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Abstract: Water vapor is one of the most important parameters in climatic studies. MODerate-
resolution Imaging Spectroradiometer (MODIS) is a key instrument and can provide spatially con-
tinuous precipitable water vapor (PWV) products. This study was focused on the performance
evaluation of the MODIS near-infrared PWV product (MOD-NIR-PWV) over China. For a compre-
hensive assessment of the performance of MOD-NIR-PWV, PWV retrieved from the measurements
at the global navigation satellite systems (GNSS) stations (i.e., GNSS-PWV) and the ERA5 reanalysis
dataset (ERA-PWV) from 2013 to 2018 were used as the reference. To investigate the suitability of
using ERA-PWV as the reference for the evaluation, ERA-PWV was compared to the high-accuracy
GNSS-PWV at 246 GNSS stations and PWV retrieved from radiosonde observations (RS-PWV) at
78 radiosonde stations over China. The results showed that the mean bias and mean root-mean-
square (RMS) of the differences between ERA-PWV and GNSS-PWV across all the stations were
0.5 and 1.7 mm, respectively, and the mean correlation coefficient of the two datasets was above
0.96. The values were 0.4 and 1.9 mm and 0.97, respectively, for the differences between ERA-PWV
and RS-PWV. This suggests the suitability of ERA-PWV as the reference for the evaluation of MOD-
NIR-PWV. In addition, MOD-NIR-PWV was compared with both GNSS-PWV and ERA-PWV, and
their mean bias and mean RMS were 2.9 and 3.8 mm (compared to GNSS-PWV) and 2.1 and 3.0 mm
(compared to ERA-PWV), respectively. The positive bias values and the non-normal distribution
of the differences between MOD-NIR-PWV and both reference datasets imply that a considerable
systematic overestimation of MOD-NIR-PWV over China may exist. To mitigate the systematic bias,
ERA-PWV was utilized as the sample data due to its spatial continuities, and a grid-based calibration
model was developed based on the annual and semiannual periodicities in the differences between
MOD-NIR-PWV and ERA-PWV at each grid point. After applying the calibration model to correct
MOD-NIR-PWV, the calibrated MOD-NIR-PWV was compared with ERA-PWV and GNSS-PWV
for precision and accuracy analysis, respectively. The comparison showed that the model could
significantly improve the precision by 94% and accuracy by 53%, which manifested the effectiveness
of the calibration model in improving the performance of MOD-NIR-PWV over China.

Keywords: MODIS near-infrared precipitable water vapor; GNSS-PWV; ERA-PWV; grid-based
calibration model

1. Introduction

Atmospheric water vapor plays a key role in the Earth’s radiative balance, hydrological
process, energy circulation throughout surface evaporation, transportation, condensation,
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and precipitation processes [1–4]. As one of the most important greenhouse gases, atmo-
spheric water vapor also greatly affects climate change, which involves a positive feedback
to global warming and leads to further climate change [5–7]. Therefore, effective quantifica-
tion of the atmospheric water vapor content is an important task and also a challenge due
to the dynamic nature of water vapor in both spatial and temporal domains. Precipitable
water vapor (PWV), defined as the total atmospheric water vapor contained in a vertical
column from the ground to the specified tropospheric height, is widely used to quantify
the atmospheric water vapor content [8–10].

PWV is usually retrieved from observations and Numerical Weather Prediction (NWP)
models. The observations are from radiosonde [11], Global Navigation Satellite Systems
(GNSS) [3], remote sensing satellites [12], sunphotometer [13], ground-based telescope [14],
etc. The NWP models include the Second Modern Era Retrospective analysis for Research
and Applications (MERRA-2) [15], fifth-generation European center for medium-range
weather forecasts (ECMWF) reanalysis (ERA-5) [16], etc.

Radiosonde is an important traditional method used in the monitoring of PWV variation
due to the availability of long-term historic data [3,11,17,18]. Various types of atmospheric data
can be acquired from radiosonde, e.g., temperature, pressure, and humidity at various altitudes
over the radiosonde station of interest. Radiosonde-derived PWV (RS-PWV) can reach 1 mm
accuracy in average weather conditions [19,20]; thus RS-PWV is often used as reference data in
the validation of PWV derived from other technologies [21–23]. However, the low temporal
resolution (twice per day) of RS-PWV due to the high cost of the one-off balloons [24] limits its
applications in some climatic research.

GNSS is a relatively new technique that can be used to obtain PWV time series at high
temporal and spatial resolutions, predominantly due to its distinguished characteristics of
high accuracy, high sampling frequency, all-weather operability, and global deployment of
ground-based GNSS stations [25,26]. Since GNSS-meteorology was first proposed in 1992
by Bevis [10], GNSS-derived PWV (GNSS-PWV) has been studied by several researchers,
and the accuracy of GNSS-PWV can reach 2 mm or even better [27–29]. Nowadays, GNSS-
PWV is being used for many climatic studies, e.g., weather forecast [30], ENSO [31–33],
and drought monitoring [34].

RS-PWV and GNSS-PWV over a ground-based station, as single-point observations,
can be used to determine the PWV variations around the area of the station. If a network of
ground-based stations is sparsely deployed, the determination of small-scale variations of
the PWV can be difficult in the spatial domain. In recent years, with the rapid deployment of
more and more remote-sensing sensors aboard satellites, various types of PWV with global
coverage are available [5,35–39]. Among these sensors, MODerate-resolution Imaging
Spectroradiometer (MODIS) on the NASA Terra and Aqua satellites is one of the most
widely used data source since it can provide PWV from the ground surface to the upper
troposphere over the globe [35,37,40]. MODIS PWV products predominantly provide
two types of PWV data derived through the infrared algorithm (MOD-IR-PWV) and
near-infrared algorithm (MOD-NIR-PWV), respectively.

