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Abstract: Following the path set out by the “Argus” project, video monitoring stations have become
a very popular low cost tool to continuously monitor beaches around the world. For these stations to
be able to offer quantitative results, the cameras must be calibrated. Cameras are typically calibrated
when installed, and, at best, extrinsic calibrations are performed from time to time. However, intra-
day variations of camera calibration parameters due to thermal factors, or other kinds of uncontrolled
movements, have been shown to introduce significant errors when transforming the pixels to real
world coordinates. Departing from well-known feature detection and matching algorithms from
computer vision, this paper presents a methodology to automatically calibrate cameras, in the intra-
day time scale, from a small number of manually calibrated images. For the three cameras analyzed
here, the proposed methodology allows for automatic calibration of >90% of the images in favorable
conditions (images with many fixed features) and ∼ 40% in the worst conditioned camera (almost
featureless images). The results can be improved by increasing the number of manually calibrated
images. Further, the procedure provides the user with two values that allow for the assessment
of the expected quality of each automatic calibration. The proposed methodology, here applied
to Argus-like stations, is applicable e.g., in CoastSnap sites, where each image corresponds to a
different camera.

Keywords: video monitoring stations for beaches; video stabilization; feature detection and matching
algorithms

1. Introduction

Coastal managers, engineers and scientists need coastal state information at small
scales of days to weeks and meters to kilometers [1]. Among others, the reasons are for
determining storm impacts [2], monitoring beach nourishment performed to mitigate
coastal erosion [3], recognizing rip currents [4] and estimating the density and daily
distribution of users in the beaches during summer [5]. In the early 1980s, video remote
sensing systems were introduced for monitoring of the coastal zone [6–9] in order to obtain
data with higher temporal resolutions and lower economical and human efforts than the
ones required by traditional field studies.

Qualitative information about beach dynamics [10] or the presence of hydrody-
namic [11] and morphological [12] patterns can be obtained from raw video images. Images
have also been used, in a quantitative way, to locate the shoreline and study its evolu-
tion [13–15], to determine the intertidal morphology [16–18], to estimate the wave period,
celerity and propagation direction [19,20] and to infer bathymetries [21,22]. For these latter
applications, in which magnitudes in physical space are required, the accurate georeferenc-
ing of images is essential [23,24].

Remote Sens. 2021, 13, 2795. https://doi.org/10.3390/rs13142795 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6420-5975
https://orcid.org/0000-0002-5402-5137
https://doi.org/10.3390/rs13142795
https://doi.org/10.3390/rs13142795
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13142795
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13142795?type=check_update&version=1


Remote Sens. 2021, 13, 2795 2 of 19

The transformation of images (2D) to real physical space (3D) is usually performed
following photogrammetric procedures in which the characteristics of the optics (intrinsic
parameters) and the location and orientation of the camera (extrinsic parameters) have to
be obtained [25,26]. Intrinsic calibration yields optics parameters of the camera (distortion,
pixel size and decentering) and allow elimination of the image distortion induced by the
camera lens. Extrinsic calibration allows determining the camera position (xc, yc, zc) and
orientation (φ, σ,τ), Figure 1, which allows associating each pixel of the undistorted image
with real world coordinates (providing, usually, the elevation z).

Extrinsic calibrations are obtained using Ground Control Points (GCPs, pixels whose
real-world coordinates are known). The GCPs can also be used for intrinsic calibration,
which is often obtained experimentally in laboratory [27–29]. Generally, Argus-like video
monitoring systems are fully (intrinsic and extrinsic) calibrated at the time of installation,
and then extrinsic calibrations are performed at a certain frequency (bianually, e.g., [14]) or
when a significant camera movement is noticed.

However, it has already been observed that calibration parameters change throughout
the day for a variety of reasons, including thermal and wind effects [30,31], as well as
over longer time periods, due to natural factors and/or human disturbance [31,32]. If the
calibration of all individual images is not adjusted, the quantitative information obtained
could have a significant error, leading to inaccurate quantification in shoreline trends,
hydrodynamic data such as longshore currents, wave celerity or runup and, in turn,
nearshore bathymetries.

