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Abstract: Watershed management is the study of the relevant characteristics of a watershed aimed
at the use and sustainable management of forests, land, and water. Watersheds can be threatened
by deforestation, uncontrolled logging, changes in farming systems, overgrazing, road and track
construction, pollution, and invasion of exotic plants. This article describes a procedure to automati-
cally monitor the river basins of Galicia, Spain, using five-band multispectral images taken by an
unmanned aerial vehicle and several image processing algorithms. The objective is to determine the
state of the vegetation, especially the identification of areas occupied by invasive species, as well as
the detection of man-made structures that occupy the river basin using multispectral images. Since
the territory to be studied occupies extensive areas and the resulting images are large, techniques
and algorithms have been selected for fast execution and efficient use of computational resources.
These techniques include superpixel segmentation and the use of advanced texture methods. For
each one of the stages of the method (segmentation, texture codebook generation, feature extraction,
and classification), different algorithms have been evaluated in terms of speed and accuracy for
the identification of vegetation and natural and artificial structures in the Galician riversides. The
experimental results show that the proposed approach can achieve this goal with speed and precision.

Keywords: river basin; watershed management; habitat assessment; invasive species; Galicia; texture
analysis; vegetation classification

1. Introduction

River ecosystems and their basins have been subjected to profound disturbances,
mainly due to the increase in human population and consequent degradation of natural
resources, therefore the protection of these ecosystems is essential. A well-functioning
watershed carries out nutrient cycling, carbon storage, erosion, sedimentation, and flood
control, soil formation, and water filtration. They supply drinking water, water for agricul-
ture and manufacturing, a habitat to numerous plants and animals, as well as opportunities
for recreation and the enjoyment of nature. Watershed management is the study of the soil,
plant, and water resources of a catchment and the process of creating and implementing
plans, programs, and projects aimed at their conservation and sustainable exploitation.
Some objectives of watershed management are the protection of drinking water sources
from environmental pollutants, limiting the supply of fertilizers from agricultural lands,
mitigating the risk of flooding, and restoring riparian vegetation [1–5]. A very influential
report by FAO describes the experiences from different watershed management projects
conducted in several countries [6]. Figures 1–3 show some examples of rivers and riparian
vegetation in Galicia, their wild fauna, and threats to which they are subjected.
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Figure 1. Photographs of rivers and riparian vegetation in Galicia, Spain, taken in spring 2021.

Figure 2. Although transformed by human activity, many riparian areas conserve a part of their wild
animals: great tit (Parus major), European robin (Erithacus rubecula), whinchat (Saxicola rubetra), and
common blackbird (Turdus merula) (Santiago de Compostela, Spain).
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Figure 3. Threats to riparian zones include obstacles in the course of the river, pollution, deforestation,
and eucalyptus plantations (Santiago de Compostela, Spain).

Remotely sensed imagery has the potential to assist watershed management. Vegeta-
tion studies in river basins have traditionally been carried out through in-situ surveys, but
there is the problem that they require a large amount of work and there are also areas that
are difficult to access. The use of imaging systems, whether from satellites or airplanes,
facilitate the study of large areas of land [7]. However, remote sensing techniques, when
applied to watersheds, present some difficulties [8]. Riparian vegetation is difficult to dis-
tinguish because of its dense distribution and similar spectral and textural characteristics
of different species.

The spectral characteristics of the wetlands and riparian vegetation are determined
by the composition of the plant communities, the meteorology, and the hydrological
regime, which exhibit significant variability in the different locations and throughout
the year. The confusion between the different cover classes can be exacerbated by the
presence of topographic shadows, which are often mistaken for dark flooded surfaces. In
addition, the canopy cover of coniferous forests can hide small wetlands and transition
zones when viewed from above. Furthermore, the variable light and climatic conditions
make it impossible to apply an automated process in a uniform way [9]. These problems
are aggravated by the small percentage of the areas occupied by wetlands and riparian
vegetation in the landscape, which makes the application of classification algorithms
difficult due to the existence of more abundant land cover classes.

Unmanned aerial vehicles (UAV) are an efficient and low-cost method for the charac-
terization of vegetation over large areas [10,11]. An example of UAV is shown in Figure 4.
The miniaturization of high-quality sensors, such as multispectral and hyperspectral imag-
ing systems, and the application of advanced processing algorithms makes it possible to
minimize the difficulties listed above [12]. Some remote sensing methods using multispec-
tral and hyperspectral imagery have been applied to river basin characterization on a large
scale. In [13] ground-based data in conjunction with low-altitude UAV imagery was used
to assess vegetation and ground cover characteristics in central Oregon, USA. Reflectance
characteristics from multispectral imagery (RGB, near infrared, and red-edge wavelengths),
several vegetation indices (including NDVI) and SVM supervised classification were used
to estimate the canopy cover and to identify different vegetation species at the watershed.
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Figure 4. A UAV like the one used in this study.

A procedure to map riparian vegetation in the middle Rio Grande River, New Mexico,
was presented in [14]. Airborne multispectral digital images and an iterative supervised
classification procedure were used in that study. At each iteration, the existing signature set
was used to classify the image using a maximum likelihood scheme. In [15] a classification
of riparian forest species and their health condition using multi-temporal hyperspatial and
light detection and ranging (LiDAR) imagery from UAVs was carried out. Different spectral,
vegetation, and texture indices were used, in conjunction with a multiscale segmentation
and a random-forest classifier. For its part, [16] shows how a detailed riparian vegetation
mapping can be used to prioritize conservation and restoration sites around the San
Rafael River, a desert river in south-eastern Utah, United States. They use multispectral
satellite imagery and oblique aerial photography, in conjunction with multi-resolution
image segmentation and classification rules based on object properties such as spectral
reflectance, shape, size, and neighborhood relations.

