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Abstract: Satellite images are always partitioned into regular patches with smaller sizes and then
individually fed into deep neural networks (DNNs) for semantic segmentation. The underlying
assumption is that these images are independent of one another in terms of geographic spatial
information. However, it is well known that many land-cover or land-use categories share common
regional characteristics within a certain spatial scale. For example, the style of buildings may change
from one city or country to another. In this paper, we explore some deep learning approaches
integrated with geospatial hash codes to improve the semantic segmentation results of satellite
images. Specifically, the geographic coordinates of satellite images are encoded into a string of
binary codes using the geohash method. Then, the binary codes of the geographic coordinates
are fed into the deep neural network using three different methods in order to enhance the
semantic segmentation ability of the deep neural network for satellite images. Experiments on
three datasets demonstrate the effectiveness of embedding geographic coordinates into the neural
networks. Our method yields a significant improvement over previous methods that do not use
geospatial information.

Keywords: geographic coordinates; geohash; deep neural networks; geospatial information; satellite
images; aerial images; semantic segmentation; deep learning

1. Introduction

Waldo Tobler’s first law of geography [1] says, “everything is related to everything
else, but near things are more related than distant things.” Satellite images are snapshots of
the Earth’s surface. Therefore, semantic labels of these images are also in agreement with
Waldo Tobler’s first law of geography. This means that near satellite images share some
common latent patterns and distant satellite images are quite different from one another.
For instance, as shown in Figure 1a,b, buildings from different cities are diverse in terms
of color, size, morphological structure and density. It can be seen from Figure 2a that each
city in this figure has its own regularity. However, this kind of geospatial distribution is
difficult to describe and quantify using features from an image patch with a rather small size.
Thus, in previous studies, parts of these patterns have been expressed as region-specific
configurations or models [2–5]. Instead of manually building region-specific configurations,
we resort to powerful DNNs to automatically learn the regional similarity and diversity of
large-scale data from geographic coordinates. Geographic coordinates are one of the most
notable characteristics of satellite images, which have been omitted in previous studies. To
the best of our knowledge, this is the first attempt to map high-resolution satellite images
on a large scale by modeling their geographic coordinates.
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(a) (b)

Figure 1. Images from the Inria Aerial Image dataset [6]; (a,b) are sample images from the city of
Austin and Kitsap County in the U.S.

Geospatial information is often involved in the global mapping process of widely
distributed satellite images. At global-scale mapping, the heterogeneity of the data makes
it unfeasible to describe them using a uniform model. A common idea for handling this
problem is to partition the entire world into several regions. Based on local similarities,
an index-based method [2] selects a region-specific threshold for each region. Similarly,
classifier-based methods train a classifier for each area with region-specific parameters [3,4].
For the interactive method [5], knowledge-based verification is attached to different areas
after classification. Global low-resolution reference data can also be used as an indicator
to overcome the heterogeneity in datasets [7]. Weighting samples by frequency has been
adopted to mitigate the class imbalance among different cities [8]. All of these methods
can enable the model to appropriately capture the regional pattern of the data, which is
accomplished by using region-specific configurations based on experts’ experiences.

In this paper, rather than directly dividing the dataset into multiple groups, we aim
to learn the regional characteristics using DNNs. This is accomplished by feeding DNNs
with binary codes converted from the geographic coordinates of the images. The essential
conversion builds on the idea of the geohash method [9], which was invented for retrieving
and locating image tiles [7,10–13]. It should be noted that the geohash code is just a
type of geographical coordinate. Readers should not confuse this term with the hash
code used in cryptography. In cryptography, a hash function must satisfy the following
requirements: uniformity property, uniqueness property, second pre-image resistance and
collision resistance. The method called “geohash codes” in this paper does not satisfy
these requirements, thus the “geohash codes” used in geography are quite different from
hash codes used in cryptography. The closer two positions are, the more bits of geocodes
they share. There are a few existing studies on using geospatial coordinates to improve
the model performance of different applications [14–16]. The GPS encoding feature [14]
converts geospatial coordinates into the code of grid cells, which is a special type of one-hot
encoding in essence. It incorporates location features by adding a concatenate layer to
boost the accuracy of image classification. Geolocation can also be a benefit for predicting
dialect words via mixture density networks [15]. The input features of the mixture density
network are purely latitude and longitude coordinates without any other features, and
the model output dialect words with given geospatial coordinates. Disaster assessment
is another practical application scenario [16]. It employs the pre-trained DNNs for the
feature extraction of flooding images. Then these image features, along with the latitude
and longitude coordinates, are used for training other machine learning models, such as
random forest, logistic regression, multilayer perceptron and support vector machine. In
this paper, the geocodes, generated by the geohash method, embed the spatial information
into models to assist in the semantic segmentation. Essentially, the geohash method is a
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special type of binary space partitioning. It converts the decimal coordinates of longitude
and latitude into binary numbers. Both decimal and binary numbers can represent an
accurate position, but the binary geocode is more convenient for controlling the code length.
With extra geospatial information, the geohash codes increase the distinguishability of the
model. Regulating the length of the binary code can force certain areas to share the same
geocode. Thus, adjusting the code length can keep the model from suffering from a risk
of overfitting.

