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Abstract: Cover cropping is a conservation practice that helps to alleviate soil health problems and
reduce nutrient losses. Understanding the spatial variability in historic and current adoption of cover
cropping practices and their impacts on soil, water, and nutrient dynamics at a landscape scale is an
important step in determining and prioritizing areas in a watershed to effectively utilize this practice.
However, such data are lacking. Our objective was to develop a spatial and temporal inventory of
winter cover cropping practices in the Maumee River watershed using images collected by Landsat
satellites (Landsat 5, 7 and 8) from 2008 to 2019 in Google Earth Engine (GEE) platform. Each year,
satellite images collected during cover crop growing season (i.e., between October and April) were
converted into two seasonal composites based on cover crop phenology. Using these composites,
various image-based covariates were extracted for 628 ground-truth (field) data. By integrating
ground-truth and image-based covariates, a cover crop classification model based on a random
forest (RF) algorithm was developed, trained and validated in GEE platform. Our classification
scheme differentiated four cover crop categories: Winter Hardy, Winter Kill, Spring Emergent, and
No Cover. The overall classification accuracy was 75%, with a kappa coefficient of 0.63. The results
showed that more than 50% of the corn-soybean areas in the Maumee River watershed were without
winter crops during 2008–2019 period. It was found that 2019/2020 and 2009/2010 were the years
with the largest and lowest cover crop areas, with 34% and 10% in the watershed, respectively.
The total cover cropping area was then assessed in relation to fall precipitation and cumulative
growing degree days (GDD). There was no apparent increasing trend in cover crop areas between
2008 and 2019, but the variability in cover crops areas was found to be related to higher accumulated
GDD and fall precipitation. A detailed understanding of the spatial and temporal distribution of
cover crops using GEE could help in promoting site-specific management practices to enhance their
environmental benefits. This also has significance to policy makers and funding agencies as they
could use the information to localize areas in need of interventions for supporting adoption of cover
cropping practice.

Keywords: classification; cover crop; Google Earth Engine; machine learning; random forest; remote
sensing; seasonal composites; western Lake Erie basin

1. Introduction

There is a growing concern that some conventional agricultural practices lead to the
degradation of soil health properties and contribute to water quality problems over time.
Cover cropping has been recommended as one of the conservation practices suitable for
addressing these problems while improving crop productivity and farm profitability [1,2].
By reducing soil compaction, fixing nitrogen in soil, enhancing soil organic matter and
reducing nutrient losses through soil erosion and surface runoffs [3–6], it helps improve
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soil health and water quality. It also provides several other ecosystem services, including
reduction in greenhouse gas emission, weed control, and biodiversity enhancement [7–9].

Cover crops are usually planted after or closer to harvest of spring cash crops in
various forms, including grass, legume, brassica, or a mixture of grass and legume, and
terminated before planting of next year’s cash crops. Although they are not new to US
agricultural system, their adoption is relatively limited [10]. Farmers are concerned about
incorporating cover crops into their crop rotations due to timing and economic issues
related to establishment and termination of cover crops, required management changes
such as tillage or nutrient application, as well as potential negative impacts on water
balance and yields of cash crops such as corn and soybean [11]. As such, several state and
federal funding programs, including the NRCS Environmental Quality Incentives Program
(EQIP) and the Conservation Stewardship Program (CSP), have been focused on promoting
their adoption. Despite significant increases in state and federal incentives to promote
farmers’ participation in cover crop programs, there lacks a clear understanding of where
these investments are making a major impact. Currently, surveys are being used as a major
approach to examine the adoption and impacts of cover crops. Surveys however provide
an incomplete and often biased representation of the overall practices on the ground. For
instance, a 2019–2020 survey of cover crops was based on 1172 farmers across the US [12].
Additionally, surveys are time-consuming, labor intensive and cost prohibitive to scale-up
to larger areas.