Since the spectral characteristics of the different species of vegetation in the riparian
zones are very similar, and also present large individual variability, techniques based
on textures have been developed. Textures can be defined as the pattern of microstruc-
tures (coarseness, contrast, directionality, line-likeness, regularity, and roughness) that
characterizes the image [17]. Different papers focused on the classification of vegetation
species using texture features in color, multi or hyperspectral imagery can be found in
the literature. The simplest methods to characterize vegetation using textures are based
on color histograms, statistical measures (mean, standard deviation, skewness, kurtosis,
entropy, etc.) [18,19]. Two simple methods for texture extraction, based on the analysis
of patterns in the neighborhood of a pixel, are local binary pattern (LBP) and gray-level
co-occurrence matrix (GLCM) [20,21].

More elaborate texture methods based on local invariant descriptors, such as speeded-
Up robust features (SURF) and scale-invariant feature transform (SIFT), can also be used
for characterizing vegetation species [22,23]. A classification chain based on textures may
be combined with other types of features obtained by UAVs to improve the classifica-
tion results. Among them are spectral features, vegetation indices, and morphological
measures [18,24]. In [25] different techniques for vegetation classification in multi and hy-
perspectral images based on texture extraction and bag of words (BoW) are compared. The
techniques are structured into three groups: codebook-based, descriptor-based, and spec-
trally enhanced descriptor-based groups. Finally, convolutional neural networks (CNN)
can also be used to classify vegetation exploiting textures, although their computational
complexity and execution times are much higher [26,27].

The main objective of this work is to monitor the river basins of Galicia, Spain, using
five-band multispectral images taken by UAVs and appropriate image processing algo-
rithms, in order to replace in-site surveys, which require an enormous amount of time and
effort. The software solution presented consists of a supervised classification chain based
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on spatial-spectral characteristics and texture descriptors at superpixel level. Since the
study is carried out on a large scale, the selected algorithms are fast and various strategies
are used to reduce execution times. A previous version of this work was presented in [28].

The rest of the article is organized into four sections. Section 2 presents the methods
used in this study, including the description of the proposed classification chain involving
superpixel computation and texture extraction. The experimental results for the eval-
uation in terms of classification performance and computational cost are presented in
Section 3. Then, the discussion is carried out in Section 4. Finally, Section 5 summarizes the
main conclusions.

2. Materials and Methods

In this section we present the methods and procedures used for the monitorization of
the river basins in Galicia.

2.1. Study Area

Galicia is a region in the north-west of Spain with Atlantic climate, mild temperatures
and abundant rain most of the year, although summers can have low rainfall [29]. A map
with the main rivers of this region is shown in Figure 5. In Galicia, riverside forests cover
an area of 25,000 hectares with a great diversity of arboreal, shrub, and herbaceous species
distributed as follows [30]:
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Figure 5. Map of the main rivers of Galicia, Spain, showing the areas studied in this work (data from
https://sig.mapama.gob.es/id_tax/ (accessed on 13 May 2021)).

• According to the level of water required by the trees, as observed in the cross section
in Figure 6, several bands of land can be distinguished. In the first line, closer to the
river, alders (Alnus glutinosa) and willows (Salix atrocinerea) can be found; followed
by birch trees (Betula pendula and B. pubescens), hazelnuts (Corylus avellana), ash trees
(Fraxinus angustifolia, and F. excelsior) and white maples (Acer pseudoplatanus); and
further away from the river there are laurels (Laurus nobilis), oaks (Quercus robur), and
elms (Ulmus minor);

https://sig.mapama.gob.es/id_tax/
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Figure 6. Cross section of a river basin showing riparian vegetation in Galicia.

• As for shrubs, there are species such as the black elderberry (Sambucus nigra) and
the crawfish (Frangula alnus); climbing plants, among which ivy (Hedera helix), the
honeysuckle (Lonicera periclymenun), dulcamara or devil’s grapes (Solanum dulcamara),
and hops (Humulus lupulus); as well as thorny rosaceae, mainly blackberries (Rubus fru-
ticosus);

• As for herbaceous plants, there are sedges, grasses, and reeds; ferns, mainly the royal
fern (Osmunda regalis); and other vascular plants such as devil’s turnips (Oenanthe
crocata), cattails (Typha latifolia), yellow lilies (Iris pseudacorus), loosestrife or puffins
(Lythrum salicaria), daffodils (Narcissus cyclamineus), and spearmint (Mentha aquatica)
can be found.

The natural environment of the river banks in Galicia has undergone a profound
transformation due to the intense anthropic pressure that it has historically endured. The
alluvial plains that originally housed phreatophyte forests have been transformed into
cultivated areas and meadows and, subsequently, into pine or eucalyptus plantations.
Figure 7 shows photographs of tree species typical of the riparian zones of Galicia and the
invasive species pine and eucalyptus.