Reanalysis datasets from NWP models are another source of PWV [41–45]. They are
generated by assimilating atmospheric data from various sources of observations, including
synoptic stations, radiosonde stations, satellite sensors, and microwave radiometers [16].
PWV derived from reanalysis datasets, such as ERA5 (ERA-PWV), have good spatial-
temporal resolution and continuity, and accuracy of 1.5–3 mm is reported when RS-PWV
and GNSS-PWV are used as the references [46,47].

Previous performance evaluations of the MODIS PWV products over several typical
regions in China showed that MODIS PWV presented a typical error in the range from 5 to
12 mm, referring to the GNSS PWV products from the International GNSS Service (IGS),
radiosonde data from the Integrated Global Radiosonde Archive (IGRA), and sunphotome-
ter observations from the Aerosol Robotic Network (AERONET) [39,48–53]. Gui et al. [49]
conducted a comparison among four PWV products, i.e., MOD-NIR-PWV, RS-PWV, GNSS-
PWV, and sunphotometer-derived PWV, over China during the period from 2011 to 2013.
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Liu Z. et al. [13] assessed the accuracy of MOD-IR-PWV and MOD-NIR-PWV over a period
of several years in the Hong Kong region. Liu H. et al. [54] compared MOD-IR-PWV and
MOD-NIR-PWV over China against RS-PWV over 83 radiosonde stations from the IGRA
in 2012. Additionally, several comparisons for the performance assessment of MODIS PWV
products in the Tibetan Plateau were also conducted [39,51,55,56]. However, since the
reference data used in the above studies were mostly from a small number of single-point
observations, no confirmative conclusions were made on the performance of MODIS PWV
products over China. To address this issue, new reference data with good spatial coverage
are preferred for the validation of MODIS PWV products. This is the main reason for this
study to use both GNSS-PWV and ERA-PWV as references to evaluate the accuracy of
MODIS PWV products over China.

Due to some systematic errors contained in MODIS PWV products, it is desirable to
perform calibration for correcting or mitigating such errors before the products are used for
climatic applications, e.g., the construction of accurate PWV maps based on multi-source
data, if a calibration model is available [54,57–59]. The accuracy of MODIS PWV products is
dependent upon the performance of the calibration model. The model is usually developed
based on the differences between MODIS PWV products and selected reference PWV at
co-located ground-based sites, e.g., GNSS stations and/or radiosonde stations, which are
the so-called sample data of the modeling. Khaniani et al. [60] used the differences between
MOD-NIR-PWV and GNSS-PWV at 38 ground-based GNSS stations over Iran, and a fitting
function of height was developed for the calibration model, which effectively reduced
the error in MOD-NIR-PWV due to the uniform distribution of the 38 GNSS stations and
the slight variation of PWV over Iran. In China, a linear fitting model based on the linear
relationship of the differences between MOD-NIR-PWV and reference PWV obtained from
other technologies over the whole continent of China is the most common calibration
model [54,55,58]. The main problem of using the model is that it performs differently in
different regions; hence, Liu B. et al. [61] divided China into five regions, and five linear
regional models were proposed for linear PWV fitting. However, the performance of
the regional models was still not satisfactory due to the low coverage of GNSS stations
and the characteristics of strong seasonal variations of the PWV, e.g., large differences
between MOD-NIR-PWV and reference PWV in summer and small differences in winter.
To consider these two factors, in this study, the ERA5 datasets were adopted as the sample
data for better spatial coverage, and a harmonic model fitting the seasonal characteristic
of the PWV difference at each ERA5 grid point was established for the calibration model
of the grid point. A 0.25◦ × 0.25 grid-based calibration model was eventually developed
over China.

The outline of this paper is as follows: Various PWV products used in this study
are introduced in Section 2. Section 3 presents comprehensive comparisons among PWV
products obtained from different techniques over China, followed by the establishment of
the grid-based calibration model proposed in this study for the mitigation of the systematic
bias in MOD-NIR-PWV in Section 4. Summary and conclusions are given in the last section.

2. Datasets and Methods
2.1. Datasets
2.1.1. MODIS

MODIS is a remote scanning spectroradiometer with 36 discrete spectral bands be-
tween 0.645 and 14.235 µm. PWV from the surface to the upper troposphere is obtained
based on the difference of transmittance between the absorption bands (near 0.905, 0.936,
and 0.94 µm) and the non-absorption bands (near 0.865 and 1.24 µm) of water vapor [35].
Since MODIS observations are sensitive to clouds in the atmosphere, the cloud-free PWV
data in MODIS Level-2 water vapor product from Terra and Aqua (i.e., MOD05 and MYD05)
is used in this study with the aid of the MODIS cloud mask product. The MOD05 and
MYD05 products consist of two types of PWV data: MOD-NIR-PWV and MOD-IR-PWV.
The former, with 1 km spatial resolution, is available during daytime with a typical error



Remote Sens. 2021, 13, 2761 4 of 20

level of 5–10%. The latter, with 5 km spatial resolution, is available during both daytime
and nighttime, but its accuracy is poorer than the former. Considering the higher spatial
resolution and better accuracy, MOD-NIR-PWV during a six-year period from 2013 to
2018 over China, collected from Level-1 and Atmosphere Archive & Distribution System
(LAADS) Distributed Active Archive Center (DAAC), was used in this study.