0 1 2 3 4 5 6 7 8
Area of buildings (km2)

0<area<9
9<area<36

36<area<81
81<area<144 

144<area<225 
225<area<324 
324<area<441 
441<area<576 
576<area<729 
729<area<900 

900<area<2,025 
2,025<area<3,600 
3,600<area<8,100 

8,100<area<14,400 
14,400<area<22,500 
22,500<area<32,400 

area>32,400

Si
ze

 o
f b

ui
ld

in
gs

 (m
2 )

City
Chicago
Austin
Vienna
Tyrol
Kitsap

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Number of pixels 1e8

0.0e2<area<1.0e2 
1.0e2<area<4.0e2 
4.0e2<area<9.0e2 
9.0e2<area<1.6e3 
1.6e3<area<2.5e3 
2.5e3<area<3.6e3 
3.6e3<area<4.9e3 
4.9e3<area<6.4e3 
6.4e3<area<8.1e3 
8.1e3<area<1.0e4 
1.0e4<area<2.2e4 
2.2e4<area<4.0e4 
4.0e4<area<9.0e4 
9.0e4<area<1.6e5 
1.6e5<area<2.5e5 
2.5e5<area<3.6e5 

area>3.6e5

Ra
ng

e

Ground truth
Training set

(b)

Figure 2. Building areas of five cities from the Inria building dataset: (a) plots the building size with
respect to each city. The units of the building size in this figure are m2 and km2. The distributions of
the building size are quite diverse in these cities. It should be noted that the intervals of building size
are not divided evenly; (b) plots the building size of the entire dataset using the number of pixels as
the unit. The values are calculated based on the ground truth of the dataset. Most of the buildings
are smaller than 250,000 pixels (500 × 500). Therefore, the image tiles are divided into patches with a
size of 512 × 512 when training.
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To validate the effectiveness of our proposed method, we apply it to the task of
semantic segmentation using DNNs. Semantic segmentation with DNNs has produced
remarkable results in recent years. Different from the conventional methods for image
segmentation [17–22], DNNs can learn rich semantic features in an end-to-end manner,
which requires large-scale data. However, the demand for large-scale data is not involved in
conventional segmentation methods, but this also limits their generalization performance.
Most of the conventional segmentation methods utilize low-level features to extract objects
of images, while deep learning approaches build hierarchical semantic features with
numerous layers. The use of a fully convolutional network (FCN) [23] is the first work
that trains convolutional neural networks (CNNs) for semantic segmentation in an end-
to-end way. The input image of an FCN can be an arbitrary size, combining the feature
maps at different resolutions via skip connections. A deconvolutional network [24] is
proposed to recover the original size of the input images. U-Net [25] is an extension of
the FCN, the upsampling parts of which are composed of deconvolutional layers. Dilated
convolution [26,27] expands the receptive field of the convolutional layers and retains
the high resolution of the feature maps. Atrous Spatial Pyramid Pooling (ASPP) [28]
captures multi-scale context information with various dilation rates. The Pyramid Scene
Parsing Network (PSPNet) [29] pools at various scales to better extract the global context
information. These approaches have significantly improved the prediction results of
semantic segmentation. There are plenty of previous works that focus on the semantic
segmentation of high-resolution satellite images using DNNs, such as [30–33]. The datasets
employed in these works virtually cover one or two cities [30,31]. When facing the challenge
of covering more cities [32,33], the performance of the deep neural network fluctuates in
different regions.

In most cases, the automatic extraction of a representation requires large-scale and
widely distributed datasets. The prevalence of DNNs has resulted in the emergence of
large-scale remote sensing datasets, such as AID [34], NWPU-RESISC45 [35], the ISPRS
2D Semantic Labeling Benchmark [36] and DOTA [37]. The sizes of these datasets are
much larger than before, and their samples have been widely selected from around the
world. Unfortunately, the rich information of the geospatial location is eliminated when
building these datasets. Without attaching geographic coordinates, they are only treated as
ordinary photos. As we focus on the semantic segmentation of high-resolution satellite
images, the Inria Aerial Image dataset [6] and the Gaofen Image Dataset (GID) [38] are
the only publicly available high-resolution datasets that retain the geographic coordinates
for each image tile. These two datasets provide us with an opportunity to explore the
influence of embedding geospatial information into DNNs. Additionally, we have built
a worldwide dataset, called the Building dataset for Disaster Reduction and Emergence
Management (DREAM-B), to further validate the proposed method. Figure 3 shows the
spatial distributions of the three datasets.

This paper is organized as follows: Section 2 presents the key ideas of encoding
geographic coordinates. In Section 3, the experimental setup is described. We present the
results of the experiments in Section 4 and discuss them in Section 5. Finally, conclusions
are drawn in Section 6.
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Figure 3. Distributions of the datasets: (a) distribution of the image tiles in the GID dataset [38]
around China. Each point in this figure is one image tile. It contains 150 tiles in total. The training and
test data are similarly distributed; (b) spatial distribution of the Inria building dataset [6]. Different
from the GID dataset, each point in this figure is one city with 36 image tiles. There are altogether
10 cities containing 360 image tiles; (c) spatial distribution of the image tiles in the DREAM-B dataset.
Each point in this figure is an image tile. There are 626 tiles in this dataset.

2. Methods

In Section 2.1, we provide a description of the geohash method. We find that the
length of the binary geohash codes is a key factor for the model. Thus, in Section 2.2, the
precision of the binary geohash is analyzed in detail. In Section 2.3, we present three ways
to feed the binary geohash codes into neural networks.

2.1. Geohash

A geohash code [9] is a special kind of geospatial index that converts both latitude
and longitude coordinates into a string of letters. This includes two stages: converting into
binary bits and encoding into letters.