Figure 7. Tree species present in the riparian zones of Galicia. Top: alder (Alnus glutinosa), large
gray willow (Salix atrocinerea), silver birch (Betula pendula), and white maple (Acer pseudoplatanus).
Bottom: common oak (Quercus robur), elm (Ulmus minor), and the invasive species maritime pine
(Pinus pinaster) and Eucalyptus globulus.
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Pines, mainly Pinus pinaster, but also P. sylvestris, and P. pinea, are native species of
the Atlantic region, but they are not typical tree species of river banks. Pines have been
used for reforestation in places where they did not grow naturally for the use of wood.
They replaced native oak or chestnut forests that were being cut down, and currently these
conifers occupy 30% of the Galician forest area.

Eucalyptus globulus is an invasive tree in Galicia, which, due to its high expansive
capacity, replaces autonomous species. It currently occupies a 20% of the Galician forest area
and threatens the Atlantic forest. Eucalyptus on river banks eliminate native vegetation and
change the load of leaves in rivers, providing material that is more difficult to decompose.
Consequently, rivers in which there is a greater presence of eucalyptus will have a lower
quality of organic matter, reducing the abundance and diversity of detritivore organisms.
In addition, eucalyptus trees change the seasonality of the ecosystem, since most of their
leaves fall in summer in a way that is not synchronized with the communities that feed
on this matter. Eucalyptus also burns fast and easily, which favors forest fires and causes
erosion and deterioration of the land. Additionally, the trend of global climate change
towards drier environments could aggravate this problem, since fast-growing trees such as
eucalyptus or pines consume much more water than native species. Therefore, eucalyptus
trees reduce the diversity and life of river banks and increase the risk of rivers drying out
in summer.

2.2. Objectives

The overall objective of this study is the classification of the vegetation in the Galician
hydrographic basins, as well as the detection of natural and artificial elements up to
a maximum distance of 100 m from the river. This study is part of a broader project
of integrated water management in order to optimize water resources in Galicia, while
preserving the balance of the natural environment and river ecosystems, respecting the
achievement of the environmental objectives established for the water bodies and attending
to the new scenarios determined by climate change [4]. Specifically, the aim is to easily
monitor the status of Galician hydrographic basins and detect alterations, such as new
constructions, felling of trees, or eucalyptus plantations and crops that could have been
planted illegally. Specifically, two sub-objectives are considered:

• Detection of natural or artificial obstacles in its proximity that may modify the river
bed and constructions (roads, paths, and other constructions) that may damage the
ecosystem;

• Characterization of the areas covered by vegetation, in particular distinguishing
between native and invasive tree species.

The identification will be carried out over five-band multispectral (RGB, red-edge, and
infrared) images obtained by a UAV. The spectral characteristics of the different elements
as captured by this sensor are shown in Figure 8. Specifically, the following 10 classes
are considered:

• Natural elements: water, bare soil, and rocks;
• Artificial elements: asphalt, concrete, and tiles;
• Vegetation types: meadows, native trees, pines, and eucalyptus.

This class selection was made taking into account the elements present in the hydro-
graphic basins of Galicia, as well as those that are of interest for watershed management.
For example, the class “soil”, in addition to identifying rural roads, can be used to detect
deforestation. In Galicia, houses usually have roofs covered with reddish tiles or made
of fiber cement. The class “concrete” is used to detect this second type of roof, as well
as the rest of the constructions, which are usually made of concrete. The class “asphalt”
represents the roads. Regarding the types of vegetation, four classes have been selected in
order to distinguish the native species from the invasive ones.

Since the multispectral signatures for the different vegetation types are very similar,
the proposed method is based on the extraction of texture information from the images.
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Moreover, native trees have similar canopies and, hence, similar texture features, which are
however different from the canopies of pines and eucalyptus. Therefore, the use of texture
methods allows us to distinguish native trees from pines and eucalyptus. Fast algorithms
have been selected for classifying large areas of land.

Non-vegetation classes Vegetation classes

Native trees Pines

1-Water

2-Bare soil

3-Rock

4-Asphalt

5-Concrete

6-Tiles

7-Meadows

8-Native trees

9-Pines

10-Eucalyptus

Figure 8. Five-band multispectral characteristics of the elements considered in this study. Top:
Average spectrum of the non-vegetation and vegetation classes. Bottom: Mean value, standard
deviation, and spectrum range of two specific classes, native trees and pines.

2.3. Classification Chain

The proposed classification process for monitoring riparian areas in Galicia is shown
in Figure 9. It is a supervised classification procedure that requires training from samples
(pixels) in which the type of material or vegetation is known. The output is a color
classification map that assigns to each pixel a class label from the 10 available. The
proposed classification chain includes four modules: superpixel computation, texture
codebook generation, texture feature encoding, and classification.

Texture Code−

book Generation

(GMM, kmeans)

Superpixels

 SLIC)

(Waterpixels,
Classifier

no−veg.

7.Meadows

8.Native Trees

9.Pines

10.Eucalyptus

1.Water

2.Bare Soil

3.Rock

4.Asphalt

5.Concrete

6.Tilesveg. /

Classifier

no−veg.

Multispectral

Dataset

Texture Feature

VLAD, BoW)

Encoding (FV,
Classifier

veg.

Figure 9. Diagram of the classification chain used in this study.
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2.3.1. Superpixel Computation

Superpixel algorithms divide the image into approximately similarly sized segments,
whose shape is adapted to the characteristics of the image. In this way, sets of pixels of
uniform content called superpixels are obtained. The shape regularity of the superpixels
or their adaptation to the structures of the image can be adjusted usually by means of a
parameter. Superpixels can be used both as an initial simplification stage in classification
operations and for the detection of objects and structures. Different superpixel algorithms
have been proposed, such as ETPS, seeds, ERS, QS, LSC, etc. [31]. Algorithms for generating
superpixels can be broadly categorized as either graph-based or gradient ascent methods.