Unlike surveys, remote sensing, particularly satellite data, offers a promising approach
to cost-effectively and timely detection and monitoring of cover crop use and growth at
a higher temporal and spatial scale across landscapes. This capability has recently been
bolstered by the availability of a large volume of freely available data from frequently
revisiting medium-resolution satellites such as Landsat (30 m) and Sentinel (10 m). Since
green and healthy vegetations have higher reflectance in near-infrared (NIR) than other
spectral regions, prior studies have leveraged visible and NIR (VIS NIR) satellite imagery
to understand, classify and monitor winter cover crops at a landscape scale [13–17]. For
instance, Hively et al. [17] assessed cover crop areas in Chesapeake Bay watershed in
southeastern Pennsylvania between 2010 and 2013 using one image per winter collected
from Landsat and SPOT satellites. Similarly, Rundquist & Carlson [10] used normalized
difference vegetation index (NDVI) derived from Landsat-7 and Landsat-8 satellite images,
collected during winter to identify cover cropped fields in Illinois, Indiana, and Iowa. Since
the growing season of cover crops is between fall and spring, use of only a single image to
understand and classify cover crops represents some limitations of these prior studies.

To address some of these issues, Seifert et al. [15] used the concept of seasonal com-
posites of satellite images, collected from multiple Landsat missions (Landsat 5, 7, and
8) during the cover crop growing season (i.e., October to April) to map cover crop areas
in the eight midwestern states from 2008 to 2016. For each cover crop season, the study
used a single composite of satellite data. A single seasonal composite averages out spectral
reflectance of crops over a growing season. While this helps to broadly classify whether a
field is planted with cover crops or not, it is difficult to account for temporal variability in
cover crop phenology. Such single seasonal composites have limited use when it comes
to understanding cover crop performance, including timing of their establishment and
growth, which are often influenced by weather, management practices, and field condi-
tions. Considering these limitations, Hagen et al. [13] used a time series of NDVI data from
November through July every year between 2005 to 2018 to estimate five major cover crop
categories (i.e., winter kill, full cover, spring emergent, winter wheat, and not covered) in
the midwestern United States. This study compared timing and intensity of cover crops’
greenness with NDVI thresholds set at the HUC8 scale to determine cover crop categories.
The NDVI thresholds were estimated based on analyses of handful ground-truth data
in relation to satellite imagery. The study highlighted the importance of multiple data
points per growing season to assess temporal variability of crop cover and growth on
the croplands.
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Use of historic satellite images to identify trends and changes in crop growth can be
computationally intensive if a study area is large and conventional mapping approaches
(e.g., image download and their processing at desktop(s)) are adopted. For instance, a
single uncompressed Landsat 8 scene is larger than 1.6 gigabytes, and thus, the applications
involving multiple scenes require computing resources, which can present challenges to
many practitioners [18]. To overcome some of these challenges, cloud-based platforms,
most notably Google Earth Engine (GEE), has emerged, providing the scientific community
an unprecedented volume of ready-to-use satellite data, including the entire Landsat
archive, as well as state-of-the-art data analytics for rapid and seamless processing [19].
By storing and processing images on numerous remote servers, GEE removes the need to
download and process data on local stand-alone computers [19].

To date, several studies have explored and demonstrated the utility of GEE for mapping
agricultural practices and vegetation health at regional [20–22] and global scales [23,24],
with only a few studies [15] using GEE for mapping cover crop practices. The aim of
this study is to develop a comprehensive and scalable mapping approach, and assess
spatial and temporal patterns of cover crops in GEE focusing mainly on corn and soybean
fields. The methodology was developed based on a thorough review of cover crop remote
sensing literature and incorporates the best available practices. Additionally, the spatial
and temporal patterns of cover crop growth were evaluated in relation to precipitation
and temperature at a landscape scale—a newer perspective that was less explored in
prior works. The developed GEE modeling framework was tested on the Maumee River
watershed (MRW), which is the largest watershed in the Western Lake Erie basin (WLEB)
and one of the most impaired basins in the U.S. Specifically, we integrated historical satellite
time series data with ground truth observations in the GEE platform to develop cover crop
inventory between 2008 and 2019.

2. Materials and Methods

The MRW is a highly productive and intensively managed agricultural region of
Indiana, Michigan and Ohio, where about 80% of the land is in corn and soybean pro-
duction (Figure 1). Intensive management practices associated with corn and soybean
production [25,26] in this region have been found to be the primary source of nitrogen and
phosphorous loads to the Maumee River [27–29], which drains to Lake Erie. The increase in
nutrient concentrations has contributed to increasing occurrences of harmful algal blooms
in Lake Erie, posing a serious threat to aquatic and human health. As such, an increasing
emphasis has been placed on adoption of conservation practices including cover crops [5].
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2.1. Data
2.1.1. Satellite Data Acquisition and Preprocessing