The first stage is accomplished by binary space partitioning along the latitude and
longitude axes. The algorithm subdivides the latitude and longitude space into small grids
until the precision requirement is met. Therefore, this partitioning operation can lead to an
arbitrary precision of codes. For clarity, we refer to the code generated by the first stage as
the binary geohash. It should be noted that different precision values have a non-negligible
influence on the semantic segmentation results. This is discussed in Sections 2.2 and 4.2.
Figure 4 is a simple illustration of the first stage of the geohash method. As for semantic
segmentation, the second stage will not be necessary. In fact, the binary geohash is akin to
one-hot coding. Thus, it is more suitable to being the input of neural networks.
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Figure 4. Illustration of the geohash’s first coding stage. A location (the red circle) in North Africa
is our reference point. Starting with the latitude axis, we can divide the global latitude interval
[−90◦,+90◦] into two parts using the equator (a). The red circle falls in the latitude interval [0◦, 90◦].
This region is colored in deep blue and marked as bit ‘1’. The other part is dubbed ‘0’. Then, in (b),
the same partitioning is repeated for the longitude interval [−180◦,+180◦]. Since the red circle is
located in the deep blue area, we obtain a code of two bits ‘11’ after the second division. As shown in
(c,d), this is repeated until the code reaches the demanded length. All the odd bits are generated by
latitude coordinates, while the even bits are generated by longitude coordinates.

2.2. Precision of the Binary Geohash

The binary geohash can infinitely subdivide the latitude and longitude space. Thus, it
is capable of achieving arbitrary precision. As illustrated in Figure 4b, the first bit of the
binary geohash code is 1. The red circle falls in the latitude interval [0◦, 90◦]. If we guess
that the latitude is 45◦, then the error range of the latitude with 1 bit is [−45◦, 45◦]. It should
be noted that the error values ±45◦ are error bounds rather than standard deviations.
Provided with more bits, the error can be dramatically reduced. As shown in Table 1, one
additional bit of code can approximately halve the error. Due to the nonlinearity of the
latitude and longitude coordinates, one degree of longitude at different latitudes represents
different distances on the surface of the Earth. This means that a global fixed precision
of the binary geohash is infeasible. We show the precision of the binary geohash around
China at 30◦N, 110◦E in Table 1. These results are estimated by an algorithm proposed for
the computation of geodesics [39]. We employ a C++ implementation of the algorithm,
GeodSolve [40], on the WGS-84 ellipsoid.
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Table 1. Precision of binary geohash codes with various code lengths.

Bits Latitude Error Latitude Error (km) Longitude Error Longitude Error (km)

1 45.000 4979.10 90.000 8413.91
2 22.500 2498.87 45.000 4312.69
3 11.250 1248.22 22.500 2167.41
4 5.625 623.82 11.250 1085.03
5 2.813 311.90 5.625 542.68
6 1.406 155.88 2.813 271.41
7 0.703 77.93 1.406 135.66
8 0.352 39.02 0.703 67.82
9 0.176 19.51 0.352 33.96
10 0.088 9.76 0.176 16.98
11 0.044 4.88 0.088 8.49
12 0.022 2.44 0.044 4.25
13 0.011 1.22 0.022 2.12
14 0.005 0.55 0.011 1.06
15 0.003 0.33 0.005 0.48

2.3. Feeding Binary Geohash Codes into DNNs

Given an input feature vector x = [x1, x2], the weight vector w = [w1, w2] and the
nonlinear function f , a neuron of a neural network can be expressed as

y = f (xTw + b). (1)

Here, y is the output value, and b is the bias.
If the operation of convolution is expressed as ∗, we can rewrite Equation (1) as

y = f (x ∗ w + b). (2)

Figure 5a shows the typical form of layers close to the output layer for semantic
segmentation [23,25,29,41]. It implements a 1 × 1 convolution on the feature maps from
previous layers. Then, the normalized scores are obtained through the softmax layer. More
specifically, Figure 6 is the architecture adopted for semantic segmentation in this paper.
The output of the last upsampling layer on the bottom right of Figure 6 is x in Figure 5a.
The “Previous Layer” in Figure 5a is the last upsampling layer in Figure 6.

Previous Layer

Softmax

1×1 Conv

Loss

(a)

Previous Layer

Softmax

1×1 Conv

Loss

Geohash
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(b)

Previous Layer

Softmax
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Figure 5. Different strategies of feeding the binary geohash into neural networks: (a) a typical form of layers for semantic
segmentation; (b) adding the binary geohash code to the feature space (concatenation); (c) adding the binary geohash code
to the parameter space; and (d) residual correction of the output.
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building sizes by the number of pixels. Most of the buildings are smaller than 250000 pixels (500× 500).239

Thus, we divide the image tiles into patches with a size of 512 × 512.240

The image tiles in the GID dataset are distributed over China, and the tiles of the Inria data set241

are spread over 10 cities in the United States and Europe. The cover ranges of these data sets are very242

small to meet the requirement of real applications of semantic segmentation. Therefore, we employ a243

worldwide building data set[47], called the Building Data Set for Disaster Reduction and Emergency244

Management (DREAM-B), to approximate the real mapping situation. The image tiles are collected245

from Google Earth Engine (GEE) [48], and the corresponding labels are derived from Open Street246

Map [49]. The spatial resolution of the image tiles is 30 cm, which is quite similar to that of the Inria247

data set. The size of the image tiles is 5000 × 5000. All the tiles consist of R, G, and B bands. Since248

the performance of the deep neural network is sensitive to the size of the training data set, this data249

set contains 626 image tiles that cover 100 worldwide cities. We split out 250 tiles for training, 63 for250

validation, and 313 for testing.251

3.2. Experimental Setup252
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Figure 7. The architecture of the model used for the Inria building data set. This model,
U-NASNetMobile, combines U-Net [25] with NASNet [50]. We employ Normal Cells from NASNet
as the decoder part of the model. The yellow circles are concatenation layers to combine the different
feature maps into a new layer.

