy due to limitation of imagery data using of SfM techniques [111], which
made the growth modelling of sequential flights more difficult. Nevertheless, it could be
shown that the traits derived from the growth modelling (HEIGRi, HEIGRd)) have a high
repeatability and lines with significantly different growth developmental characteristics
could be detected, which is sufficient for plant breeding purposes. If only the canopy height
and no spectral information are of interest, light detection and ranging (LiDAR) systems
are an interesting substitution technology [112]. UAVs have only recently become capable
of carrying light LiDAR systems [113], and for this reason little is known about their use.
However, the first studies show the potential of this system for the generation of highly
accurate CHMs for predicting biomass [114,115] or detecting lodging [116].

4.2. Vegetation Cover

A fast leaf area growth during vegetative development has a great influence on the
yield potential of a plant [117] and on soil water evaporation rate [118] and is, thus, of
special breeding interest under water-limited growth conditions. In addition, initial rapid
growth is very competitive and displaces weeds, which is of particular interest for organic
farming. In this study the vegetation cover (VCOV) is used as a proxy of the early vegetative
development. This trait is highly correlated with the physiological status of the plant, such
as leaf area index, plant vigor, biomass, yield and responses to temperatures [28,119–123].
In order to detect small variations in growth patterns between genotypes it is necessary
to determine this parameter objectively and reliably, which can be ensured by the use of
sensor technology.

In this study, the results of the RGB determined VCOV seem to be more reliable, which
can be partly explained by a higher image resolution higher, which is related to the lower
flight altitude but also to a better spatial resolution of the RGB camera sensor. Moreover, the
poorer quality of the multispectral determined VCOV is possibly due to the fact that single
time points had to be removed because the multispectral camera failed at the beginning
of the season in MER and IPK. The poor results in MER are due to difficulties in creating
the orthomosaic, especially in the multispectral dataset. Nevertheless, a comparison of
the mean VCOV values of the two methods indicates fast-growing genotypes within the
S42ILs and thus shows the genetic potential of the population.

The calculated repeatability of the VCOV, VCOVsmoothed and the growth parame-
ters VCOVGRi and VCOV90 are slightly below the repeatability of a comparable trial in
maize [123]. The low repeatability in MER can again be explained by difficulties in the
preparation of the orthomosaics and by heterogeneous plant growth within the experiment,
which can be attributed to greater soil differences. The proportion of genetic variation in
the total phenotypic variation in MER is very small or even negligible. The comparison of
methods indicates that the RGB dataset enables a more reliable determination of the VCOV
traits than the multispectral dataset. Due to the faster saturation and the deletion of single
time points of the VCOV traits in the multispectral dataset, the repeatability in HAL and
IPK at single time points is zero, while repeatability on the same day can be observed in
the RGB dataset (Figure S6).

The results of the subsequently conducted Dunnett test confirmed that the determina-
tion of VCOV traits was possible through the use of drone-mounted RGB cameras and that
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the accuracy of the results was sufficient for further quantitative genetic analysis. However,
the results presented here were severely limited by the number of observations at the time
of the trait increase, because to extract growth dynamics from imagery data, temporally
high-resolution data collection is critical [20]. The weekly trait monitoring of the environ-
ments resulted in only 2–3 relevant observations that could be used for growth modelling
until saturation was reached, which was not sufficient to detect the small trait variations
within the population. Nevertheless, the results show the potential of this method to detect
the VCOV traits, especially if the monitoring intervals were increased to every 2–3 days. A
commercial RGB camera with its simpler data handling and more consistent results may
be a more suitable choice if only VCOV traits are of interest.

Monitoring the temporal and spatial variations of the VCOV has many potential
breeding applications [124]. The quantification of vegetation cover fraction of crops is a
major issue in remote sensing with many established methods [52,125–127]. However,
despite the great potential for identifying early vigour genotypes and the fact that bridging
phenomics and genetics is a step towards a more powerful genetic analyses, the trait
is hardly used by the breeding community. In this study, the potential of the trait was
shown by the outperformance of the average VCOV values of the S42IL compared to the
Scarlett variety. In addition, it is also an informative trait, and was selected in our yield
prediction models.

4.3. Yield Prediction

In the following, only the results of the GLM models are discussed.
The coefficient of variation of the yield measured in the field was highest in HAL and

lowest in IPK and also the yield prediction of approach 1 revealed the highest predictive
power in HAL and lowest in IPK (Figure 5a), indicating that a larger variation of the
predicted trait may enable higher r2 values. Similar correlations were also found in other
yield modelling studies [28,29,128]. The indication that in some cases a more accurate
yield prediction was achieved after precipitation shows a possible positive correlation
between the water status of the plant represented by the VIs and the final plot yield. If this
is the case, measurements after recent rainfall, subsequent to a period of drought, would
be advantageous compared to measurements during continuous dry periods. From a
biological point of view, more drought stress tolerant genotypes might be able to re-hydrate
faster, which is reflected in large VI differences that might also have an impact on the final
yield and its prediction.