Satellite images from Landsat 5, 7 and 8 with less than 50% cloud cover, covering
northern and northwest part of Ohio were collected for each cover crop growing season
(i.e., October to April) during 2008 to 2019. Selection of images from various Landsat
missions was based on their lifespans and data availability (Table 1). GEE, a cloud-based
platform developed and made publicly available by Google [19], was used to facilitate easier
and faster preprocessing and analyses of these satellite images. Specifically, a JavaScript-
based Earth Engine Code Editor was used to access and prepare Level-2 surface reflectance
(SR) products from Landsat, and SR products are corrected for atmospheric attenuation and
disturbances on each individual scene. To get rid of unwanted image pixels contaminated
by cloud, cloud shadow and snow, and provide accurate representation of vegetation
health, a Quality Assessment (QA) band generated through a CFMask algorithm [30] was
used for all the Landsat scenes.

Table 1. Landsat satellite missions considered for the study.

Dataset Data Products Spatial/Temporal
Resolution

Launch/Data
Availability

Landsat 8 OLI Level-2 SR [31]
30 m (16 days)

2013 (2013–Present)
Landsat 7 ETM+ Level-2 SR [32] 1999 (2000–Present)

Landsat 5 TM Level-2 SR [32] 1984 (1984–2012)

While all the images were from the same Landsat satellite system, there existed slight
differences in spectral signatures of an object across images from three Landsat missions.
For instance, for both soil surfaces and vegetations, Roy et al. [33] observed higher NDVI
based on ETM+ images than that of OLI images. To ensure these differences were resolved
for long-term time series analyses, Roy et al. [33] developed spectral transformation func-
tions between OLI and TM/ETM+ data by fitting an ordinary least squares (OLS) regression
with r2 > 0.7 for reflectance and >0.9 for NDVI. The slopes and intercepts of the regression
models corresponding to each individual band are shown in the Equations (1) and (2).
Using these spectral transformation functions developed by Roy et al. [33], TM and ETM+
based images were transformed into OLI spectral space. This process is also called harmo-
nization, which has been found to be useful in eliminating several issues that are part of
satellite data such as missing data due to SLC off, cloud cover, and shadow removal [34,35].

Intercept = [0.0003, 0.0088, 0.0061, 0.0412, 0.0254, 0.0172] (1)

for (Blue, Green, Red, NIR, SWIR1, SWIR2)

Slopes = [0.8474, 0.8483, 0.9047, 0.8462, 0.8937, 0.9071] (2)

for (Blue, Green, Red, NIR, SWIR1, SWIR2)

2.1.2. Harmonic Analyses and Seasonal Composites

Since the MRW is a big region, it was difficult to find a series of individual image
scenes with cloud cover less than 50% covering the same geographic extent across multiple
dates within the growing season. To capture crop phenology through analyses of multidate
images, we implemented a concept of seasonal composites by considering median of satel-
lite images collected during a given cover crop growing season [22,36–38]. To determine the
number of seasonal composites suitable for monitoring cover crops’ growth, it is critical to
understand their growing season. As such, historical (1981 to 2010) weather pattens across
the MRW were assessed using the temperature data available from the PRISM Climate
Group [39]. Typically, in MRW, the month of December marks the start of cold winter,
when cover crops are either killed by frost or stay dormant (Figure 2) [40]. It was assumed
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that while some cover crops get terminated before winter or naturally die, some that are
unable to grow properly or emerge during fall months could grow or emerge in the spring
with warming of the weather.
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Figure 2. Historical minimum, maximum and mean temperature for the MRW.

A harmonic analysis (also known as Fourier transformation) was applied on Landsat
8-derived NDVI data to analyze and characterize the underlying seasonal phenology of
cover crops in the study region [41]. For this, average NDVI was computed by considering
all the pixels within boundaries for all the ground-truth cover crop fields that were collected
between 2015/2016 and 2018/2019 from Erie and Huron counties (discussed in detail in
the Section 2.1.4 below) (Figure 1). Fourier series/transform models any time series data
as a combination of sine and cosine curves parameterized by amplitude/phase as well
as distribution of frequency [42]. Addition of successive harmonics in the transformation
brings the curve closer to the original curve. Similar to prior works [43,44], Fourier
transformation of NDVI data suggested that cover crops in the study region follow a
bimodal pattern; the amplitude of second order harmonic was dominant for about 73% of
the total fields considered (Figure 3).
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To capture these two major seasonal variabilities in cover crop growth, two composites
were prepared, the first based on satellite images collected between October and December,
and second based on images between January and April (Figure 3). These composites
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were then masked using annual Cropland Data Layer (CDL) at 30 m resolution created
by the National Agricultural Statistics Service (NASS), USDA [45] which is available in
the GEE platform. In addition to estimating median values per pixels for each individual
spectral band (Table 2), several commonly and widely used vegetation indices (VIs),
such as NDVI [15,38,44,46–48], Difference Vegetation Index (DVI), Normalized Green Red
Difference Index (NGRDI) [49] and Ratio Vegetation Index (RVI) [50] were created and
added to the composites. Similarly, composites representing minimum and maximum
NDVI values were created and added due to their proven importance in mapping of
crops [15,51]. For this, the pixel-based reducer function in GEE was used. As such, each
composite consisted of 12 bands (Table 2), with each band representing a feature that is
potentially useful in understanding crops’ properties in a season.