For the GID dataset, we train a net called TernausNet, pretrained on ImageNet [51] to accelerate253

the convergence of training, which is based on VGG net [52] and U-net [25]. This network is referred254

to as the baseline in Table 3. Because this data set has the smallest size among the three data sets, we255

conduct experiments comparing the three ways to embed geohash codes on this data set.256

For the Inria building data set, we conduct more experiments on this data set by focusing on257

feeding geohash into feature space. The geohash code can solely be the input of the last convolutional258

layer. Furthermore, it can also be fed into other earlier layers. As shown in Fig. 7, we can also259

attach the geohash code after each Normal Cell. We explore both manners with various code lengths.260

In the end, we validate the effectiveness of feeding geohash into feature space on the DREAM-B261

data set. The architecture of the network employed for the Inria and the DREAM-B data sets is262

shown in Fig. 7. This model combines U-Net [25] with the NASNet-Mobile model [50], which is263

acquired via neural architecture searching (NAS). We refer to this model as U-NASNetMobile, and the264

Figure 6. The architecture of the model used for the Inria building dataset. This model, U-NASNetMobile, combines
U-Net [25] with NASNet [42]. We employ Normal Cells from NASNet as the decoder part of the model. The yellow circles
are concatenation layers to combine the different feature maps into a new layer.

2.3.1. Feature Space

The binary geohash code can be regarded as an additional feature. This is equivalent
to transforming the original feature space into higher dimensions. Naturally, the binary
geohash code can be expressed as the binary geohash vector g = [g1, g2]. This method can
be written as follows:

y = f ([x, g]Twg + b); (3)

= f (xTw1 + gTw2 + b). (4)

Due to the extra dimensions added by the binary geohash code, samples in this new
feature space can be easier to classify.

Figure 5b shows the idea of adding the binary geohash code to CNNs. The binary
geohash is first upsampled to the same size as the feature maps x from previous layers.
Then, it is concatenated together with the feature maps from the previous layers along
the channel axis to form a new input of a 1 × 1 convolutional layer. This concatenation
operation will increase the number of input channels before the 1 × 1 convolutional layer.
Thus, adding the binary geohash code to the feature space can be conveyed as

y = f ([x, g] ∗ wg + b). (5)

Here, x is the output feature map of the previous layer. By combining Figure 6 with
Figures 5b and 7, we can see how this method works in practice. The “Previous Layer” in
Figure 5b is the last upsampling layer in Figure 6. The geohash code vector g is composed
of 0 s and 1 s; for instance, g = [1, 1, 1, 0] in Figure 7. This vector can be resized to the size
of feature map x. In this example, g contains four bits of code. Thus, g is transformed into
four channels in the form of a feature map. Then, they are combined together as the input
of the 1 × 1 convolutional layer.
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Figure 6. An example of geohash coding. First, it converts the geographic coordinates into binary
bits. As shown on the top of this figure, if the center of an image tile falls into a grid, we can assign
the geocode of this grid to this image. This makes the entire image tile share a common vector of the
geohash code. Then, the image is fed into the convolutional neural network at the bottom. The bottom
architecture is a simplified version of Fig. 7, which is used for semantic segmentation. The vector of the
geohash code g is resized to the size of the image feature maps x from the last upsampling layer of the
network. Each bit corresponds to a channel of the geohash feature maps. Then, the image feature maps
are concatenated with the geohash feature maps, and they form the input of the last convolutional
layer together.

the geographic coordinates. The entire function is implicitly learned from data rather than by manually183

configuring the model. Since the weight vector w, which is the output of the linearly weighted geohash184

vector followed by a nonlinear transformation, is multiplied by the feature vector x in Eq. 7, there is a185

multiplicative operation before the nonlinear function. The parameters of the model increase from w186

to w, wp and bp.187

Fig. 5c shows the case of the convolutional neural network with feeding the binary geohash188

vector into the parameter space. The parameters of the convolutional kernels are inferred from the189

binary geohash vector through a fully connected layer. Then, they are reshaped to the kernel size and190

convolved with the feature maps from the previous layer. For the convolution operation, Eq. 7 can be191

rewritten as192

w = f (gTwp + bp); (8)

y = f (x ∗ w + b). (9)

2.3.3. Residual correction193

Residual learning has shown its power in training DNNs [42–45]. In most cases, learning targets194

directly from DNNs results in difficulty of convergence. Thus, residual learning is employed to195

mitigate this problem. In general, residual learning appears in the intermediate layers of the neural196

networks [42–45]. We employ a similar method, residual correction, at the end of the networks.197

Figure 7. An example of geohash coding. First, it converts the geographic coordinates into binary bits. As shown at the
top of this figure, if the center of an image tile falls into a grid, we can assign the geocode of this grid to this image. This
makes the entire image tile share a common vector of the geohash code. Then, the image is fed into the convolutional neural
network at the bottom. The bottom architecture is a simplified version of Figure 6, which is used for semantic segmentation.
The vector of the geohash code g is resized to the size of the image feature maps x from the last upsampling layer of the
network. Each bit corresponds to a channel of the geohash feature maps. Then, the image feature maps are concatenated
with the geohash feature maps, and they form the input of the last convolutional layer together.

2.3.2. Parameter Space

Equation (1) is composed of two factors, that is, x and w, to accomplish the linear
transformation. We can also apply the binary geohash to the parameter space. Instead of
concatenating the binary geohash with the feature vector x, a more aggressive method is
used to replace the weight vector w in Equation (1) with the weight vector w learned from
geohash vector g:

w = f (gTwp + bp); (6)

y = f (xTw + b). (7)

This means that we can acquire w through a fully connected layer in which the
geohash vector g is the input. Here, wp and bp are the linear weights and the bias of this
layer, respectively. By feeding the binary geohash vector into the parameter space, this
kind of strategy can control the model without touching the feature space. In this manner,
the model’s parameters will be affected by the variation in the geographic coordinates.
The entire function is implicitly learned from data rather than by manually configuring
the model. Since the weight vector w, which is the output of the linearly weighted
geohash vector followed by a nonlinear transformation, is multiplied by the feature vector
x in Equation (7), there is a multiplicative operation before the nonlinear function. The
parameters of the model increase from w to w, wp and bp.