Graph-based algorithms tend to be slower than those of the second category (complex-
ity O(N log N) or higher, where N is the number of pixels of the image), and frequently they
do not offer an explicit control over the number of superpixels or their compactness [32].
Regarding the gradient ascent algorithms, SLIC [32] and waterpixels [33] are among the
fastest ones. In both algorithms all operations are local (limited to the neighborhood of the
superpixel), consisting of the calculation of distances in the case of SLIC or comparisons
and propagation of labels in the case of waterpixels. Despite their simplicity, SLIC and
waterpixels adhere well to boundaries and allow easy control of segment size and compact-
ness. Both algorithms will be considered for the proposed classification chain. Examples of
the segmentation maps obtained are shown in Figure 10.

SLIC Waterpixels

Figure 10. Examples of superpixel computation with segments of an approximate length of 20 pixels
using SLIC and waterpixels segmentation algorithms.

2.3.2. Texture Codebook Generation

The objective of this module is to generate a codebook with a set of basic elements
or primitives (called textons) that can be used to represent any texture present in the
images. The design principle is to obtain a compact and discriminative codebook that
allows classifying the textures with precision [26]. To obtain the dictionary elements,
techniques ranging from predefined to learned ones and convolutional neural networks
(CNN) can be used. Examples of techniques with predefined codebooks are LBP, GLCM,
filter-based methods, and keypoint feature extractors (SURF, SIFT). On the other hand, two
fast and efficient algorithms for generating a learned codebook are kmeans clustering and
Gaussian mixture modeling (GMM). Dictionary elements in kmeans are the cluster centers
while GMM uses both mean centers and covariances to describe the spreads of the clusters.
Additionally, GMM can capture overlapping distributions in the feature space. These two
algorithms and CNNs will be considered for the proposed classification chain.

2.3.3. Texture Feature Encoding

Given the generated texture codebook and an image, feature encoding represents the
image based on the codebook. It is a key component that decisively influences texture
classification in terms of both accuracy and speed. Three efficient feature encoding methods
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that will be considered are bag of words (BoW), vector of locally aggregated descriptors
(VLAD), and Fisher vectors (FV). BoW builds a histogram counting the number of local
features assigned to each codeword and, therefore, encodes the zero order statistics of
the distribution of local descriptors. VLAD accumulates the differences of local features
assigned to each codeword. Finally, FV extends the BoW by encoding higher order statistics
(first and second order), including information about the fitting error [26]. The differences
among the different methods is shown in Figure 11. In the present study, the texture
information will be used to distinguish the different elements present in each superpixel. In
Figure 12, textures corresponding to oaks, pines, and eucalyptus are shown. They present
observable differences in terms of their canopy structures.

2.3.4. Classification

Once the spatial or texture features have been obtained, the final operation is classi-
fication. Three supervised classification algorithms are widely used, since they are fast
and provide good results: SVM, KELM, and random forest. In the proposed classification
chain, the classification is performed at superpixel level, that is, each superpixel provides a
single input sample to the classifier, which can be the average of the pixels in the segment
or the texture feature. As reference values for the superpixels used in training, the class
of the central pixel of each segment is taken. A hierarchical scheme of three classifiers is
used, since the separation between plant species is especially complicated due to their very
similar spectra and individual variability. First, a separation is made into two classes: plant
species and the rest. A second classifier then separates the different plant classes from each
other. Finally, a third classifier performs the separation of the different non-plant classes.
This is shown in detail in the diagram of Figure 9.

2.4. Datasets

With the objective of monitoring the interaction of the masses of native vegetation
with artificial structures and river beds, eight locations in Galicia were studied. They were
selected based on the presence of native vegetation, eucalyptus, and pines. The native
vegetation, that populates areas near the water streams due to its ability to survive under
unstable water conditions, includes oaks, birches, alders, and willows. Different artificial
structures are also present and are identified: rooftops covered by tiles, some concrete
structures, asphalt roads, stone structures, and bare soil roads. These locations correspond
to stretches of the rivers Oitaven, Xesta, Eiras, Ermidas, Ferreiras, Das Mestas, Mera, and
Ulla, which are marked on the map of Figure 5.

FV

3

2

1

1

2

BoW VLAD

3

Figure 11. Comparison of three texture feature encoding methods: BoW counts the number of local
features assigned to each codeword (zero order statistics of the distribution), VLAD computes the
mean of feature vectors assigned to each codeword (first order statistic), while FV encodes first and
second order statistics.
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Figure 12. Examples of texture codebook generation. Top: oak, eucalyptus, and pine canopies, and mean of their spectral signatures.
Middle: clusterization and spectral signatures of the centers using kmeans with eight classes. Bottom: clusterization and spectral
signatures of the centers using GMM with eight classes.

The datasets were captured by the MicaSense RedEdge multispectral camera mounted
on a custom UAV. This sensor provides the blue (475 nm), green (560 nm), red (668 nm),
red-edge (717 nm), and NIR (840 nm) channels. The flights were conducted during the
summer months of 2018, 2019, and 2020, on sunny days around noon and early afternoon
in order to minimize shadows. Each flight captured data over long distances at a height of
120 m, with a spatial resolution of 10 cm/pixel. Each dataset was built as the orthomosaic
of the frames captured by the UAV, each of which is of size 1280× 960 pixels.