Approach 2, which consisted of a data fusion of several VIs, HEI and VCOV informa-
tion, resulted in better yield prediction models for both multispectral and RGB datasets and
is in accordance with the findings of multiple additional studies [94,129–131]. Furthermore,
the correlation between precipitation and prediction accuracy was less pronounced than
in approach 1, which may indicate that multiple traits were able to break this correla-
tion, which seems to be the case at least for spectral indices. Yue et al. [132] were able
to show that using multiple spectral indices to estimate crop parameters is superior to
using a single index. However, the high variability of prediction accuracy does not allow a
recommendation for favorable measurement dates over the vegetative period.

The stacked data of approach 3 showed the best prediction power with the high-
est accuracy in HAL, which might be related to a higher variation of the studied traits.
For example, HAL was the only environment where no growth regulators were applied,
resulting in greater trait variation for canopy height and the target trait plot yield. In
Herzig et al. [133] it was also found that the variation of the target trait influences the
predictive accuracy of regression models. The gradually increasing predictive accuracy of
yield over successive growth stages of plants is a scientific consensus and was observed in
a number of studies [29,132,134].

Figure 7 and Table S6 show the traits selected for yield prediction and their effect
size, where HEICHM is an important information for yield prediction. Several stud-
ies demonstrated that canopy height information can significantly improve yield mod-
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elling [29,48,62,94,129,131,135]. In this context, the height information of all development
stages are important for the yield modelling, which raises the question of the optimal
phenotyping time of each trait for the best yield prediction model. Thus, not only the final
height, but also the timing of canopy height information with the largest possible variation
and the temporal pattern of HEI accumulation are crucial for the model performance. Since
the height information could only be extracted from the RGB imagery, it was only included
in the RGB dataset and not in the multispectral dataset. Thus, the additional spatial traits
in the RGB dataset contributed decisively to the fact that the yield prediction accuracy
between the RGB and the multispectral dataset is at a similar level.

VCOV was included in both RGB and multispectral datasets and revealed continuity
of being included in the yield models indicates the information gain that VCOV traits
can provide to improve yield prediction. For example, high VCOV values at an early
growth stage might represent a good germination rate and a high leaf area index, which
in turn affect final grain yield already at an early stage. Considering the low variance of
VCOV and the low repeatability, especially in MER (see Section 3.2), these results were
surprising. However, a correlation between VCOV and yield was confirmed in maize
by García-Martínez et al. [28] and Geipel et al. [129] achieved the best yield prediction
performance by implementing crop coverage as the second predictor variable in a study
with maize.

The spectral information nevertheless represents a large part of the estimation for
the yield modelling with environment-specific variations for individual Vis. For instance,
the water index NDWI, first described by Penuelas et al. [86] is an important estimator
in MER. The NDWI can be used to estimate the water concentration in plants and is
thus strongly associated with grain yield [39,136]. This is consistent with the observation
that MER showed the highest drought stress and that growth was limited by lack of
water, as indicated by the results of a thermal camera (data not shown). In addition,
the red edge reflectance index VOG [92], which was described to retrieve biochemical
pigments (especially chlorophyll) [137], showed environment-specific variations by playing
an important role predominantly in HAL and IPK.

The PSSRa and the REP index appeared to be less environment-specific as they
were equally important at all sites. The PSSRa was initially described as an estimator
for photosynthetic pigment concentrations [87] but was also associated with vegetative
biomass [35,138]. The REP index is calculated from the region of the red-near infrared
transition and has been shown to have high information content for vegetation spectra for
example chlorophyll content and as an indication of vegetation stress [139–141].

Attempting to merge the RGB and multispectral datasets to optimize yield prediction,
no significant improvement was observed, indicating that the advantages of the camera
systems do not add up and that there may be redundancy in the spectral information
of both camera systems. Another approach was to merge the data sets of the three sites
for each camera system separately, resulting in a moderate prediction power. The loss of
accuracy is associated with the robustness of the model, which is due to the merging of
the environments, which could also be shown in Wiegmann et al. [142]. A robust model
becomes more important when forecasting yield across environments and years, which is
the medium-term goal of remote sensing in agriculture.

The repeatability calculation of the predicted yield revealed high repeatability at early
stages of development, especially in IPK, which underpins the predictive accuracy of
these early prediction models. The significantly lower repeatabilities in HAL and MER in
comparison with IPK are indicating other sources of error in the field at these environments
that may have negatively affected repeatability, such as soil in homogeneities. Based on
this, the repeatability of the predicted yield in HAL and MER was expected to be at a lower
level than in IPK and not to exceed the YLDGT repeatabilities from HAL and MER.