Figure 5c shows the case of the convolutional neural network feeding the binary
geohash vector into the parameter space. The parameters of the convolutional kernels are
inferred from the binary geohash vector through a fully connected layer. Then, they are
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reshaped to the kernel size and convolved with the feature maps from the previous layer.
For the convolution operation, Equation (7) can be rewritten as

w = f (gTwp + bp); (8)

y = f (x ∗ w + b). (9)

2.3.3. Residual Correction

Residual learning has shown its power in training DNNs [43–46]. In most cases,
learning targets directly from DNNs results in difficulty of convergence. Thus, residual
learning is employed to mitigate this problem. In general, residual learning appears in the
intermediate layers of the neural networks [43–46]. We employ a similar method, residual
correction, at the end of the networks.

Figure 5d shows the key idea of residual correction. On the left branch, x represents
the image features extracted from the image, and w is the kernel of the last convolutional
layer. Thus, x ∗ w + b is the output of the last 1 × 1 convolutional layer. After the softmax
function, we can obtain the predictions of each category. For instance, the score of a pixel
can be 0.95 for the building class and 0.05 for the non-building class.

On the right branch, the input of the last convolutional layer is [x, g]. This means that
the image features and the spatial features are combined together:

y = f (x ∗ w + b); (10)

∆ = [x, g] ∗ wr + br; (11)

yresidual = f (x ∗ w + b + ∆). (12)

Here, ∆ is the term of residual correction, and yresidual is the output of the right head
of Figure 5d. Since the softmax layer contains no parameters, the error of prediction is
jointly determined by the image features and the spatial features. With the correction of
the spatial features, the score of the pixel can be 0.97 for the building class and 0.03 for
the non-building class. Thus, the residual correction can refine the semantic segmentation
results using the binary geohash vector.

The two loss heads have the same label to learn. The left loss head is an auxiliary
loss, as demonstrated in GoogLeNet [47], so we solely employ the right head for the final
prediction. The left loss head only depends on the image features, and the right loss head
depends on both the image features and spatial features. With the existence of the left loss,
the prediction f (x ∗ w + b) is close to 1 for the corresponding class. Thus, in Equation (12),
∆ can only produce a tiny effect on the prediction of the right head.

2.3.4. Relationships in Three Approaches

In the above sections, we presented three approaches to incorporate geospatial infor-
mation into neural networks. If the neural networks are expressed as y = f (x ∗ w + b),
then x and w are the two positions used to utilize the extra spatial information. When
adding the binary geohash code into the feature space, it enlarges the dimensions of x. By
feeding the binary geohash vector into the parameter space, it forces the weight vector w to
be influenced by the spatial information. Both approaches exert influences on the original
positions of the neural networks. Residual correction creates a new branch to introduce
the spatial information into the deep neural network without touching the original model,
which merely adds a correction term to the prediction. These three approaches explore the
different positions of the neural networks to employ the geospatial information.

3. Experiments
3.1. Datasets

The GID dataset [38] consists of 150 images collected from the Gaofen-2 satellite. Each
image has a pixel size of 6908 × 7300 and contains the R, G, and B bands. The near-infrared
band is abandoned in this dataset. The spatial resolution of the multispectral image is 4 m.
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The GID dataset contains five land-use classes: built-up, farmland, forest, meadow and
waters. We split out 90 images for training, 30 images for validation, and 30 images for
testing. Each image is cropped into 224 × 224 patches. As shown in Figure 3a, the GID
dataset is uniformly distributed over China.

The Inria building dataset [6] is organized by city. There are five cities in the training
set and another five cities in the test set. As shown in Figure 3b, they are distributed over
the United States and Austria. Each city has 36 image tiles with a size of 5000 × 5000. We
select 20 tiles from the training set for validation. The spatial resolution of the image tiles
is 30 cm. This dataset contains two semantic classes: the buildings and the non-building
class. Figure 2 demonstrates the statistical values of the building sizes by the number of
pixels. Most of the buildings are smaller than 250,000 pixels (500 × 500). Thus, we divide
the image tiles into patches with a size of 512 × 512.

The image tiles in the GID dataset are distributed over China, and the tiles of the Inria
dataset are spread over ten cities in the United States and Europe. The cover ranges of these
datasets are very small to meet the requirements of real applications of semantic segmenta-
tion. Therefore, we employ a worldwide building dataset [48], called the Building dataset
for Disaster Reduction and Emergency Management (DREAM-B), to approximate the real
mapping situation. The image tiles are collected from Google Earth Engine (GEE) [49], and
the corresponding labels are derived from Open Street Map [50]. The spatial resolution of
the image tiles is 30 cm, which is quite similar to that of the Inria dataset. The size of the
image tiles is 5000 × 5000. All the tiles consist of R, G, and B bands. Since the performance
of the deep neural network is sensitive to the size of the training dataset, this dataset
contains 626 image tiles that cover 100 worldwide cities. We split out 250 tiles for training,
63 for validation and 313 for testing.

3.2. Experimental Setup

For the GID dataset, we train a net called TernausNet, pretrained on ImageNet [51] to
accelerate the convergence of training, which is based on VGG net [52] and U-net [25]. This
network is referred to as the baseline . Because this dataset has the smallest size among the
three datasets, we conduct experiments comparing the three ways to embed geohash codes
in this dataset.