It is worth mentioning that different height systems are used for different types
of PWV data, e.g., MOD-NIR-PWV refers to the orthometric height, while ERA5 data
and radiosonde observations refer to the geopotential, and GNSS observations refer to
ellipsoidal heights. In this study, the orthometric height system used in MODIS was treated
as the standard. Ellipsoidal heights of GNSS stations, geopotentials of ERA5 atmospheric
data and geopotential heights of radiosonde observations were converted into orthometric
heights in the following sections.

2.1.2. ERA5

ERA5 is the latest generation of the reanalysis dataset from the European Centre for
Medium-Range Weather Forecasts (ECMWF), which provides hourly atmospheric profile
data at 37 pressure levels from 1000 hPa to 1 hPa over 0.25◦ × 0.25◦ latitude-longitude
grids. To adapt to the MOD-NIR-PWV height range, the ERA-PWV used in this study is
also referred to the content of PWV from the height of the MODIS pixel to the pressure
level of 1 hPa.

ERA-PWV can be calculated by integrating atmospheric variables along all pressure
levels as defined by [24]:

PWVERA =
1

ρw

∫ N

1

qi
gi

dPi (1)

where ρw is the density of liquid water, g is the gravity acceleration (in unit of m/s2), dP is
the increment of pressure (in unit of hPa) between two adjacent pressure levels, subscript i
denotes the ith pressure level, N is the number of all pressure levels, and q is the specific
humidity, which can be obtained from [62]:

q = 0.622Pv
P−0.378Pv

Pv = RH
100 Ps

Ps = 6.112 exp
[

17.67(TC−273.15)
TC−29.65

] (2)

where Pv and Ps are the partial pressure of water vapor and saturation water vapor pressure
(in hPa), respectively, RH is the relative humidity, and TC is the Celsius temperature.

To mitigate the error caused by the height difference between an ERA5 grid point and
its corresponding MODIS pixel, the geopotential of each pressure level at the ERA5 grid
point was transformed into the orthometric height to unify the two height systems using
the following formulas [63,64]:

H = EH − Hgeoid

EH =
Rϕ ·Hgp

g2
ϕ

9.80065 Rϕ−Hgp

gϕ = 9.80620×
(
1− 2.6442× 10−3 cos 2ϕ + 5.8× 10−6 cos2 2ϕ

)
Rϕ = 6378.137

1.006803−0.006706·sin2 ϕ

(3)

where ϕ is the latitude of the grid point, H, EH, and Hgp are orthometric height (in km),
ellipsoidal height (in km), and geopotential (in 10−3 m2/s2), respectively, Hgeoid is the geoid
height (in km) obtained from Earth Gravitational Model 2008 (EGM2008), and gϕ and Rϕ

are the geoid gravity (in m/s2) and the curvature radius (in km) of the Earth at the latitude
of ϕ, respectively.

Upon the unification of the height systems, atmospheric variables including relative
humidity, temperature, and pressure at the height of the MODIS pixel were calculated for
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the final integration. If the MODIS pixel was above the lowest pressure level, the atmo-
spheric variable values for the MODIS pixel were obtained by simple linear interpolation
based on the variable values at the two adjacent pressure levels that contain the pixel. If
the MODIS pixel was below the lowest pressure level, different strategies for different
variables were used: relative humidity was assigned to the constant value, which was the
same as that of the lowest pressure level; the temperature was linearly extrapolated based
on the temperature value at the lowest pressure level and a constant temperature lapse rate
of 6.5 ◦C/km; the pressure was calculated from the following hydrostatic and ideal gas
equation [65]:

PM = PL
− 2g(HM−HL)

Rd(TM+TL) (4)

where Rd = 8.31462 is the ideal gas constant (in mol−1 K−1), HM and HL denote the
orthometric heights of the MODIS pixel and the lowest pressure level of ERA5, respectively,
PM and TM are the pressure (in hPa) and temperature (in K), respectively, at the MODIS
pixel, PL and TL are the pressure (in hPa) and temperature (in K), respectively, at the lowest
pressure level. After this data preprocess was completed, the atmospheric variable values
were used in the integral of Equation (1) to obtain the corresponding ERA-PWV from the
height of the MODIS pixel to the pressure level of 1 hPa.

2.1.3. Radiosonde

Radiosonde observations over 78 radiosonde stations were used in this study from
the IGRA Version 2 dataset. The geographical distribution of these selected 78 radiosonde
stations is shown in Figure 1. The dataset provides various parameters with a temporal
resolution of twice a day over China, including pressure, temperature, relative humidity,
etc. These derived RS-PWV were calculated based on the same integration method as
described in Equation (1). The height match process was also conducted as described
in the previous section. After the process, these RS-PWV were used in the performance
evaluation of ERA-PWV. It should be noted that RS-PWV was not used in the performance
evaluation of MOD-NIR-PWV because of the sparse distribution of radiosonde stations
and the large time difference (more than 2 h) between the MODIS overpass time and the
radiosonde launch epoch.
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2.1.4. GNSS

GNSS-PWV used in this study were retrieved from hourly zenith tropospheric delay
(ZTD) during the period from 2013 to 2018 over 246 primary ground-based GNSS stations
in the Crustal Movement Observation Network of China (CMONOC) (at http://www.
cgps.ac.cn, (accessed on 20 July 2019). The geographical distribution of these 246 stations in
Figure 1 indicates a good spatial coverage over most regions in China, i.e., sufficiently dense
stations in the central region, but sparse stations in the northeastern region, southeastern
region, and the Tibetan Plateau.