Table 2. Bands and indices that are included in each seasonal composite. Each of these components
are treated as features in cover crop classification model.

Composite Band Description Composite Band Description

Blue_median Median of blue band DVI_median Median of DVI
Green_median Median of Green band NDVI_median Median of NDVI
NIR_median Median of NIR band NDVI_max Maximum of NDVI
Red_median Median of Red band NDVI_min Minimum of NDVI

SWIR1_median Median of SWIR1 band NGRDI_median Median of NGRDI
SWIR2_median Median of SWIR2 band RVI_median Median of RVI

NIR: Near Infrared, SWIR: Shortwave Infrared, DVI: Differences Vegetation Index, NDVI: Normalized Difference
Vegetation Index, NGRDI: Normalized Green Red Difference Index, RVI: Ratio Vegetation Index.

2.1.3. Filling in Data Gaps in Seasonal Composites

Despite temporal aggregation of satellite images, some data gaps were observed in
seasonal composites such as a first composite for 2012/2013, and second composites for
2009/2010, 2012/2013, 2014/2015, 2017/2018. This was mainly due to 16 days temporal
resolution of Landsat satellite data in combination with consistent cloud and snow cover.
To address this concern, we used 16-day Landsat and daily MODIS fused monthly im-
ages produced using the Highly Scalable Temporal Adaptive Reflectance Fusion Model
(HISTARFM) algorithm [52] (Figure 4). Although there exist some differences between the
wavelength range covered by the derived HISTARFM and Landsat band reflectance, they
were found to be highly correlated (0.85–0.92) [52] which provides a strong basis for its use
in applications such as this.
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fall growth (from October to December) and Composite 2 represents spring growth (from January
to April).
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2.1.4. Field Data

A total of 628 cover crop fields recorded in a cropland roadside transect survey across
five counties in Northern Ohio were used as ground-truth data. The transect survey
was designed to collect data on tillage and crop residue management systems across the
targeted counties [53]. The fields that were clearly visible from the roadside, planted in a
relatively short period of time and which were adopted on conservation tillage were most
likely to be selected for the transect survey. The field selections primarily relied upon the
sampling of county road as the routes for roadside survey were first established considering
multiple criteria such as avoiding large urbanized areas, forested land, rangeland and
highways. Information about 255 fields was gathered between 2015 to 2018 based on the
Cover Crop Aggregation Program, which was digitized using transect survey data from
Erie and Huron counties. An additional 373 records were based on digitized transect
surveys in Fulton, Hancock, and Crawford counties from 2015 to 2019. While only Fulton
and Hancock counties lie in the MRW, the data from Crawford, Erie and Huron county
were used to enrich the limited ground-truth data. For each winter season, there were
different numbers of cover crop fields (Table 3). Since the information about these fields
were available in a point format (i.e., latitude and longitude), boundaries for these fields
were digitized. To avoid mixed pixels (i.e., ensuring only pixels from within a field are
included) during extraction of image information [15], field boundaries were buffered
inward by 30 m (equals to the Landsat resolution). It is important to note that although
these fields were observed to have ground covers during the time of surveys, it does not
necessarily mean that these fields had good cover throughout the season because extent of
ground cover can be influenced by weather, field conditions and management practices.

Table 3. NDVI criteria to characterize winter cover crops growth.