Although the importance of intra-day fluctuations was already reported by Holman
and Stanley [7] in 2007, this problem has been disregarded in most studies with coastal
video monitoring systems. Recently, Bouvier et al. [31] analyzed, in a station consist-
ing of five cameras, variations in the orientation angles of each of the cameras during
one year. From the manual calibration of about 400 images per camera, they identified
the primary environmental parameters (solar azimuthal angle and cloudiness) affecting
the image displacements and developed an empirical model to successfully correct the
camera motions.

This approach has the disadvantage that it does not automatically correct variations
over long periods of time, in addition to requiring manual calibration of a large number
of images. In order to achieve the highest number of calibrated images while minimizing
human intervention, the strategy followed in other studies [30,32–34] has been to automati-
cally identify objects and to use their location in calibrated images for their stabilization.

Pearre and Puleo [30] located some features at selected Regions Of Interest (ROI) from
a distorted calibrated image into other images to obtain the relative camera displacements
between images and then recalculate the orientation of the cameras (tilt and azimuth
angles) for each image. Relative shifts of the ROIs were then obtained by finding the
correlation peak of correlation matrices. Accurate recognition of pixels corresponding
to GCPs in images, using automatic algorithms such as SIFT (Scale-Invariant Feature
Transform, [35,36]) or SURF (Speeded-Up Robust Features, [37]), allowed not only to
re-orient the cameras but also to compute the extrinsic calibration parameters of each
individual image [33,34].

Recently, Rodriguez-Padilla et al. [32] proposed a method to stabilize 5 years of
Argus-like station images by identifying fixed elements on images and then correcting
the orientation of the cameras by computing deviations with respect a reference image.
In this study, CED (Canny Edge Detector, [38]) was used to identify permanent features,
such as corners or salients, under variable lighting conditions at given ROIs. In all imaging
stabilization studies carried out to date in the coastal zone, they assumed that identifiable
features were permanently present, which were used to correct the orientation of cameras
or to carry out the complete calibration of the extrinsic parameters. However, in many
Argus-like stations, when installed in natural environments, such as beaches or estuaries,
the number of fixed features is very limited or non-existent over long periods.
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In this paper, we explore image calibration by automatically identifying arbitrary fea-
tures, i.e., without pre-selection, in the images to be calibrated and in previously calibrated
images. Provided that fixed features will be considered very limited, it will not be possible
to calibrate the images on the standard GCPs approach, as was done in [24]. Alternatively,
we relate pixels of pairs of images through homographies, the main assumption of this
work being that the position of the camera position is nearly invariant.

As a counterpoint, there is no need to impose any constraint on either the intrinsic
calibration parameters of the camera (lens distortion, pixel size and decentering) or on its
rotation. The automatic camera calibration was applied to three video monitoring stations.
Two of them operate on beaches of the city of Barcelona (Spain), where there are many
fixed and permanent features, and the third one was on the beach of Castelldefels, located
southwest of Barcelona, where the number of fixed points is very limited.

The main aim of this paper is to present a methodology, departing from a small
set of manually calibrated images, to automatically calibrate images without the need
of prescribing reference objects and to evaluate their feasibility. Next, Section 2 presents
the basics of mapping pixels corresponding to arbitrary objects between images and the
methodology to process points in pairs of images in order to obtain automatically the
calibration of an image. Section 3 presents the results that will be discussed in Section 4.
Section 5 draws our main conclusions for this work.

2. Methodology
2.1. Camera Equations and Manual Calibration

Given the real world coordinates of a point, x = (x, y, z) , the corresponding (distorted)
pixel coordinates, column c and row r (Figure 1), are given by

c =
u (1 + k1d2)

s
+ oc, r =

v (1 + k1d2)

s
+ or, (1)

where k1 stands for the radial distortion, s for the pixel size (the pixel is assumed squared),
oc and or are the pixel coordinates of the principal point (considered herein at the center of
the image), d2 = u2 + v2 and u and v are the undistorted coordinates in the image plane

u =
(x− xc) ·eu

(x− xc) ·ef
, v =

(x− xc) ·ev

(x− xc) ·ef
, (2)

where xc = (xc, yc, zc) is the camera position (or “point of view”) and eu, ev and ef
are orthonormal vectors defined by the camera orientation, i.e., by the eulerian angles φ
(azimuth), σ (roll) and τ (tilt) in Figure 1.

Figure 1. Real-world (x, y, z) to pixel (c, r) transformation: camera position (xc , yc, zc) and eulerian
angles (φ, σ and τ).