In GNSS data processing, for the estimation of unknown parameters, mainly including
position and atmospheric errors, etc., the slant tropospheric delay errors contained in those
GNSS observations from all the satellites at the same station are projected or mapped onto
the station’s zenith direction (using a mapping function) to reduce the number of unknown
parameters to be solved for. The estimated tropospheric delay error at each station is the
zenith tropospheric delay (ZTD), which can be decomposed into zenith hydrologic delay
(ZHD) and zenith wet delay (ZWD):

ZTD = ZHD + ZWD (5)

The ZHD can be obtained accurately from a standard model that is a function of
the surface meteorological variables of the site. The most commonly used model is the
Saastamoinen model as expressed below [66]:

ZHD =
0.002769P0

f (ϕ, h0)
(6)

where P0 is the surface pressure (in hPa), h0 is the height above geoid (in km), and f (ϕ, h0)
is the function given by:

f (ϕ, h0) = 1− 0.00266 cos(2ϕ)− 0.0028h0 (7)

After subtracting the ZHD from the ZTD, what remains is the ZWD, which can be
converted to PWV using the following equation [29,67]:

PWV =
106

ρwRw
(
k′2 + k3/Tm

)ZWD (8)

where ρw is the density of liquid water, Rw is the specific gas constant of water vapor,
the two atmospheric refraction constants k′2 = 16.52 k2/hPa and k3 = 3.776× 105 k2/hPa,
Tm is the atmospheric weighted mean temperature, and its definition (by the following
integral) as well as approximation (the summation) is:

Tm =

∫ Pv
T dz∫ Pv
T2 dz

≈

N−1
∑

i=1

Pv,i
Ti

∆zi

N−1
∑

i=1

Pv,i
T2

i
∆zi

(9)

where T is the atmospheric temperature (in Kelvin) along the vertical direction of the site,
dz is the incremental step ∆z is the difference between the heights of the two adjacent
pressure levels (in meters).

Equations (6)–(9) indicate that meteorological data are essential in the conversion of
GNSS-ZTD into PWV. However, some GNSS stations are neither equipped with meteorolog-
ical sensors nor co-located with a radiosonde station that can provide such measurements.
In this case, the only way is to use assimilated values from the reanalysis dataset from NWP
models (e.g., ERA-Interim and ERA5) for the conversion. Considering the consistency of
these atmospheric data, ERA5 reanalysis data rather than meteorological measurements
were used in this study. After the atmospheric variable values at the position of the GNSS

http://www.cgps.ac.cn
http://www.cgps.ac.cn
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antenna are calculated from the procedure introduced in Section 2.1.2, Tm and ZHD can be
obtained and then converted into PWV. This GNSS-PWV, denoted by PWVGPS,0, is then
corrected to the height of each MODIS pixel, denoted by PWVGPS,M, using the vertical
correction function below:

PWVGPS, f = PWVGPS,0eλ(EH−Hgeoid−HM) (10)

where PWVGPS,0 and PWVGPS,M are in millimeters, EH and HM are the ellipsoidal height
and orthometric height of the GNSS antenna and MODIS pixel, respectively, and the
constant λ = 0.439 is the water vapor lapse rate given by [68].

2.2. Statistical Metrics

Three statistical metrics were used to evaluate the performance of MOD-NIR-PWV in
this study. They were bias, root-mean-squared (RMS), and correlation coefficient (r) and
their definitions are listed below:

Bias =
∑n

i=1 PWVe,i − PWVr,i

n
(11)

RMS =

√
∑n

i=1(PWVe,i − PWVr,i)
2

n
(12)

r =
∑n

i=1
(
PWVe,i − PWVe

)(
PWVr,i − PWVr

)√
∑n

i=1
(
PWVe,i − PWVe

)2
∑n

i=1
(
PWVr,i − PWVr

)2
(13)

In Equations (11)–(13), the subscriptions e and r denote “evaluated” and “reference”,
respectively, PWVe and PWVr are the mean values of PWVe and PWVr, respectively, of all
the samples, and n is the number of PWV samples.

3. Evaluation Results

In this section, the accuracy of ERA-PWV over China is firstly evaluated using GNSS-
PWV and RS-PWV as reference data; then, the performance and the systematic discrepan-
cies of MOD-NIR-PWV relative to both GNSS-PWV and ERA-PWV are evaluated. Finally, a
grid-based calibration model is proposed based on the differences between MOD-NIR-PWV
and ERA-PWV.

3.1. Geographical Distribution of PWV over China

Figure 2 shows the geographical distribution of the mean PWVs calculated from the
ERA-PWV in a period from 2013 to 2018 over China. PWV values over China present a
relationship with the geographical location: a clear decline from the southeastern coastal
region to the northwestern inland region. The variation tendency is consistent with the
result in Gui [49] and Zhang [46].