The usual registration, geometric and light corrections operations were carried out.
Specifically, the radiometric calibration of the sensor was carried out using the calibration
panel and the irradiance sensor available in the camera. Subsequently, the images were
processed with the Pix4D software. The option that allows irradiance information to be
included at the time of capture was selected for correction. This software was also used to
create the flight plan, carry out geometric corrections and generate the orthomosaic. As an
example, Figure 13 shows the route followed by the UAV over the Oitaven river. The left
part of Figure 14 displays a color composition of the datasets obtained.
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Figure 13. Fight plan for the Oitaven river. The path followed by the UAV is shown with a solid red
line and the position of the frames captured by the UAV with red markers. The control points were
placed roughly at the corners of the planned route before the flight.

The construction of accurate reference data was a long-term process, involving forestry
experts and the authors of the paper. Information from vegetation inventories, field visits,
and the expertise of the forestry experts, along with the analysis of canopy textures, were
the main elements considered in producing the reference data. The reference maps for the
rivers Oitaven, Xesta, Eiras, Ermidas, Ferreiras, Das Mestas, Mera, and Ulla can be seen in
the right part of Figure 14. The characteristics of the eight datasets are detailed in Table 1.

Table 1. Datasets used in this study. The column “Pixels” indicates the number of data values in the
dataset, while the column “Superpixels” indicates the number of superpixels containing data values,
those that are available in the reference data, and those used for training.

Dataset Location Size Pixels Superpixels

Oitaven
42◦22′15.48′′N
8◦25′47.07′′W

6722 × 6689
(760 × 760 m2)

22.04 M 78,383/21,650/3242

Xesta
42◦23′34.95′′N
8◦21′21.23′′W

17,202 × 3848
(1945 × 435 m2)

40.00 M 149,727/61,394/9207

Eiras
42◦20′45.26′′N
8◦30′10.81′′W

18,221 × 5176
(2260 × 660 m2)

38.35 M 142,110/15,435/2309

Ermidas
42◦22′48.43′′N
8◦24′53.36′′W

18,972 × 11,924
(2190 × 1390 m2)

65.56 M 248,742/23,188/3474

Ferreiras
43◦32′46.96′′N
7◦57′16.66′′W

9219 × 9335
(740 × 750 m2)

40.19 M 156,331/54,564/8181

Das Mestas
43◦38′30.24′′N
7◦58′44.08′′W

9040 × 4915
(920 × 510 m2)

27.17 M 107,979/39,229/5882

Mera
43◦34′31.15′′N
7◦52′34.81′′W

22,116 × 10,718
(2770 × 1370 m2)

99.24 M 397,799/59,989/8995

Ulla
42◦49′14.32′′N
7◦54′5.29′′W

16,555 × 4220
(1420 × 380 m2)

46.01 M 197,094/1461/217
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Figure 14. Multispectral datasets (color composite and reference data) used in this study: Oitaven, Xesta, Eiras, Ermidas,
Ferreiras, Das Mestas, Mera, and Ulla rivers.
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3. Results

This section contains information about the experimental conditions, parameter selec-
tion, and classification results obtained. The experiments were carried out on a low-end PC
with a dual-core Intel Pentium G3220 at 3.00 GHz and 8 GB of RAM. The code was written
in C and compiled using gcc under Ubuntu 20.04. CNN code was compiled in CUDA and
executed on a NVidia GeForce GTX 1050 GPU with 2 GB of memory.

Classification results in terms of overall accuracy (OA), average accuracy (AA), and
execution times are presented. In all experiments, 15% training superpixels are used, as
shown in the fifth column of Table 1. For each of the superpixels used in training only one
reference value is used. In the test stage, the classifier provides a class per superpixel, and
this class is assigned to all the pixels of the superpixel. Those pixels used during training
are excluded in the accuracy calculation. The proposed classification chain was run on the
eight datasets, classifying superpixels of riparian tree crowns and artificial and natural
elements into 10 classes.

3.1. Algorithm Comparison

The aim of the first set of experiments is to analyze how the different algorithms
influence the classification accuracies and the execution times. Table 2 shows the results of
the available alternatives for each module using the Oitaven dataset with 15% of training
superpixels. The best accuracy results were obtained for the WP, GMM, FV, and KELM
algorithms, which are considered the base chain. The rest of the measurements were taken
substituting the indicated algorithm in the base chain.

Table 2. Classification accuracies and execution times obtained by the different algorithm alternatives
for each module. The Oitaven dataset and 15% training superpixels were used in the experiments.
Execution times are indicated in seconds (the time with an asterisk indicates that the corresponding
algorithm was run on a GPU).