Criteria Class Number of Fields

Fall NDVI and Spring NDVI ≥ 0.3 Winter-Hardy 338
Fall NDVI ≥ 0.3 and Spring NDVI < 0.3 Winter Kill 134
Fall NDVI < 0.3 and Spring NDVI ≥ 0.3 Spring Emergent 24

Fall NDVI and Spring NDVI < 0.3 Not Covered 132
Note: Fall NDVI: average NDVI during October to December. Spring NDVI: average NDVI during January to
April. These NDVI values were estimated by averaging NDVI values for all the pixels that fall inside a field
boundary. Field numbers by cover crop season: 131(2015/2016), 182(2016/2017), 83(2017/2018), 87(2018/2019),
145(2019/2020).

To analyze the growth pattern of cover crops, a threshold of 0.3 was applied on an
average NDVI estimated for each cover crop field. In previous studies [16,17], a NDVI
value higher than 0.3 provided an indication for a higher vegetation cover of winter crops.
Using this threshold, the fields were grouped and labelled into four categories: Winter
Hardy (significant growth in fall and spring), Winter Kill (significant growth only in fall),
Spring Emergent (significant growth in spring), and Not Covered (no significant growth in
both periods) based on their average NDVI over fall and spring.

For classification of cover crops, a pixel-based approach was used. To prepare datasets
for classification, the ground-truth fields were randomly split into training (60%) and vali-
dation (40%) groups. Pixels within a field are often spatially autocorrelated, so the inclusion
of pixels from a field into both training and test dataset can often lead to overestimation of
classification accuracy [15,36]. To avoid concerns related to spatial autocorrelation, pixels
representing these fields were split into training and testing dataset, ensuring that the
pixels from a field are included either in training or testing dataset but not both. For each
field in training and validation group, pixel values were extracted from the corresponding
year’s image composites and this resulted in 38,632 pixels for training and 30,124 pixels
for validation.
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2.2. Cover Crop Classification

A random forest (RF) algorithm, one of the most widely applied algorithms in remote
sensing community in recent years [54–57], was used to classify the image composites
into four cover crop categories. RF has been found to consistently outperform other
classification algorithms, particularly for applications related to crop classifications [58–60].
Since it is an ensemble of individual uncorrelated decision trees, created from the random
bootstrap samples that use randomly selected subset of features [61], it is robust against
noise and overfitting and able to handle high dimensional data [62,63]. The final output
of this algorithm is calculated by aggregating outputs from all the decision trees. While a
majority voting is used for classification, an average of outputs from various decisions trees
is used for regression. It implements the bagging technique to make final prediction from
multiple decision trees, which are based on bootstrap samples, and thus, it is expected to
perform well even with small training dataset [64]. The training accuracy for the model
can be assessed using an Out of Bag (OOB) score, which is based on classification of OOB
samples in each bootstrap training data. An RF classifier is set up using parameters such
as the number of decision trees, size of bootstrap sample, and number of feature subset
chosen at each node split. The performance of the RF classifier is sensitive to the number of
decision trees (the higher the number, the better the performance) [61], but not so much to
the number of features at each node in decision trees. A common practice for setting up a
feature subset size is the use of square root of the number of features in the data [63,65].

The RF classifier in GEE requires six hyperparameters: numberOfTrees (default: 1), vari-
ablesPerSplit (default: square root of number of variables), minLeafPopulation (default: 1),
bagFraction (default: 0.5), outOfBagMode (default: false), and seed (default: 0). The OOBer-
ror for the model decreased from 0.026 to 0.023 when the number of trees were increased
from 50 to 500. So, the tree numbers were set to 500, and other variables to default based
on common practices [63].

Once the hyperparameters were tuned, the classifier was trained using the training
data and the accuracy of trained classifier was tested using independent validation dataset
in GEE. The accuracy of classification results was evaluated using a confusion matrix,
which shows the distribution of classification results for the independent validation data
sets against their true classes. Metrics, such as overall accuracy, Kappa coefficient, producer
accuracy (PA) and user accuracy (UA), were also considered. While an overall accuracy
provides an average accuracy for all classes considered, PA and UA provide the distribution
of classification errors among the individual classes. PA explains how many pixels for a
particular class are classified correctly with respect to the actual number of pixels labeled
on that class. UA explains how many pixels on the classified map truly represent the
actual classes. The trained model was then used for classifying seasonal composites from
2008/2009 through to 2019/2020 winter seasons into four classes: Winter Hardy, Winter
Kill, Spring Emergent, and Not Covered.