For the Inria building dataset, we conduct more experiments on this dataset by
focusing on feeding the geohash into the feature space. The geohash code can solely be
the input of the last convolutional layer. Furthermore, it can also be fed into the other
earlier layers. As shown in Figure 6, we can also attach the geohash code after each
Normal Cell. We explore both manners with various code lengths. In the end, we validate
the effectiveness of feeding the geohash into the feature space on the DREAM-B dataset.
The architecture of the network employed for the Inria and the DREAM-B datasets is
shown in Figure 6. This model combines U-Net [25] with the NASNet-Mobile model [42],
which is acquired via neural architecture searching (NAS). We refer to this model as
the U-NASNetMobile, and the U-NASNetMobile model with geohash codes is termed
GeohashNet ( the source code is available at https://github.com/yangnaisen/GeohashNet;
accessed on 11 July 2021). The U-NASNetMobile model has a higher computation efficiency
and occupies less GPU (Graphics Processing Unit) memory.

The Adam optimizer [53] is employed for training the models. Cyclic learning rates
with a cosine annealing schedule [54] are utilized to accelerate the speed of convergence.
This method is also referred to as cyclic cosine annealing. Based on checkpoints at the
end of each cycle, snapshot ensembling [55] can further boost the accuracy of the model.
The maximum and minimum learning rates of cyclic cosine annealing are 1 × 10−3 and
1 × 10−6, respectively.

Data augmentations are utilized to avoid overfitting, including random flipping
both horizontally and vertically, random rotation and random brightness jittering. The
preprocessing of image tiles involves subtracting 128 from all the input images’ raw pixel
values before dividing them by 128. The values of the geohash codes are transformed

https://github.com/yangnaisen/GeohashNet
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from 0 and 1 into −1 and 1, respectively. The value of weight decay is 1 × 10−5. Batch
normalization [56] is set before each ReLU [57] activation layer. Models on the GID
dataset are trained for 100 epochs with a mini-batch size of four. All the U-NASNetMobile
experiments are trained for 200 epochs with a mini-batch size of 16. The patch size is
enlarged to 2048 × 2048 to further reduce the error when testing [58].

4. Results

The geospatial distribution of the Inria building dataset is very different from that of
the GID dataset; it is distributed more broadly across two continents. This makes the task
of semantic segmentation on this dataset more challenging. Additionally, the resolution
of the Inria building dataset is much higher than that of the GID dataset, so its samples
contain an enormous amount of detail. Thus, we compare three strategies of using geohash
on the GID dataset and pay more attention to the Inria building dataset for visualization.

4.1. Results for the GID Dataset

The experimental results of the baseline model on the GID dataset are shown in Table 2.
The results are assessed by way of the overall accuracy (OA). Upon feeding the binary
geohash into the parameter space, the low accuracy indicates the dramatic influence of
this method on the results of semantic segmentation. We vary the length of the binary
geohash. As shown in Table 2, 14 bits result in an accuracy of 94.72%, while 20 bits result in
an accuracy of 92.61%. This means that feeding the binary geohash into parameter space
directly leads to a low accuracy regardless of the code length. Additionally, the precision
of the binary geohash is a key hyperparameter for the model. All the experiments of the
binary geohash show strong impacts on the results of semantic segmentation.

Table 2. Different lengths of the binary geohash on the GID dataset.

Length of the Binary Geohash Code Overall Accuracy

0 (without geohash) 96.17%
14 (parameter space) 94.72%
16 (parameter space) 93.56%
20 (parameter space) 92.61%
20 (feature space) 96.91%

The network of residual correction has two output nodes (shown in Figure 5d), which
are highly correlated with one another. Thus, the performance of the residual correction
is close to that of the baseline model. It can be seen from Table 3 that the experiment
of adding the binary geohash to the feature space achieves the best performance among
these methods.

Table 3. Accuracy of the binary geohash on the GID dataset.

Methods Overall Accuracy

CRFAS [59] 94.14%
Object-based Voting [38] 95.74%

Baseline (without geohash) 96.17%
Parameter Space 94.72%
Residual Correction 96.42%
Feature Space 96.91%

4.2. Results for the Inria and DREAM-B Datasets

Experiments on the Inria building dataset explore the strategy of feeding the geohash
code into the feature space to further verify its effectiveness. Following the publishers of
the Inria building dataset [6], we report the mean of the intersection over union (mIoU)
for evaluation.

For the experiments of feeding code to the last convolutional layer, all of these groups
surpass the accuracy of the baseline model, that is, 75.51, as shown in Table 4. As shown
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in Table 4, the geohash codes attached after each Normal Cell are lower than those of the
baseline model without geohash codes. Since the length of 20 bits obtains the highest
performance for both groups, the effect of code length is robust but does not vary regu-
larly. Table 5 compares the U-NASNetMobile model with the existing methods. Table 6
provides more measurements for comparison. Though GeohashNet has a greater F1 value,
it sacrifices the accuracy of precision to obtain a better recall. As shown in Figure 8a,
the learning curve in the training loss keeps decreasing during training, whereas that
of the validation loss stops dropping around the 75-th epoch. This suggests that there
exists some degree of overfitting for models. The drastic changes of learning curves at
100 epochs are caused by the warm restarts of cyclic learning rates [54]. The U-NASNetMobile
model achieves an accuracy of 75.51, which is comparable to that of the DID model’s
accuracy [60] of 74.95 [60], which contains fewer parameters. Since the NASNetMobile
model is proposed for mobile devices, it will achieve a higher accuracy with more convo-
lutional filters. The U-NASNetMobile model with the longitude and latitude coordinates
has an accuracy of 75.66, which suggests that the longitude and latitude coordinates can
also provide the geospatial information of satellite images to some extent. The longitude
and latitude coordinates are expressed as the cardinal numbers, whereas the geohash
codes are represented with multi-scale binary codes. Encoding the near locations with the
cardinal numbers will introduce pseudo-information into the model. For instance, if three
locations, A, B and C, are all at the Equator and at the longitudes of −170◦, 0◦, and 170◦,
the longitudes may mislead that A is closer to B than C, because the cardinal numbers are
−170 < 0 < 170. Due to the Earth being a spheroid, A is actually closer to C than B. The
geohash codes are multi-scale binary codes without this issue. This may be the reason
why the GehashNet outperforms the U-NASNetMobile model with the longitude and
latitude coordinates.