Equation (1) represents a reasonable simplification of more complex distortion models:
the radial distortion was assumed parabolic and tangential distortion neglected. This
simplified model was shown to be able to model the distortion of common cameras [39]
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and, in particular, the cameras considered in this work. The eight free parameters of the
model are the camera position, xc = (xc, yc, zc) , the three eulerian angles (φ, σ and τ),
as well as k1 and s.

2.2. Manual Calibration of a Single Image

Given an image, the eight free parameters of the model can be obtained from a set of N
Ground Control Points (GCPs), pixels of the distorted image whose real-world coordinates
are known, i.e., N tuples (cn, rn, xn, yn, zn) with n = 1, . . . , N. The free parameters can be
found by minimizing the reprojection error (see, e.g., [40]):

εG [pixel] =

√√√√ 1
N

N

∑
n=1

[
(c′n − cn)

2 + (r′n − rn)
2
]
,

where c′n and r′n are the values obtained from (xn, yn, zn) using model Equations (1) and (2)
with the proposed parameters. Whenever the horizon line can be detected, it can also
be introduced in the optimization process by minimizing εT = εG + εH , where εH is the
horizon line error: the root mean square of the distances from the pixels detected in the
horizon and the horizon line as predicted by the calibration parameters (see, e.g., [41]).
Hereafter we will refer to error εT whether or not the horizon line is detected, assuming
that εH = 0 if the horizon line is not available.

2.3. Manual Calibration of a Set of Images

A set of J images, for which GCPs and, in some cases, horizon line pixels are available,
is calibrated by minimizing the total error of the set, i.e., ΣJ

j=1εTj. We consider here three
different approaches:

Case 0: Different values of φ, σ and τ for each image and common values for
xc, yc, zc, k1 and s (3J + 5 unknowns).

Case 1: Different values of φ, σ, τ, k1 and s for each image and common values
for xc, yc and zc (5J + 3 unknowns).

Case 2: Different values of xc, yc, zc, φ, σ, τ, k1 and s for each image (8J unknowns).

2.4. Homographies

Consider now two images captured at the same point of view (“A” and “B” in Figure 2)
but with a different orientation of the camera (case 0) or, even, with different cameras
(case 1). The points in the projective planes corresponding to the same ray, i.e., one same
point in real space, can then be transformed by an “homography”. The relationship between
the undistorted coordinates u and v corresponding to one spatial point as seen in two
different images (“A” and “B”, with different angles and intrinsic parameters) is given
by [42]:

uB =
H11uA + H12vA + H13

H31uA + H32vA + H33
, vB =

H21uA + H22vA + H23

H31uA + H32vA + H33
, (3)

where Hij corresponds to the i-th row and j-th column of the 3× 3 rotation matrix

H = RB·RT
A. (4)

The rows of matrices RB and RA are the unit vectors eu, ev and ef of images B and
A, respectively.
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Figure 2. Homography between the undistorted coordinates in two different images “A” and “B”.

2.5. Automatic Calibration

The automatic calibration of an image was performed in four steps that are schema-
tized in Figure 3. First, a set of (manually) calibrated images is generated, which will be
referred to as basis (step 1). Next, common features between the image to be calibrated
and each of the basis images are identified (step 2). These pairs are then purged to remove
erroneous matching features, and, from the remaining set of features, a selection is made
(step 3). Finally, this selection is used to calibrate the image (step 4).

The details of each of the steps are described below. For simplicity, the automatic
calibration procedure is described for case 0, i.e., when the camera position xc = (xc, yc, zc) ,
k1 and s are the same for all images. The case 1 will be discussed, briefly, afterwards. Table 1
summarizes the parameters resulting from the automatic calibration procedure and that
are used to present and discuss the results.

Figure 3. Diagram of the automatic calibration procedure.

Table 1. Summary of the parameters in the automatic calibration.

Symbol Units Description

np - minimum number of common features on the basis
K - number pairs, or common features pairs on the images
f pixel (undistorted) homography-reprojection error

εG pixel reprojection error at the GCP
εH pixel reprojection error at the horizon line

2.5.1. Basis Generation

To calibrate images automatically, a set of manually calibrated images was used. This
set of images will be referred to as “basis”. Any set of calibrated images of a camera can
be considered as a basis. However, the ideal would be to have the smaller number of
basis images to automatically calibrate the largest number of images. Here, we propose a
method to generate such a basis, but we emphasize that alternative procedures (including,
e.g., cluster analysis or random selection) can be used instead.