Module Algorithm OA AA t

Superpixel SLIC 91.75 83.56 26
WP 93.03 87.18 28

Texture None 82.71 71.86 0
Codebook kmeans 91.81 84.72 30
Generation GMM 93.03 87.18 7

MAD 82.71 71.86 2
Texture BoW kmeans 82.39 72.16 15
Feature BoW GMM 80.12 62.99 50

Encoding VLAD 91.81 84.72 18
FV 93.03 87.18 73

SVM 92.51 86.00 45
Classifier KELM 93.03 87.18 92

RF 86.48 75.62 55
CNN 88.93 80.08 179 *

For the superpixel computation module the algorithm that provides the best results in
terms of classification accuracy is waterpixels followed by SLIC, both with similar execution
times. In both cases, the algorithms have been configured to provide segments with a side
length of 20 pixels. However, the sizes provided by the algorithms are approximate, since
the assignment of pixels to superpixels depends on the structures of the image. Besides,
the SLIC algorithm contains a disconnected region correction stage, while watershed tends
to over-segment. To avoid these problems, both algorithms include a segment aggregation
stage that requires the superpixels to contain a minimum of 100 pixels. In our experiments,
the precision results provided by waterpixels were better than those of SLIC, due to the
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fact that, in the former, the segments effectively generated were closer to the requested size.
Alternatively, other superpixel algorithms, such as ETPS, could be used in this module, but
they have a higher computational complexity, which is a problem given the large size of
the images used.

Regarding the texture codebook generation module, the best results were obtained by
the GMM clustering algorithm, followed by kmeans. GMM builds the codebook from the
pixel values using Gaussian distributions that take the mean and deviation as parameters,
while in kmeans the codebook is generated, taking into account only the cluster centers.
Therefore, kmeans only considers spherical clusters, while GMM can be adjusted to elliptic
clusters. Another implication of its covariance structure is that GMM allows a point to
belong to each cluster to a different degree, while in kmeans a point belongs to one and
only one cluster. For the row “none” in the table, no codebook was generated, so for the
characterization of the segments in the next module, the averages of the values of the
segment pixels contained within a median absolute deviation (MAD) were used.

In any case, for the construction of the codebook, it is not necessary to use all the pixels
of the dataset, which would take excessive computation time. It is enough to consider a
representative set of pixels that captures the variation present in the dataset. For GMM a
subset of 10,000 pixels was used, while for kmeans 100,000 pixels were necessary to obtain
similar results. This is the reason why kmeans took a longer execution time than GMM. In
general, the higher the number of clusters, the higher the classification precision, but the
execution time also increases. In our case, 80 clusters were computed for both algorithms.

Regarding the texture feature encoding module, five algorithms were considered: MAD,
BoW kmeans, BoW GMM, VLAD, and FV. The simplest algorithm is MAD, which calculates
the average of the pixels within each superpixel. On the other hand, the algorithm that
provided the best results was FV, followed by VLAD. On the contrary, the worst results were
provided by the two versions of BoW. BoW counts the number of local features assigned
to each codeword (zero order statistics of the distribution), while VLAD accumulates
the differences of local features assigned to each codeword (first order statistics) and FV
encodes the first and second order statistics. Encoding a larger amount of information
increases the accuracy of the classification, but it also increases the execution time. Thus,
the fastest algorithm is MAD, while the slowest algorithms are those based on GMM, that
is, BoW GMM, and FV. None of these texture feature encoding algorithms require the
setting of any relevant parameter.

Finally, for the classification module four algorithms were tested: SVM, KELM, random
forest, and CNN. The best results were provided by KELM and SVM. These two classifiers
are kernel-type algorithms that map the data to a larger feature space. In our experiments,
an RBF kernel with γ = 5 and C = 16 was used for both classifiers. On the other hand, the
final classification accuracies obtained by random forest were slightly worse. For its part,
CNN does not require the texture generation and encoding modules, but due to its com-
putational requirements the execution was carried out on a GPU. In our case, the CNN is
composed of a convolutional layer and two directly connected layers. For the convolutional
layer, five filters of size 28× 28, max-pooling of factor 2 and sigmoid activation function
were used, while the directly connected hidden layer contains 100 neurons and sigmoid
activation functions. The precision values obtained by the CNN were not remarkable since
this type of algorithms require a fairly large training set to provide good results. Regarding
the execution times, the best values were obtained by SVM followed by random forest.

3.2. Classification Performance

In the next experiments, the proposed classification chain was run on the eight datasets.
Three types of algorithm chains were considered: faster algorithms, those with the best
classification accuracies, and a deep-learning one. The fastest chain is made up of the
SLIC + MAD + SVM algorithms, the chain with better accuracy is WP + FV + 3KELM (the
3× notation refers to using a hierarchy of three classifiers, as shown in Figure 9, otherwise
only one classifier is used), while the deep-learning chain consists of WP + CNN. Table 3



Remote Sens. 2021, 13, 2687 16 of 22

shows the classification accuracies and execution times obtained for each chain. In all
experiments, 15% of training superpixels were used in each dataset. The average accuracies
for the eight datasets were AA = 87.79 and OA = 66.68 for the fastest chain, AA = 92.65
and OA = 80.39 for the most accurate chain, and AA = 89.67 and OA = 73.45 for the CNN
chain. The AA values obtained are lower than those of OA, because some classes contain
a very small number of labeled segments, resulting in lower accuracy results. Regarding
execution times, the average values were t = 199, t = 735, and t = 484 s, for the
corresponding three chains. It should be noted that the very long execution time of 2312 s
obtained for the Mera dataset (the largest one) was due to the fact that the computer RAM
was not enough for the execution of the program and the swap memory in the SSD unit
had to be used.

Table 3. Classification accuracies and execution times obtained by three algorithm chains: fast
(SLIC + MAD + SVM), high accuracy (WP + FV + 3KELM), and deep-learning (WP + CNN). Results
are for 15% of training superpixels and execution times displayed in seconds (t* indicates that the
CNN was run on a GPU).