The maximum value was found in the southeastern coastal region with a mean PWV
greater than 40 mm, which was mainly due to its moist condition. The mean PWVs over
central China varied from 15 to 30 mm. In the southwestern regions, the mean PWVs were
affected by the topography, in particular, the Tibetan Plateau with the highest elevation
presented the lowest mean PWVs (about 5 mm). In the northwestern inland region with
dry conditions, PWV values remained at a low level in the range from 5 to 15 mm. The
PWVs in the northeastern regions also presented low values ranging from 10 to 15 mm due
to the high latitude and the effect of the winter monsoon.
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3.2. Evaluation of ERA-PWV
3.2.1. Comparison between GNSS-PWV and ERA-PWV

The hourly GNSS-PWV at the aforementioned 246 GNSS stations (see Figure 1) is in a
different form from the hourly ERA-PWV, i.e., single-point and two-dimensional gridded
observations. The comparisons between the two types of data needed to be made over the
same points. Therefore, ERA-PWV at a given GNSS station was obtained from an inverse
distance weighting interpolation of the ERA-PWV values at the four grids surrounding the
GNSS station in this study.

The statistical result of the differences between GNSS-PWV and ERA-PWV in the
six-year period from 2013 to 2018 over each of the selected 246 GNSS stations is shown in
Figure 3. The biases at all GNSS stations were in the range from −2.0 to 3.2 mm with a
mean value of 0.5 mm. The positive bias values at 167 stations imply that ERA-PWV were
slightly overestimated. The correlation coefficient values were in the range of 0.959–0.997,
which were considerably high, meaning that the temporal variation between GNSS-PWV
and ERA-PWV was consistent. As for the RMSs, the minimum, maximum, and mean of
the RMSs at all stations were 0.8, 4.1, and 1.7 mm, respectively. The largest RMS was at the
SCSM station (latitude 29.2◦ N, longitude 102.4◦ E) in Sichuan province close to the Tibetan
Plateau. In addition, the RMS values seemed to be geographical location-dependent: the
values gradually decreased from the southeastern coastal region to the northwest inland
region. This decreasing trend was related to the nature of the regional climate, i.e., the
tropical monsoon climate in the southeastern coastal region, the humid continental climate
in the northwestern inland region, and the plateau climate in the Tibetan Plateau.

Figure 4 shows the distribution, represented by the frequency (in percentage) of
data falling into each of the predefined ranges, of the differences between two of the
three sets of PWV over the same six-year period. It is noted that GNSS-PWV and RS-
PWV are based on single-point results, while ERA-PWV is based on the entire gridded
points. The total frequency accumulated in the first five ranges, which are negative data,
was 37% for the difference between GNSS-PWV and ERA-PWV, and about 86% of the
differences concentrate in the range from −2 to 3 mm. The distribution means a slight
overestimation of ERA-PWV. A normal distribution shown by all the blue bars implies
that the discrepancies between the two sets of PWV were not systematic biases, which also
means a good agreement between the two sets of PWV.
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3.2.2. Comparison between RS-PWV and ERA-PWV

The RS-PWV at 78 radiosonde stations in the six-year period from 2013 to 2018 was used
as another reference to evaluate the performance of the ERA-PWV over China. The inverse
distance weighting interpolation was also conducted to release the non-co-location problem in
the spatial domain between the single-point RS-PWV and two-dimensional ERA-PWV.

The statistical result of the differences between GNSS-PWV and ERA-PWV over each
radiosonde station is shown in Figure 5. The minimum, maximum, and mean values of
the biases at these radiosonde stations were −3.0, 2.2 and 0.4 mm, respectively. The RMSs
varied from 0.5 to 4.2 mm with a mean value of 1.9 mm. The biases and RMSs were similar
with those referring to GNSS-PWV, indicating the equivalent accuracy between RS-PWV
and GNSS-PWV over China. The correlation coefficients between RS-PWV and ERA-PWV
were in the range from 0.897 to 0.990, and the mean correlation coefficient was 0.970. The
extremely low correlation coefficient values were distributed in northeastern regions of the
Tibetan Plateau, which may be attributed to the poor reliability of ERA-PWV over complex
terrain. In addition, about 34% of the differences between ERA-PWV and RS-PWV were
accumulated in the negative ranges (see Figure 4). The apparent normal distribution of the
differences in Figure 4 indicated no obvious systematic discrepancy between ERA and RS.
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These results referring to GNSS-PWV and RS-PWV agree well with each other, imply-
ing the perfect accuracy of ERA-PWV over China. Therefore, ERA-PWV can be used as
a new reference for the evaluation of MOD-NIR-PWV due to its better spatial continuity
and coverage.