2.3. Weather Variability and Cover Crop Areas

To assess the potential influence of weather on cover crop growth, cumulative grow-
ing degree days (GDD) and total precipitation during the cover crop growing season
were examined in relation to the geographic extent of estimated annual four cover crop
classes. Cumulative GDD were calculated using daily average temperatures (Tmean)
over the two cover crop growing seasons—fall (1 October through 31 December) and
spring (1 January through 31 April) (with a base temperature (Tbase) of 5 ◦C annually)
(Equation (3)). Similarly, total precipitatison for the months of October and November, the
months when cover crops are usually planted in the Midwest, were considered. This was
done in GEE using the PRISM Daily Spatial Climate Dataset with a spatial resolution of
2.5 arc minutes (~4 km) [39].

GDD = Tmean − Tbase if Tmean > TbaseGDD = 0 if Tmean < Tbase (3)
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where Tmean = (Tmin + Tmax)/2; Tbase = base temperature, Tmin = minimum tempera-
ture, and Tmax = maximum temperature.

3. Results
3.1. Accuracy Assessment

The classification of cover crops resulted in an overall accuracy (OA) of 74.7% and
Kappa coefficient of 0.63 (Table 4). Of the four classes, the Not Covered class had the highest
PA and UA, followed by the Winter Kill class. The Spring Emergent class had the lowest PA
and UA of 57.4% and 40.1%, respectively. This shows that 57% of the ground-truth pixels
in the Spring Emergent class were correctly classified, while only 40% of the total predicted
pixels in the Spring Emergent class actually represented the true class. About 40% and 21%
of the total predicted pixels in the Spring Emergent class were from the Winter Hardy and
Not Covered classes, respectively. This suggests a subtle within field variability in pixel
values representing Spring Emergent and Winter Hardy cover crop classes.

Table 4. Accuracy of classification results presented via confusion matrix.

Predicted

Ground-
Truth

Class Winter
Hardy Winter Kill Spring

Emergent Not Covered Total PA

Winter Hardy 8168 895 813 958 10,834 75.39%
Winter Kill 1144 4300 7 987 6438 66.79%

Spring Emergent 279 37 843 309 1468 57.42%
Not Covered 302 1438 441 9203 11,384 80.84%

Total 9893 6670 2104 11,457 30,124
UA 82.56% 64.47% 40.07% 80.33%

Overall Accuracy = 74.7% Kappa = 0.63

Note: The rows indicate the actual number of pixels whereas columns represent the number of predicted pixels. The diagonal cells
highlighted using bold represent the number of correctly classified pixels.

3.2. Cover Crop Areas: Temporal Patterns

Cover crop maps for the period of 2008/2009 to 2019/2020 suggested that about 11%
to 34% of MRW areas were planted in cover crops (including Winter Hardy, Winter Kill,
and Spring Emergent), with 2011/2012 and 2019/2020 having the largest cover crop areas
and 2009/2010 the least (Figure 5). When cover crop areas were compared with total corn
and soybean areas annually, there was a negative correlation (−0.52) between them. Except
for 2019 (very wet summer, discussed in the Discussion section), the total corn-soybean
areas remained relatively stable (i.e., 54–62%) throughout the study period. In general, less
than 50% of corn-soybean fields were estimated to incorporate cover crops (Figure 6).

Although the total cover crop area increased between 2008/2009 and 2010/2011, there
lacked a consistent increase in annual cover crop areas between 2008/2009 and 2019/2020
in general. Additionally, only 0.3% of the total watershed areas was consistently planted in
cover crops for 12 years, with 20% of areas for more than five years and more than 50%
areas for less than five years.

3.3. Effects of Weather on Variation in Winter Cover

When cover crop areas were evaluated in relation to GDD for fall and spring, higher
GDDs were found to have a positive influence on cover crop performance (Figure 7).
Specifically, years with a higher Winter Hardy cover crop area overlapped with years that
had a higher GDD for fall (R = 0.51) and spring (R = 0.56). Although spring GDD was
found to be positively correlated with Spring Emergent cover crop areas (R = 0.28), this
correlation was not as strong as the correlation between fall GDD and Winter Hardy cover
crop areas. Fall GDDs however were found to be less correlated (R = −0.11) with Winter
Kill cover crops. In 2019, Winter Kill cover crop areas increased dramatically and showed
no relation with GDD (R = 0.05).
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Similar to GDDs, total fall precipitation was found to have a positive impact on cover
crop areas, suggesting that a higher cumulative GDD and fall precipitation help promote
cover crop establishment as well as their growth throughout the season. For instance,
cover crop areas were higher in years of 2011/2012, 2016/2017 and 2017/2018 that also
had higher fall precipitation and cumulative GDDs (Figures 8 and 9).
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4. Discussions
4.1. Training Dataset