SLIC + MAD + SVM WP + FV + 3KELM WP + CNN

Dataset OA AA t OA AA t OA AA t*

Oitaven 83.80 70.34 34 93.03 87.18 217 88.93 80.08 224
Xesta 91.89 65.44 59 96.18 81.88 701 94.47 73.17 573
Eiras 89.82 60.33 74 94.45 77.58 330 91.45 62.84 236

Ermidas 87.16 66.53 562 94.76 87.42 981 92.11 82.27 635
Ferreiras 86.78 65.11 80 90.27 74.69 705 86.53 68.75 541

Das Mestas 87.28 71.16 41 89.27 82.35 381 86.06 75.39 378
Mera 81.64 51.65 673 87.65 63.98 2312 82.19 54.97 1185
Ulla 93.94 82.85 68 95.56 88.04 250 95.61 90.10 103

Average 87.79 66.68 199 92.65 80.39 735 89.67 73.45 484

Finally, Table 4 shows disaggregated data for three of the datasets with the best
accuracy chain (WP + FV + 3KELM). It shows the accuracy results, as well as the number
of superpixels used for each one of the 10 classes. In general, the accuracies obtained for all
the classes are similar, except for those in which very few training superpixels are available.
These small classes also make the AA values lower than the OA ones.

Table 4. Disaggregated data for the Oitaven, Eiras and Ermidas datasets using the WP+FV+3KELM
chain and 15% of training superpixels. For each class, the number of superpixels with reference data,
the superpixels used for training, and the accuracies obtained are indicated.

Oitaven Eiras Ermidas

Class SP Train Acc. SP Train Acc. SP Train Acc.

1-Water 912 136 96.62 1929 289 98.57 447 67 84.25
2-Bare soil 484 72 78.41 424 63 71.71 472 70 80.77
3-Rock 349 52 75.46 726 108 88.54 747 112 79.44
4-Asphalt 128 19 85.53 233 34 89.92 2418 362 94.78
5-Concrete 458 68 77.85 111 16 64.22 95 14 73.55
6-Tiles 294 44 83.03 29 4 63.25 453 67 95.24
7-Meadows 6898 1034 95.18 2989 448 90.98 10413 1561 98.22
8-Native trees 7573 1135 94.65 8604 1290 97.96 3154 473 93.59
9-Pines 955 143 96.48 351 52 65.05 800 120 81.00
10-Eucalyptus 3599 539 88.58 39 5 45.55 4189 628 93.34

OA = 93.03, AA = 87.18 OA = 94.45, AA = 77.58 OA = 94.76, AA = 87.42

Once the classification maps are obtained, colors assigned to superpixels allow the
identification of the different elements in the river basin. In our case, the objective is the
detection of constructions (buildings, roads, paths, etc.) in the proximity of the river, as
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well as the characterization of the areas covered by vegetation, in particular distinguishing
between native and invasive tree species. Some examples are illustrated in Figure 15,
where the areas covered by artificial elements and the different types of vegetation are
easily identifiable.
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Figure 15. Classification results for the Oitaven and Ermidas datasets, where artificial elements and areas covered by
invasive tree species are easily identifiable.

4. Discussion

Accurate regional-scale maps of wetlands and riparian areas are essential for targeting
conservation and monitoring efforts. UAV technology provides a fast and cost-effective
method for forest cover assessment and species classification [10,11]. It also allows de-
tecting situations that threaten the ecosystem, such as altered flow regime, fish passage
barriers, habitat loss, and non-native vegetation. For the processing of the captured im-
ages, depending on the conditions and requirements of the study, different methods and
algorithms have been developed.

In some case studies, when high resolution images are available, the use of traditional
indices, such as NDVI and others may be sufficient [12]. In other cases, the analysis of
the spectral ranges can produce a subdivision in cover classes that allows distinguishing
specific tree species [13]. If a classification at the pixel level is not enough, spectral-spatial
techniques can be applied [34]. In other studies, the canopy height model, which provides
an estimation of dendrometric and structural features of the vegetation can be useful [15,24].

The approach presented in this paper has the advantage of ease of implementation and
low cost, since medium-sized UAVs and multispectral sensors can be used. The algorithms
used have been selected for their favorable relationship between precision, computational
resource consumption, and execution time. Given the type of sensor, the path followed by
the UAV and the fact that the vegetation is dense and compact, which makes it difficult
to delimit individual trees, it has not been possible to use the canopy height model. On
the other hand, the spectral ranges of the different tree species are very similar and largely
overlap. In small scenarios, these issues could be sufficiently compensated with very high
resolution, but this is hardly applicable to large areas.

Taking these limitations into account, a classification based on textures has been used
in this study. Although the canopy structure of the different native species (alders, willows,
birches, oaks, etc.) is very similar, they are easily distinguishable from pines and eucalyptus.
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This facilitates the identification of the areas occupied by these invasive species. It was
necessary to carry out field visits to identify the tree species and build the reference maps.

For the detection of objects and structures in images, different algorithms based on
textures have been proposed in the literature. These range from the most basic ones that
use very simple features [18] to the most advanced ones based on BoW, keypoints, or
CNNs [25,26]. LBP and GLCM [35] are two simple methods for texture extraction that use
information from the neighborhood of a pixel. They are also very fast methods, since they
do not require the codebook generation stage. However, in these algorithms the extraction
is carried out in predetermined locations, so they are only suitable for detecting objects
whose textures have regular patterns. In our case, the vegetation contains very irregular
texture patterns and the precision results obtained with these two methods have been
low. More advanced methods for the extraction of information in the neighborhood of a
pixel are based on the detection of keypoints and the construction of invariant descriptors,
among which SURF and SIFT stand out [22]. However, the construction of the descriptors
is a costly process which must be done in multiple positions within each superpixel. In
this study we have evaluated several BoW-based methods, including VLAD and FV for the
characterization of vegetation.