The pool of images from which to obtain the basis has, here, ∼ 400 images covering
different years, seasons and hours within the day. In a first step, using matching algorithm
ORB [43], any pair of images of the pool are compared to each other. For each comparison,
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only the best pairs of features (according to ORB) in each cell of a 4× 4 grid on the image
are considered. Then, the basis is made up by adding images to it in order to maximize
the number of images of the pool with at least np cells having common features with the
basis images.

The procedure continues until the number of images of the pool that have np cells
with pairs with the basis is above 90%. The number of required pairs, np, is based on the
minimum number of pairs to perform the calibration of an image (i.e., np = 2 for case 0).
As not all features will be useful, a higher number should be taken. Note that, the higher
the np, the more images will contain the basis.

Once the basis has been established, the manual calibration of this set of images is
carried out. The values of the camera position xc = (xc, yc, zc) , k1 and s are set. In addition,
as the angles of the cameras are known for these images, their rotation matrices R, and the
homographies H between basis images are also known.

2.5.2. Feature Finding

Given an image to be calibrated and one basis image, the set of pairs of pixels that
according to ORB correspond to the same features is found. Using the fact that the basis
images are calibrated, the pixels identified in each of the basis images are transferred to a
unique basis image, that, in our case, is the first basis image. Hence, a set of pairs of pixels
in the image to be calibrated (ck, rk) and the in the first basis image (c1,k, r1,k) corresponding
to the same features is obtained, with k = 1, . . . , K0. The number K0 of pairs will be the
sum of pairs encountered with each basis image.

Figure 4 illustrates this step up to this point. Next, the values of k1 and s and
Equation (1) are used to transform these pixels to undistorted coordinates in the image
to calibrate (uk, vk) and in the first basis image (v1,k, v1,k). These pairs of undistorted
coordinates must be related through an homography (Equation (4)) that involves both the
rotation matrix of the image to calibrate R, which depends on the unknown angles (φ, σ,
τ), and R1, which is known.

Figure 4. Illustration of the step 2. Image to calibrate (A), basis of images (B–D) and the first image
of the basis, including all the pairs found (E).
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2.5.3. Feature Purge and Selection

Automatic matching algorithms do not always succeed, as can be seen in the images of
Figure 5A,D. Therefore, prior to obtaining the three unknown angles, a purge of erroneous
pairs of features should be done. A RANSAC (RANdom SAmple Consensus) [44] is
performed to the pairs undistorted coordinates using a homography as the model. In this
way, a subset of K1 6 K0 pairs that actually correspond to the homography is obtained
(green points in Figure 5B,E; the red dots being disregarded). Further, for the pairs to be
more uniformly distributed along the image, out of the K1 remaining pairs, only the best
pairs (according to the homography) of each cell of a 10× 10 grid on image to calibrate
are considered (green dots in Figure 5C,F). As a result, K 6 K1 features were obtained
for calibration.

Figure 5. Illustration of the step 3. Pixels in the image to calibrate (A–C) and in the first image of the
basis (D–F): the K0 original pixels from matching algorithms (A,D), RANSAC selection (B,E, with K1

green points), grid selection out of the RANSAC points (C,F, with K green points).

2.5.4. Homography-Based Calibration

From the final subset of K features, we found the rotation matrix R = R (φ, σ, τ) ,
which minimizes a reprojection-like error function, hereafter “homography error”,

f =
1
s

√√√√ 1
K

K

∑
k=1

[
(u′1k − u1k)

2 + (v′1k − v1k)
2
]

, (5)

where (u1k, v1k) are the undistorted coordinates of the k-th feature in the first image of the
basis and (u′1k, v′1k) is the transformation, through H = R1·RT and equation (3), of this
feature in the image to calibrate to the first basis image. Recalling Equation (1), the term
s−1 was introduced in Equation (5) and thus the homography error f is expressed in
(undistorted) pixels.

The outputs of the automatic calibration of an image are φ, σ and τ, as well as the
minimized f and the number of pairs, K. These last two values, f and K, will be helpful in
assessing the quality of the automatic calibration: small homography errors f and large K
should correspond to better results.