The subsequent genotype association study with the predicted yield data could only
detect significant lines in IPK. Six of the nine significant lines detected in the YLDGT
data correspond to Zahn et al. [80]. The overlap of detected significant lines between
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YLDGT and the multispectral dataset increases with higher r2 and false positives were only
detected between the beginning and the middle phase of the vegetation period, indicating
that increasing prediction accuracy reduces false positive detections. In addition, false
negative lines (lines detected within the YLDGT but not with the predicted yield) of the
predicted yield of the multispectral and RGB datasets were a result of overestimation of the
measured yield. This may be caused by a different physiological composition of S24IL_111
compared to the rest of the training population, leading to a kind of mimicry effect. For
example, a high chlorophyll content in the leaf could be associated with a high yield in the
training population. Under the exemplary assumption that the S24IL_111 line could have
an increased chlorophyll content but cannot convert this into a higher yield due to a lack of
remobilization efficiency, this would be contrary to the modelled association between yield
and chlorophyll content. This type of correlation breaker would result in an overestimation
of the yield of the line and could have caused the false negative detection. The results of
the association study, especially those of the models at the end of the vegetation period
with reduced false positive lines, can be used for plant breeding. A robust and increased
predictive performance through several trial years and environments could make a more
accurate association study with fewer false negatives possible.

5. Conclusions

Remote sensing from UAV is expected to be an important new tool to assist breeders
and farmers in precision agriculture, but there has only been a slow adoption of promising
UAV applications [143]. Therefore, this study used a simple practical approach to objec-
tively and precisely phenotype traditional and new traits in a high throughput manner
based on the methodological comparison of two UAVs equipped with different camera
systems. The high-resolution RGB imagery could be used with the help of the SfM algo-
rithm to extract the relative canopy height with a high precision across the entire vegetation
period. The results of the genotype association study with the high overlap between signif-
icant lines of UAV estimated height and field measured height demonstrate the practical
use for plant breeding. The determination of vegetation cover at the beginning of the
vegetation period is only feasible by means of objective sensor technology. Therefore, RGB
and multispectral imagery were used to extract the percentage of plant cover within a plot.
The results of the RGB dataset showed a more precise and consistent extraction of VCOV
across sequential flights, making it more favorable for this trait than the multispectral
data set.

Moreover, non-invasive UAV phenotyping of many plants at many different time
points improves accurate growth analysis and enables the identification of genotype
association dynamics, which has been successfully executed for the traits canopy height
and vegetation cover. For this kind of application, it is crucial to determine the correct
time interval of phenotyping depending on the trait. The phenotyping interval of 7 days
for the trait vegetation cover appeared to be too large, giving potential for improvement.
Nevertheless, vegetation cover and the modelled canopy height were important for yield
prediction, which could be quantified by their relative contribution to the predicted yield
estimates. The fusion of spectral vegetation indices and spatial traits like canopy height
and vegetation cover provides complementary information for the estimation of yield,
which is confirmed in numerous studies, at least for canopy height [129,131].

In particular, the yield models based on the RGB imagery could be improved by
the spatial traits, resulting in the prediction performance of both camera systems being
on the same level. If the main focus is on yield prediction, the RGB system used in
this study would be preferable to the multispectral system due to the lower costs and
consumer-friendly handling in image acquisition and image processing. Multispectral
monitoring seems to be more important for answering research questions such as the
interaction between genotype, environment and management (G × E ×M), as it enables
better resolution of the relationship between plant physiological status and sensor data,
which can be used to improve understanding of yield gaps. However, the results of the
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multispectral camera refer only to the sensors, filters and simplified methods selected
here. For example, an additional filter in the green spectral range, a pixel-based and not
plot-based evaluation or an additional atmospheric correction by spectral references in the
field could greatly improve the results. In addition, it is also feasible to extract spatial traits
such as canopy height and vegetation cover from multispectral data, which would also
improve yield prediction. Unfortunately, the results of this approach in this study were too
imprecise to differentiate the small differences in genotypes.

Modelling based on single time points resulted in large differences in predictive
performance across the vegetation period, whereas the accumulation of time points showed
a steady improvement of the predictive models. In contrast, the fusion of RGB and
multispectral datasets did not improve yield prediction, indicating redundancy in the
datasets. Merging the datasets across environments resulted in a general predictive model
with average precision for the three environments. In order to exploit the full potential of
UAV applications and to strengthen acceptance in the user community, transferability of
the models to different years, populations, and environments is required. To achieve this
maturity of UAV remote sensing, a broad and standardized data collection and modelling
procedure is necessary to establish general and accurate yield prediction models.
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genotype association study based on YLDGT and predicted YLD of the stacked dataset approach
with the GLM model. Table S8. Predicted yield of the stacked dataset approach with the GLM model.
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