For the classification of an image using textures it is necessary to delimit regions on
which the texture features are computed. This is usually done using patches, segments, or
objects, often through multi-resolution techniques [15]. The procedure used in this study is
based on the generation of superpixels. Among the many superpixel algorithms that have
been proposed in the literature, we have evaluated SLIC and WP, which provide very good
results with short computation times.

Another advantage of our method is that, due to the limited resources it requires,
it should be applicable to larger areas than those considered in this work. As we have
indicated, the selected superpixel algorithms require only local operations, so they are
easily scalable. As for the texture codebook generation stage, it only requires a set of pixels
that captures the variability of the dataset, so it displays a low dependence on the dataset
size. The same happens with the training stage in the classification. Finally, texture feature
encoding and testing stages can be performed independently for each of the superpixels.

The method could be adapted to other regions in which the monitoring of the inter-
action between the natural environment and human activities is required. Specifically, it
would be applicable to the detection of invasive species, felling of trees, new constructions,
or crops in other ecosystems. One of the advantages of the method is that it separates the
detection of the vegetation from the rest of the natural and artificial elements present on
the ground. In the case of the latter, their detection does not usually pose a problem, since
they usually present quite different spectral signatures and textures. For the selection of
the vegetation classes, the patterns of their textures should be taken into account so that
their separation is feasible, considering the type of sensor and the spatial resolution used.

If the amount of computational resources is not a problem, it should be noted that
some parameters could be adjusted to improve accuracy or speed, but not both at the
same time. Among them are the number of centers in k-means and GMM, and the number
of trees in random forest. Regarding the superpixel generation stage, other algorithms
could be used. For example ETPS, which in many cases generates superpixels with better
adhesion. For the texture stage, methods based on the detection of keypoints and the
construction of descriptors could be considered. Finally, if powerful GPUs are available,
deeper neural networks could also be used for texture extraction. Additionally, to increase
precision, spatial processing algorithms could be included, such as extended morphological
or attribute profiles [36], performing a fusion with the texture branch. However, these
algorithms based on morphological operations or attributes greatly increase the processing
time and the required storage space.

Since one of the limitations of this study is the low spectral resolution of the multispec-
tral sensor, which limits the identification of vegetation species, the use of a hyperspectral
sensor on board the UAV should improve the results. However, the use of hyperspectral
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imagery has the disadvantage of significantly increasing the size of the datasets, which for
large areas of land implies huge storage spaces and longer execution times [37].

In relation to the detection of the river course in the images, it must be taken into
account that often the vegetation in the riparian zones of Galicia completely hides the river
when viewed from above. Additionally, in summer, some parts of the river dry up and
leave rocks or bare soil uncovered. In such cases, the river channel appears fragmented. To
solve this issue, algorithms for the repair of partial occlusions in topographic data could be
added [38].

5. Conclusions

In this article a method based on UAVs and multispectral images for monitoring
watershed areas in Galicia, Spain, was presented. It was designed with the specific aim of
identifying areas occupied by invasive tree species, as well as detect man-made structures
that occupy the river basin. Since the different species of vegetation have a very similar
spectra, a procedure based on advanced texture methods was used.

The extraction of spatial information is carried out from the original image through
segmentation based on superpixels and textures. Segmentation generates homogeneous
segments or superpixels in the image. On the other hand, for each superpixel, its texture
is characterized by a feature encoding algorithm based on the content of each segment.
This information is used in a hierarchical classification structure to initially separate the
artificial and natural structures from the plant species. Subsequently, the different types of
structures and the different plant species are classified separately.

For the proposed classification chain, fast and efficient algorithms have been selected
in order to process large areas of land. The output is a classification map where the areas
covered by artificial elements and the different types of vegetation are easily identifiable.
The experimental results over Galician riversides show that the proposed scheme is suitable
for monitoring the natural environment in watershed ecosystems.
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Abbreviations
The following abbreviations are used in this manuscript:

AA Average Accuracy
Acc Accuracy
BoW Bag of Words
CNN Convolutional Neural Network
CUDA Compute Unified Device Architecture
ERS Entropy Rate Superpixels
ETPS Extended Topology Preserving Segmentation
FV Fisher Vectors
GLCM Gray-Level Co-occurrence Matrix
GMM Gaussian Mixture Modeling
GPU Graphics Processing Unit
KELM Kernel Extreme Learning Machine
LBP Local Binary Pattern
LiDAR Light Detection and Ranging
LSC Linear Spectral Clustering
MAD Median Absolute Deviation
NIR Near InfraRed
NDVI Normalized Difference Vegetation Index
OA Overall Accuracy
QS Quick Shift
RF Random Forest
SIFT Scale-Invariant Feature Transform
SLIC Simple Linear Iterative Clustering
SP SuperPixel
SSD Solid-State Drive
SURF Speeded Up Robust Features
SVM Support Vector Machine
UAV Unmanned Aerial Vehicle
VLAD Vector of Locally Aggregated Descriptors
WP WaterPixels
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