Table 4. Different lengths of the binary geohash on the Inria dataset.

Length of the Binary Geohash Code mIoU

0 (without geohash) 75.51

12 (last conv layer) 75.68
16 (last conv layer) 75.62
20 (last conv layer) 75.84
24 (last conv layer) 75.60
28 (last conv layer) 75.67

12 (after each Normal Cell) 72.75
16 (after each Normal Cell) 73.06
20 (after each Normal Cell) 73.39
24 (after each Normal Cell) 73.03
28 (after each Normal Cell) 72.90

Table 5. Results for different methods on the Inria dataset.

Method mIoU

ONERA [32] 71.02
Dual-Resolution U-Net [8] 72.45
AMLL [32] 72.55
DID [60] 74.95
ICT-Net [61] 80.32

U-NASNetMobile 75.51
U-NASNetMobile+LatLng 75.66
GeohashNet 75.84

The visual prediction results for geohash on the Inria dataset are shown in Figure 9.
From the prediction of the image patches, it can be seen that most of the large buildings
are recognized with small errors. The model produces rather sharp edges of the large
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buildings, and few small buildings fail to be correctly classified. From Figure 10, we can
more clearly observe the preference of the classifier. The performance of the model may be
further improved by focusing on small buildings [62,63].

The experiments on the DREAM-B dataset further validate the effectiveness of geohash
codes. As shown in Table 7, the model with a geohash code of 16 bits surpasses the
baseline model without geohash codes by 0.37. As with the results for the Inria dataset,
models with various code lengths trained on the DREAM-B dataset perform better than
the baseline model.

Table 6. More measurements of results for the Inria dataset.

Method mIoU Overall Accuracy Precision Recall F1

U-NASNetMobile 75.51 96.23 89.40 86.82 88.09
GeohashNet 75.84 96.29 89.39 87.27 88.31

Table 7. Different lengths of the binary geohash on the DREAM-B dataset.

Length of the Binary Geohash Code mIoU

0 (without geohash) 63.59

16 (last conv layer) 63.96
20 (last conv layer) 63.88
24 (last conv layer) 63.83
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Figure 8. Learning curves for the Inria dataset: (a) the curve of the loss; (b) the curve of mIoU.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9. Visual results for the Inria dataset. The subfigures (a,e,i) in the left column are produced by the model with
the geohash. The building pixels are labeled green. The subfigures (b,f,j) in the middle column are the ground truth in a
blue color, the subfigures (c,g,k) are the combination of the prediction results and the corresponding ground truth, and
the subfigures (d,h,l) highlight the false positive pixels with an orange color, which are misclassified as buildings. All the
sample images have a size of 1024 × 1024.
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Figure 10. Comparison of the model predictions and the ground truth on the validation set of the Inria building dataset:
(a) the area of the building size is used as the indicator for comparison; (b) the number of buildings is used as the indicator
for comparison. From the figures, it can be clearly seen that small buildings fail to be correctly classified in terms of area and
number of buildings. It should be noted that the intervals of building size in both figures are not divided evenly.

5. Discussion
5.1. The Influence of Code Length

In Table 4, the length of 20 bits achieves the best result, that is, 75.84, which outper-
forms the baseline model with a margin of 0.33. With various lengths of code, the accuracy
of the model varies in the interval [75.60, 75.84]. This suggests that the length of geohash
codes has a considerable influence on the model.

The geographic hash codes can enhance the spatial information. However, this kind
of enhancement may cause overfitting of the model. If the spatial information is too strong,
the neural networks will just learn the correlation between the geographic position and
the corresponding labels. This indeed causes the overfitting of the model. To avoid this
situation, the model should learn mainly from image features rather than from geospatial
features. The geospatial features are the only assistance for the input images. Therefore, we
can use the precision of the geohash codes to prevent the dominance of geospatial features
in semantic segmentation.

5.2. Ablation Study and Visualization

To thoroughly investigate how the binary geohash code affects the model, we analyze
the prediction results both quantitatively and qualitatively. Table 8 presents the confusion
matrices of the two models, both with and without geohash codes, trained on the Inria
dataset. From Table 8, it can be seen that pixels of the non-building class dominate the
dataset, with a proportion of 83.96% in total, and the building class has a percentage of
16.04%. Comparing the number of predicted pixels of the non-building class, the model
with geohash codes tends to classify fewer pixels in the non-building class. The normalized
confusion matrices normalizing the elements in each row illustrate this trend more clearly.
The model with geohash codes correctly predicts 87.27% of the building pixels. This result
is better than that of the model without geohash codes (86.83%). The prediction results for
the non-building class of both models are roughly equal.
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Table 8. Confusion matrices of models with and without geohash codes trained on the Inria dataset.
Normalized confusion matrix normalizes the elements in each row.