In this study, we developed a detailed GEE framework to classify cover crop areas
by integrating publicly available Landsat satellite images with ground-truth observations
and tested it for the MRW. Satellite images were collected during cover crop growing
season from October until April. Using the pixel reducer function in GEE, the satellite
images were converted into two median seasonal composites: first composite (October to
December) and second composite (January to April). In addition to median pixels values of
individual bands and indices, maximum and minimum composites of NDVI were added
to improve the classification between cover cropped and non cover cropped fields. Ground
truth data on location of cover cropped fields were used to extract the pixel values from
the composites and develop training and validation dataset. A RF model was trained
with the training data, which was then applied on each seasonal composite in GEE to
classify into four types of cover: Winter Hardy, Winter Kill, Spring Emergent, and No
Cover. The overall classification accuracy of the model was 75% based on the independent
validation dataset, with classes such as Winter Hardy and Not Covered crop classified
with higher accuracy ranging between 75–80% and spring emergent classified with lower
accuracy (57%). These classification accuracies can be attributed to the size and nature of
the available ground-truth data.

In the study, a database of ground-truth cover crop fields was prepared through
digitization of tillage transect survey data that were collected once during spring per year
(discussed in the method section). There were some fields which surveys indicated to have
cover crops, but satellite imagery consistently showed poor vegetation. Since vegetation
health varies with field conditions and/or management practices and ground-truth data
were collected at a single point of time, we relied on NDVI to assess seasonal growth
of cover crops, as well as to group ground-truth cover crop fields into various classes.
We think, however, that ground-truth cover crop growth information from multiple time
points, if available, would help improve the accuracy of cover crop classification model.

In the study, misclassification was prominent for the Spring Emergent class, which
can be attributed to a fewer dataset available for training and testing of the RF classifier
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for this class. It is expected that cover crops with no emergence, or slow growth in the fall,
would have poor growth in the spring; thus, this results in a lower probability for fields
to be in that category. This could be the reason that only 24 fields out of total 628 were
grouped as Spring Emergent; a relatively small dataset to train and test the RF classifier for
a large landscape as considered in this study. Although there is no set standard for training
and testing data size suitable to address this sort of classification problem, an increase in
ground-truth data usually increases classification accuracy.

4.2. Pixel Based Classification and Preparation of Training Dataset

The approach used to group the ground-truth fields into four cover crop classes could
be another source of classification error. These fields were grouped based on their average
greenness, i.e., NDVI estimated based on Landsat images collected during fall and spring
seasons (Figure 3). In this process, any fields with an average NDVI value below 0.3 were
classified as Not Covered. However, there could have been areas within the field for which
NDVI values were either higher or lower than the average. Since all the pixels within a
field were labeled the same and are used for training the RF algorithm, this could lead to
misclassification in a field and/or area with high with-in field variability in cover crop
growth. This could be one of the reasons why a large proportion of Spring Emergent
pixels were misclassified as Not Covered and Winter Hardy classes, and some areas in
a landscape appeared to have a salt and pepper alike distribution of cover crop classes
(Figure 5). Although the approach used in our study is widely practiced [15,20,36,38],
this problem may be resolved by dividing a field into multiple zones and training the
classification model accordingly.

Salt and pepper-like distribution of cover crop classes are typical of the pixel-based
classification approach where the spectral signature of a pixel is evaluated independently
of its surrounding pixels. In addition to natural microvariability within a field (e.g., soil,
topography), artificial factors (e.g., SLC off in case of Landsat 7; compositing and fusion
of images from multiple satellite sensors) can have a big impact on spectral properties of
pixels, and thus the overall training and testing of the classification model. For instance,
compositing helps to fill in the data gap, but it can introduce some forms of artifacts when
images have a high amount of scan line errors, one of the problems that is difficult to
address when it comes to application of satellite images.