If case 1 applies, the above algorithm remains the same except that, in order to
transform (ck, rk) to (uk, vk) through Equation (1), unknown values of k1 and s for the
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image to calibrate are required and have to be obtained recursively. Case 1 corresponds to
CoastSnap [15], a citizen science project for beach monitoring.

2.6. Study Sites and Video Monitoring Stations

Images of three cameras from different Argus-like stations are considered in this
work (Figure 6). Station BCN1 overviewed Barcelona beaches from 2001 to 2015 with
a set of five cameras [14] (Figure 6A shows the one considered here, 768× 576 pixels2).
This set of cameras was replaced in 2015 by a set of six cameras of higher resolution
(herein named station BCN2, Figure 6B, 2452× 2056 pixels2), which are currently running.
A third station, CFA1, with five cameras, is running on Castelldefels beach from 2010 [45]
(Figure 6C, 1280× 960 pixels2). Note that images from BCN1 and BCN2 include plenty of
permanent features (wave breakers, promenades, buildings, . . . ), which are to help in the
automatic calibration.

Figure 6. Images from BCN1 ((A), 768× 576 pixels2), BCN2 ((B), 2452× 2056 pixels2) and CFA1 ((C),
1280× 960 pixels2) video monitoring stations (coo.icm.csic.es (accessed on 15 July 2021)).

All stations provide, every daylight hour, one snapshot as well as one timex (time
average image) and one variance image [7]. The pools of timex images from which to
obtain the basis were obtained with a certain time step to ensure images for all day hours.
The parameters to obtain the pool of images for each camera are shown in Table 2.

Table 2. Pool of images: initial and final dates, time step and resulting number of images.

Station From To Step [hours] # of Images

BCN1 1-jan-2002 1-jul-2015 145 417
BCN2 1-jan-2016 1-jan-2019 25 529
CFA1 1-jan-2011 1-jan-2019 73 392

2.7. Code Availability

The source code to calibrate a set of images from a basis of images that are calibrated
manually is freely available on GitHub (https://github.com/Ulises-ICM-UPC/UCalib
(accessed on 15 July 2021)). The code is accompanied by descriptive documentation and, as
an example, the script and the corresponding images. This code performs the calibration of
the basis images (step 1) and the calibration of the images (steps 2 to 4).

3. Results
3.1. Basis of Images

Figure 7 shows, for BCN1 and BCN2, the evolution of the percentage of pool images
with np = 4 (or more) cells having pairs with the basis images as new images are incor-
porated to it (recall Section 2.5.1). From Figure 7, the basis has eight images for BCN1
and only three for BCN2 (Figure 4B–D). In both cases the basis images are spread over
time, covering different years, months and day hours. Further, they include a variety of
weather conditions.

The basis of station CFA1 is built up of 20 images chosen randomly out of 40 calibrated
images available. In order to have a rough idea of the capability of this basis to calibrate
any given image, we computed the number of images of the pool that had four (or more)

coo.icm.csic.es
https://github.com/Ulises-ICM-UPC/UCalib
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cells with pairs with the basis. The result was 44% of the 392 pool images. This value, much
smaller than 90%, indicates that this basis will likely allow calibrating a smaller percentage
of images in practice.

By increasing the number np of required cells in the procedure proposed to obtain
basis (i.e., being more demanding according to Section 2.5.1), the number of images of the
basis images required to reach 90% of the pool images is increased. For example, if np = 5,
the number of images in the basis is increased to 14 for BCN1 and 4 for BCN2. For np = 6,
the values are 24 (BCN1) and 5 (BCN2). While trends observed for np = 4 (images spread
over time and weather conditions) still remain, having more images in the basis should
allow for the automatic calibration of a larger amount of images. This fact is confirmed in
Sections 3.3 and 3.4 below.

Figure 7. Percentage of images of the pool with np = 4 (or more) cells having pairs with the basis as
new images are incorporated to it: BCN1 (A) and BCN2 (B).

3.2. Manual Calibrations of the Basis Images

The basis images were calibrated considering the three approaches in Section 2.1
(cases 0, 1 and 2). For illustrative purposes, the results for the largest basis, i.e., BCN1 for
np = 6 (with 24 images), are shown in Figure 8. Similar results were obtained for other
stations and basis.