Model Confusion Matrix Normalized Confusion Matrix

Predicted Label Predicted Label

Non-Building Building Non-Building Building

w/o geohash True label
non-building 411,557,988 8,254,918 non-building 0.9803 0.0197

building 10,563,563 69,623,531 building 0.1317 0.8683

with geohsh True label
non-building 411,507,461 8,305,445 non-building 0.9802 0.0198

building 10,205,046 69,982,048 building 0.1273 0.8772

The overall influence of the geohash codes can be clearly observed in Figure 11. For the
model with geohash codes attached, a sensitivity analysis can help us to better understand
how the geohash codes affect the results. This is accomplished by setting the geohash code
to all zeros to eliminate its impact. After zeroing the geohash code, the pixels affected by
the spatial distribution altered predictions in the semantic segmentation. Samples of the
altered area are illustrated in Figure 11. In the subfigures of (e,f,h), the majority of the
altered pixels appear on the border of the buildings, while some regions of the buildings
are radically changed in the the subfigure (g).

The purpose of adding geohash codes to the model is to make the model obtain helpful
information from the geographic location of the image. From Figure 9, which depicts the
semantic segmentation results, we can see that when the geographic location information is
not considered, the neural network can identify the main body of the buildings according
to the characteristics of the image itself. The majority of the semantic segmentation results
within the building are correct, and most of the pixels with wrong labels occur on the edge
of the building. The pixels within the buildings have been classified correctly, thus it can
be recognized without the need for geographic location information. Adding geographic
location information will not change the pixels that have been classified correctly in the
buildings. Therefore, the pixels that change category appear on the edge of the building
after adding the geohash codes.

The heat map in Figure 12 can isolate this kind of variation. The prediction scores of
the buildings influenced by geohash codes fluctuate from 0 to 0.05. For small buildings, a
greater portion of the building area is affected. The visualization results for the geohash
codes verify the strong impact of the geospatial information on the semantic segmentation
results. Thus, they confirm the effectiveness of the proposed binary geohash method.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Impacts of the binary geohash. By setting the geohash code to zeros, the impacts of the geospatial information
are thoroughly eliminated. After zeroing the geohash codes, the changed labels are marked in a red color. Subfigures of
(a–d) are samples from the Inria dataset. In the subfigures of (e,f,h), the majority of the altered pixels appear on the border
of buildings, while some regions of the buildings are radically changed in the subfigure (g). All the sample images have a
size of 128 × 128.

(a) (b)

Figure 12. The impacts of the binary geohash can be better recognized by a heat map of the buildings’ prediction score.
The buildings’ prediction scores are the output of the softmax layer within the range [0, 1]. The heat map is obtained by
visualizing the absolute values of the difference between the prediction scores of the geohash codes and the zeroed codes.
The sample images have a size of 1024 × 1024.

6. Conclusions

Satellite images have shown strong spatial patterns in a great many applications
and datasets. Adapting the model according to the geospatial location of data is the
missing part of the traditional deep learning approaches. In this paper, we studied the
approach of integrating geospatial information into DNNs based on the geohash method.
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Specifically, a binary geohash code with bits of 0 and 1 was utilized in the proposed
method. We conducted three strategies to combine the binary geohash code with the
existing architectures of CNNs: feature space, parameter space, and residual correction.
Experiments were conducted on three widely distributed datasets to investigate the best
manner of using the geographic coordinates. The results for the experiments demonstrate
that the simplest approach of treating the binary geohash code as an extra feature map is the
most effective method. Additionally, the impact of the precision of the binary geohash code
was analyzed in detail. All of these results demonstrate that the geospatial information has
a non-negligible influence on the large-scale semantic segmentation of satellite images, and
the proposed method can, to some extent, learn this type of geospatial information.

This paper is an attempt to utilize the spatial information of remote sensing data.
Geospatial locations are regarded as part of the input data. Another possible way is
to transform the spatial information into the component of the model rather than the
component of the data, which has not been explored in this paper. In a larger sense,
extracting knowledge from remote sensing data is not touched on in this research and
is still a big challenge worth studying. Besides, the currently employed dataset contains
only a few categories. In the future, we will investigate the different impacts of geospatial
information on specific land-use classes using more datasets.
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DREAM-B Building dataset for Disaster Reduction and Emergence Management
FCN Fully Convolutional Network
GEE Google Earth Engine
GID Gaofen Image Dataset
GPU Graphics Processing Unit
mIoU mean of Intersection over Union
NAS Neural Architecture Searching
OA Overall Accuracy
PSPNet Pyramid Scene Parsing Network
ReLU Rectified Linear Unit

https://x-ytong.github.io/project/GID.html
https://project.inria.fr/aerialimagelabeling/
https://project.inria.fr/aerialimagelabeling/
https://gda.bnu.edu.cn/


Remote Sens. 2021, 13, 2723 20 of 22

References
1. Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [CrossRef]
2. Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-resolution multi-temporal mapping of global urban land

using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [CrossRef]
3. Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based

on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [CrossRef]
4. Zhang, H.K.; Roy, D.P. Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land

cover classification. Remote Sens. Environ. 2017, 197, 15–34. [CrossRef]
5. Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m

resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote. Sens. 2015, 103, 7–27. [CrossRef]
6. Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Can semantic labeling methods generalize to any city? the inria aerial image

labeling benchmark. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth,
TX, USA, 23–28 July 2017; pp. 3226–3229.

7. Pesaresi, M.; Huadong, G.; Blaes, X.; Ehrlich, D.; Ferri, S.; Gueguen, L.; Halkia, M.; Kauffmann, M.; Kemper, T.; Lu, L.; et al. A
global human settlement layer from optical HR/VHR RS data: Concept and first results. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 2013, 6, 2102–2131. [CrossRef]

8. Lu, K.; Sun, Y.; Ong, S.H. Dual-Resolution U-Net: Building Extraction from Aerial Images. In Proceedings of the 24th International
Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 489–494.

9. Neimeyer, G. Geohash, 2008. Available online: http://geohash.org (accessed on 11 July 2021).
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