3.3. Evaluation of MOD-NIR-PWV
3.3.1. Comparison between GNSS-PWV and MOD-NIR-PWV

Since MOD-NIR-PWV and GNSS-PWV are not spatially co-located, a spatial interpo-
lation process is needed to make the former co-located with the latter. Both sets of PWV
are also not simultaneous observations in the temporal domain, i.e., the overpass time of
the MODIS over a GNSS station differs from the epoch of any hourly GNSS-PWV, thus,
preprocessing for the selection of the GNSS-PWV that adapts to the overpass time of the
MODIS needs to be performed. In this study, the mean of the GNSS-PWV at four consecu-
tive epochs, two of which were immediately before the MODIS overpass and the other two
were immediately after the overpass, was used in the later comparison for addressing the
simultaneity problem. In the spatial domain, a vertical correction for GNSS-PWV and a
horizontal interpolation for MOD-NIR-PWV were conducted to reduce the effects caused
by the height difference and non-co-location, respectively, between the GNSS station and
MODIS pixel. More specifically, for a given GNSS station, the optimal height of the cor-
responding MODIS image was determined from the inverse distance interpolation of the
heights of nine MODIS pixels in a 3 × 3 pixel window centered at the GNSS station. Then,
to match the optimal MODIS height, the GNSS-PWV over the station obtained from the
mean value of consecutive four epochs was corrected based on Equation (10) and named
as corrected GNSS-PWV. For MOD-NIR-PWV, i.e., in the horizontal domain, the inverse
distance weighted interpolation of MOD-NIR-PWV data of the same 3 × 3 pixel window
was performed for its final result, which was compared to the above corrected GNSS-PWV.
It is noted that 25 GNSS stations were discarded because their MOD-NIR-PWV time series
were less than 20% of the six-year period studied. The statistical metrics for the differences
between the two sets of PWV over each of the 221 GNSS stations are shown in Figure 6.
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It can be seen that both the biases and RMSs were considerably large, while the
correlation coefficient values were small, especially in the southeastern coastal region.
Overall, the bias of each GNSS station varied from −1.2 to 8.3 mm with a mean value of
2.9 mm, and biases at 215 stations were positive. The RMSs were in the range from 0.9 to
9.4 mm with a mean value of 3.8 mm. The biases and RMSs indicate the poor performance
of MOD-NIR-PWV over China. Moreover, some relatively higher biases (>5 mm) and RMSs
(>6 mm) were observed in the southeastern coastal region, which suggests the much poorer
performance of MOD-NIR-PWV. A similar decreasing trend of the biases and RMSs from
the southeast to the northwest was also noticeable. Additionally, the minimum, maximum,
and mean of the correlation coefficient values were 0.954, 0.998, and 0.991, respectively,
implying similar temporal variation trends between the two sets of PWV. This indicates
the potential to improve the precision of MOD-NIR-PWV throughout some calibrations.
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The non-normal distribution shown by the red bars in Figure 7 indicates that the
differences between MOD-NIR-PWV and GNSS-PWV were systematic biases. More-
over, the total frequency in the five ranges, i.e., the frequency of negative differences,
was less than 11%; about 66% of the differences were concentrated in the range be-
tween 0 and 4 mm, implying that the large systematic biases were due to the significant
overestimation of MOD-NIR-PWV. This result is consistent with the findings from
the comparisons with radiosonde data in Hongkong by Liu Z. et al. [13] and also in
mainland China by Liu H. et al. [54]. However, a more confirmative conclusion needs
to be made based on more comparisons with spatially continuous reference data such
as ERA-PWV to evaluate the performance of MOD-NIR-PWV over China. This will be
discussed in the next section.
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3.3.2. Comparison between ERA-PWV and MOD-NIR-PWV

The high accuracy of ERA-PWV has been validated using GNSS-PWV as the
reference over China in Section 3.2, hence, ERA-PWV was used as the reference of
MOD-NIR-PWV in this section. The two sets of data also needed to be preprocessed
for a valid comparison, i.e., the two types of datasets needed to correspond to the
same position and also the same time. In this study, the 3 × 3 pixel window algorithm
was adopted to determine the MOD-NIR-PWV values for the position of the ERA-5
grid points in the MODIS image, and the four-consecutive-epoch interpolation was
used to solve the problem of the mismatch in the temporal domain, as described in
the previous section. Figure 8 shows the statistical results of the comparison between
ERA-PWV and MOD-NIR-PWV in the same six-year period studied. Note that a few
grid points show white color, meaning lack of values, the reasons for which were (1)
MODIS sensors being sensitive to sunlight (only MOD-NIR-PWV in the bright land
is available) and (2) the lengths of the MOD-NIR-PWV time series at the grid points
being not sufficient for a reasonable statistic result.
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As shown in Figure 8a, the most positive bias values mean the general overestima-
tion of the MOD-NIR-PWV in comparison with the ERA-PWV. The biases were mostly
in the range from −0.6 to 8.2 mm with a mean value of 2.1 mm. Most RMS values
(see Figure 8b) were in the range from 0.7 to 10.0 mm with a mean value of 3.0 mm.
It is clear that poor results were from the regions under a relatively humid climate
condition, such as mid-latitude and southeastern coastal regions, especially in Hainan
Province, the island in southeastern China where the maximum biases and RMSs were
above 7 and 9 mm, respectively. Moreover, both biases and RMSs had similar variation
trends: they increased with increasing amounts of PWV from the southeastern coastal
region to the northwestern inland region. The overall correlation coefficient values in
Figure 8c varied largely, from 0.616 to 0.998 with a mean of 0.975, which was different
from the comparison with GNSS-PWV discussed in the above section. In contrast to
the high variation in biases and RMSs, the correlation coefficient values showed slight
variation in most regions, but abnormally low values (<0.8) occurred on some grid
points in the Tibetan Plateau and southwestern region.

The frequency distribution shown in yellow bars in Figure 7 also indicates the non-
normal feature of the differences between ERA-PWV and MOD-NIR-PWV. The frequency
of negative differences (about 17%) was significantly lower than that in all of the other
ranges, which accounted for over 83% of all the differences. Moreover, about 76% of the
differences were concentrated in the range from −1 to 3 mm. These results confirm the
considerable systematic overestimation of MOD-NIR-PWV over China.