4.3. Variation in Winter Cover and Effects of Weather

When the impact of weather, mainly precipitation and GDD, was evaluated on spatial
and temporal variability in cover crop distribution in the MRW, we found fall precipitation
to have a higher correlation with cover crop areas, which is in agreement with prior
studies [40,66]. Fall precipitation is important to cover crop emergence, mainly to those
that are aerially seeded, as increased soil moisture after rainfall helps increase the soil to
seed contact required for germination. In a two-year field study, Gaudlip et al. [66] observed
differences in cover crop emergence and stand establishment through aerial seeding and
related those differences with fall precipitation [66]. Particularly, they observed lower
emergence and stand establishment with low fall precipitation in 2017 and higher success
in cover crop establishment in the very wet fall of 2018 when seeds were aerially applied.
However, they found very wet condition unfavorable for cover crop emergence when
seeds were drilled. The study also found fall biomass of cover crops to be correlated well
with GDD for both years (R2 = 0.28 in 2017 and 0.82 in 2018) [66]. While it is difficult
to differentiate cover crop by planting methods via remote sensing, it is important to
understand the role of field topography and weather on cover crop emergence under
various planting methods.

In this study, weather was found to be one of the factors influencing the adoption of
cover crops. We observed increase in cover crop areas particularly in years with higher fall
GDD (R = 0.13) and precipitation (R = 0.22). For instance, 2019/2020 is a good example of
an abnormal wet year (January to August was the wettest period in 125 years) [67], which
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delayed planting of cash crops by about three to four weeks in the midwest, including
Ohio. Specifically, in Ohio, during the second week of May, only 1–4% of the total corn and
soybean acres were planted compared to 47% area for corn and 20% area for soybean for
2014–2018 (50% corn and 28% soybean in 2019 alone) [68]. The Ohio NRCS announced
disaster recovery funding to farmers to plant cover crops on their flooded cropland instead
of the regular cash crops [69]. This resulted in many farmers adopting cover crops in
their corn/soybean fields [69], which was also evident in the 2019/2020 cover crop map
(Figure 5) that showed more than 50% of corn/soybean areas in cover crops. In general,
cover crop area increased by about 37% in MRW from 2012 to 2017, which is in agreement
with the 2017 Census of Agriculture [70] that reported 50% increase in cover crop areas
nationally.

4.4. Weed versus Cover Crops

Our cover crop classification model treats weeds and cover crops similarly if they
have spectrally similar patterns. There is also a higher probability of corn/soybean fields
being infested with weeds during fall when GDDs are higher than the normal [40]. These
could be the reasons we observed a larger proportion of areas in Winter Kill and Winter
Hardy cover crops in years with higher Fall GDDs. This argument is supported by prior
studies based on field experiments. Baraibar et al. [40] reported that there exists a positive
correlation between cover crop and weed biomass in the fall. However, this relationship is
opposite during spring, as weeds are suppressed with increase in cover crop biomass. In
summary, since the cover crop classification model developed in this study does not have
an ability to differentiate between weeds and cover crops, caution needs to be paid while
interpreting some of these results. If the goal of the classification is to separate weeds from
cover crops, there will be a need for ground-truth data on cover crop and weed fields.

5. Conclusions

The study used a RF classifier on the Landsat satellite data in the GEE platform to
quantify spatial and temporal trends of winter cover crops in the MRW in northwestern
Ohio between 2008–2019. The estimated cover crop areas were examined in relation to
GDD and temperature to understand the effect of temperature and precipitation on cover
crop growth. At first, satellite images were converted to seasonal composites in GEE, which
were then used with ground-truth data to develop training and validation datasets. To
develop the RF model, satellite derived covariates were trained using the training dataset
and used to classify the satellite images into four different types of winter covers. The
classified cover crop maps suggested an average of 39% of corn/soybean areas covered
with cover crops for the period of 2008/2009 to 2019/2020. The classified cover crop map
of 2019/2020 clearly captured an abnormally wet year when disaster recovery funding was
available to most of the corn/soybean farmers to plant their fields with cover crops during
fall. Winter cover crop areas in the MRW increased to about 78% in 2019/2020 season
compared to the 2018/2019 season when cover crop areas were 37% of total corn/soybean
areas. Cover crops were found to perform well when both GDDs and fall precipitation
were favorable during early establishment as well as through the entire winter season. This
study showed that the cover cropping practice can be monitored at a landscape scale by
utilizing publicly available images from satellites. Understanding the spatial and temporal
trends of cover crops at a landscape scale, as estimated in this study, is useful in promoting
site-specific cover crop management practices to enhance their environmental benefits.
This is also valuable to policy makers as well as funding agencies to localize areas in need of
interventions for supporting adoption of cover cropping practice for improving an overall
sustainability of agricultural production system.
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