The distributions of seasonal biases and RMSs were also compared; see Figures 9 and 10,
which show little seasonal differences in the Tibetan Plateau, thus, the Tibetan Plateau was
discarded in the following investigation. Apart from the Tibetan Plateau, all the other regions
showed distinctive seasonal differences: the lowest biases and RMSs were all found in
winter in all regions with means of 0.7 and 1.2 mm, respectively, while the highest values
occurred in summer or autumn in different regions. In most of these regions, except for
the southwestern region, the highest values were found in the summer, mainly due to the
dramatic wet bias of MODIS sensors in monsoon seasons. In summer, a large amount of water
vapor is continuously transported into inland regions from the western Pacific Ocean by the
East Asian monsoon, leading to an increase in PWV in eastern China. These continuous wet
conditions result in relatively high wet bias and bad statistical results. In winter, dry and cool
conditions caused by the air-flow pattern of the winter monsoons lead to the low biases in
MOD-NIR-PWV. Therefore, relatively better agreement is found in winter in these regions.
This comparison confirms that the wet conditions in summer are the main reason for the
significant systematic bias between MOD-NIR-PWV and the references (including GNSS-
PWV and ERA-PWV). In the southwestern region, the highest value occurred in autumn.
This phenomenon may be related to few synoptic stations deployed in these regions, which
further affects the accuracy of the ERA5 dataset.
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4. Grid-Based Calibration Modeling for MOD-NIR-PWV

One of the main aims of this study was to mitigate systematic biases in the MODIS
water vapor products over China. GNSS-PWV and ERA-PWV are the two types of reference
data to calibrate these biases. Several studies used the difference between MOD-NIR-PWV
and GNSS-PWV as sample data to achieve it [53,54,57,61]. However, the relationship
between GNSS PWV and MOD-NIR-PWV in different geographical locations is different,
thus, the performance of these calibration models may perform differently in different
regions, especially in the regions where only a few GNSS stations are deployed (see
Figure 6c). To have consistent calibration performance, the differences between ERA-PWV
and MOD-NIR-PWV in the six-year period at each grid point were used as the sample
data to develop a grid-based calibration model due to the better spatial coverage and
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continuity of ERA-PWV in comparison with those of GNSS-PWV. As a result, the difference
between the original MOD-NIR-PWV and the calibrated (or corrected) MOD-NIR-PWV
was in fact the residual of the calibration model which represents the internal agreement
(i.e., precision) of the samples used in the modeling process. In addition, the accuracy of
the model was also evaluated by comparing the calibrated MOD-NIR-PWV against the
reference of the GNSS-PWV at all the 221 stations in the same six-year period, which were
out-of-sample data. This can be considered as an indication of external agreement (i.e.,
accuracy). The reason for the use of the same six-year period (2013–2018) GNSS-PWV as
the test data, rather than the follow-up of one or two years (2019–2020) was that the amount
of available MOD-NIR-PWV in the two years was insufficient for a sound statistical result.

Although the seasonal biases and RMSs at all grids have been shown in Figures 9 and 10,
for clearer comparisons, the seasonal differences at four randomly selected grid points are
extracted and shown in Table 1. The periodic characteristics of the differences in the six-year
period studied at the four points were also analyzed using the Lomb–Scargle periodogram
method [69], and results are shown in Figure 11.

Table 1. Geographical location, seasonal bias, and RMS in the six-year period studied at each of four randomly selected
grid points.

Latitude
(◦)

Longitude
(◦)

Mean PWV
(mm)

Bias (mm) RMS (mm)

Spring Summer Autumn Winter Spring Summer Autumn Winter

30 87 3.6 0.6 1.0 0.4 0.2 0.8 1.2 0.7 0.5
40 81 12.1 3.2 5.7 4.3 1.6 3.8 6.4 4.8 1.9
36 113 15.0 1.3 4.4 1.9 0.4 2.0 4.8 2.6 0.9

22.25 114 42.7 1.4 6.5 5.9 2.9 3.5 8.1 7.4 3.9

The differences shown in the left column in Figure 11 indicate clear annual and
semiannual periodicities at all four grid points, and the periodograms in the right column
also illustrate the most notable components in the differences. Based on this characteristic,
a harmonic regression model that contained annual and semiannual periodicities and fitted
the differences of the two sets of PWV at a given grid point was constructed for the point.
The model was:

y(t) = y0 + v · t + c1 cos(2πt) + s1 sin(2πt) + c2 cos(4πt) + s2 sin(4πt) + ε (14)

where y is the difference, i.e., MOD-NIR-PWV-ERA-PWV (in millimeters) at the point, t
is the epoch (in unit of year), y0 is the constant intercept, v is the slope, c1 and s1 are the
sine and cosine coefficients for the annual period, respectively, c2 and s2 are the sine and
cosine coefficients for the semiannual period, respectively, and ε is the fitting residual of
the model.

All unknown parameters were estimated from the least-squares method and the
sample difference data at the grid point. Different grid points had different fitting models
as different sample data were used. These models for all 0.25◦ × 0.25 grids formed a
grid-based model, which was used to predict the difference value at any target point as a
correction of the MOD-NIR-PWV on the point. It should be noted that if the target site was
one of the grid points, then the predicted difference (or correction) value could be directly
obtained from the model of the grid point. However, for any non-grid point, its predicted
correction value was obtained from an interpolation of the model-predicted values at the
four grid points surrounding the target point.

To evaluate the performance of the constructed calibration model, all the original
MOD-NIR-PWV during the six-year period studied were calibrated at first, then, the
differences of the calibrated MOD-NIR-PWV compared to both ERA-PWV and GNSS-PWV
were used to measure the precision and accuracy of the model, respectively. Their statistical
results are shown in Figures 12 and 13, and the frequency distribution of the differences
between the calibrated MOD-NIR-PWV and the two sets of reference data over the same
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six-year period studied is shown in Figure 14. It is worth mentioning that Figure 12 shows
spatially continuous data (except for a few white or blank points), while Figure 13 shows
discrete points, because ERA-PWV and GNSS-PWV are from regular grid points and
non-regular (i.e., non-grid) points, respectively.
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From Figure 12, the calibrated MOD-NIR-PWV had a better agreement with ERA-
PWV than the original MOD-NIR-PWV over China, which was reasonable, since the
calibration model at each grid point was based on the differences of ERA-PWV and MOD-
NIR-PWV at the point. After the calibration, the minimum, maximum, and mean biases
were −0.2, 0.5 and 0.1 mm, respectively; the corresponding values of RMSs were 0.2, 4.6
and 1.0 mm, respectively. The biases and RMSs were reduced by 94% and 71%, respectively,
compared to those of the original MOD-NIR-PWV, especially in the southeastern coastal
region. The calibration also had significant positive effects on the correlation coefficients
in the southwestern region, but little effects in the other regions. In addition, the normal
distribution of the yellow bars in Figure 14 also indicates the effectiveness in the reduction
of the systematic biases of MOD-NIR-PWV at the GNSS stations. Therefore, the constructed
calibration model had good precision.

In Figure 13, the bias values were in the range from −3.4 to 2.2 mm, and the minimum
bias of −3.4 mm was further away from zero, compared to the original minimum bias of
−1.2 mm, and the frequency accumulated in negative ranges was higher than that between
GNSS-PWV and original MOD-NIR-PWV. However, the distribution of the differences
was more consistent with a normal distribution (see Figure 14), and most differences were
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concentrated in the range from −1 to 2 mm, resulting in smaller systematic biases of the
calibrated MOD-NIR-PWV. Moreover, the RMSs were decreased by 53% with a smaller
range from 0.6 to 4.3 mm, and the correlation coefficient values showed slight variation
due to good temporal agreement between the original MOD-NIR-PWV and GNSS-PWV at
the GNSS stations. This suggests that the grid-based calibration model, which was based
on the differences between ERA-PWV and MOD-NIR-PWV, could effectively improve the
accuracy of MODIS water vapor products over China.

5. Conclusions

In this study, the accuracy of MODIS near-infrared PWV products collected from
the Terra and Aqua platform during the six-year period from 2013 to 2018 over China
was evaluated by comparing them against the two reference datasets: single-point PWV
retrieved from 246 ground-based GNSS tracking stations and the two-dimensional PWV
retrieved from ERA5 reanalysis datasets over China. To validate the suitability of using
ERA-PWV as the reference for the grid-based calibration model developed for China, ERA-
PWV was compared with GNSS-PWV and RS-PWV. The statistical results showed good
agreement: the means of biases and RMSs were 0.5 and 1.7 mm compared to GNSS-PWV,
0.4 and 1.9 mm compared to RS-PWV, and their correlation coefficients were above 0.959
and 0.894, respectively.

After the validation, GNSS-PWV and ERA-PWV were used as the reference to evaluate
the performance of MOD-NIR-PWV, since most of the large differences between the MODIS
overpass time and radiosonde launch time were more than two hours. From the comparison
of MOD-NIR-PWV to both GNSS-PWV and ERA-PWV in the six-year period studied, the
non-normal distribution of the differences between the MOD-NIR-PWV and the two sets of
reference data suggested that there exists a considerable systematic discrepancy in MOD-
NIR-PWV over China. More specifically, the mean values of biases and RMSs were 2.9 and
3.8 mm compared to GNSS-PWV, and the values were 2.1 and 3.0 mm compared to ERA-
PWV, which implies the overestimation of MOD-NIR-PWV over China. In addition, the
high correlation coefficient values between the MOD-NIR-PWV and both sets of reference
data in most regions indicated the similar temporal trends of the three sets of PWV.

To mitigate systematic biases in the MODIS water vapor products over China, the
differences between ERA-PWV and MOD-NIR-PWV from 2013 to 2018 at each grid point
were used as the sample data to develop a 0.25◦ × 0.25 grid-based calibration model of
MOD-NIR-PWV based on a harmonic model with annual and semiannual periods. This
was achieved through a periodic characteristic analysis of the sample data. To evaluate
the performance of the developed calibration model, the calibrated MOD-NIR-PWV in
the above-mentioned six-year period was compared to ERA-PWV and GNSS-PWV for the
evaluation of precision and accuracy, respectively, of the model. The results show that
the calibration model could not only significantly improve precision by 94% and accuracy
by 53%, but also weaken the non-normal distribution features of the differences between
MOD-NIR-PWV and both sets of reference PWV. These results suggest that the developed
grid-based calibration model can be used to improve the accuracy of MOD-NIR-PWV
over China.

The main shortcoming of this study is that the test data (i.e., GNSS-PWV) used to
evaluate the accuracy of the calibration model were from the same period as the sample
data used to develop the model (2013–2018), due to the limited amount of available MOD-
NIR-PWV in 2019 and 2020, which is desirable for a solid statistical result. Our future work
will focus on using test data of multiple years later than those of the sample data (e.g., after
2018) to evaluate the performance of the grid-based calibration model.
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