Figure 8. Histograms of the camera position (A–C), eulerian angles (D–F), intrinsic parameters (G,H)
and calibration error (I) for the calibration of the 24 images of BCN1 basis with np = 6 and for cases
0, 1 and 2.



Remote Sens. 2021, 13, 2795 10 of 19

Figure 8 shows the histograms for the eight calibration parameters and calibration
error εT . For cases 0 and 1, the camera position (xc, yc and zc) collapses in a single value.
For case 0, the intrinsic parameters (k1 and s) also collapse. Collapsed values always fall
close to the average value of the corresponding distributions, which is an indication of
the results robustness. However, the most relevant issue is that the errors εT for all three
cases are very similar (the same holds for all the basis and stations, Table 3). In conclusion,
the above results justify the use, hereafter, of case 0, with constant xc = (xc, yc, zc) and the
intrinsic parameters k1 and s.

Table 3. The mean and standard deviation of the manual calibration errors, εT , for cases 0, 1 and 2
and for the different stations and basis.

εT (Mean ± Std) [pixel]

Station np Case 0 Case 1 Case 2

BCN1 4 1.6± 0.3 1.5± 0.3 1.2± 0.3
BCN1 5 1.5± 0.4 1.4± 0.4 1.2± 0.4
BCN1 6 1.5± 0.3 1.4± 0.3 1.2± 0.3

BCN2 4 1.4± 0.2 1.4± 0.2 1.3± 0.2
BCN2 5 1.5± 0.2 1.4± 0.2 1.4± 0.2
BCN2 6 2.2± 0.5 1.9± 0.3 1.9± 0.2

CFA1 - 2.5± 0.5 2.3± 0.4 1.3± 0.2

3.3. Critical Values for the Homography Error f and the Number of Pairs K

To analyze the performance of the procedure proposed in Section 2.5 and to under-
stand how the output parameters f and K can be used to assess the quality of the automatic
calibration, the procedure was applied to sets of “control” images: images with known
GCPs (and, in some cases, horizon points). For BCN1 there were 67 control images (which
include the images for all basis).

For np = 4, for which the basis had eight images, the remaining 59 control images were
automatically calibrated: Figure 9 shows the percentage of images calibrated with f 6 fC and
K > KC for different values of fC and KC. The more demanding conditions (smaller allowed
fC and larger required number of pairs KC), the smaller the percentage of the 59 images
satisfying both conditions (“successful” images). As shown in Figure 9A, for the proposed
values, this percentage ranges from ∼ 10%, in the most demanding condition, up to ∼ 65%
in the most relaxed one.

Figure 9. Station BCN1 for basis with np = 4: percentage of automatic calibrations of control images
so that f 6 fC and K > KC (A) and 95th percentile of εG and εH for automatic calibrations of the
control images satisfying f 6 fC and K > KC (B).

Figure 9B shows the 95th percentile of errors εG and εH as computed from the GCPs
and horizon points using the corresponding automatic calibration (for the successful
calibrations). Interestingly, the 95th percentile of both errors diminished as the conditions
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became more demanding, i.e., as fC decreased and KC increased. In other words, the
imposed conditions on f and K were actually a good measure of the expected quality of
the automatic calibration. According to Figure 9 and to equivalent results for other stations
(using 46 control images for BCN2 and 20 for CFA1) and values of np (not shown),

fC = 5 pixels, KC = 4, (6)

appear to be a good compromise between the percentage of calibratable images and the
quality of these automatic calibrations. Table 4 shows the values of percentages and the
95th percentile of errors εG and εH of the successful control images for fC = 5 pixels and
KC = 4 and for the different stations. From Table 4, the higher np, i.e., the more basis
images, the more control images were successfully calibrated.

Table 4. Percentage of success and 95th percentile of errors εG and εH for the successful control
images for different stations and np (for f 6 fC = 5 pixels and K > KC = 4). In parentheses, values
when the horizon error was not considered in the manual calibration of the basis.

Station np Success εG [pixels] εH [pixels]

BCN1 4 58% (54%) 2.8 (3.5) 2.5 (5.9)
BCN1 5 60% (66%) 3.4 (3.5) 2.5 (5.7)
BCN1 6 72% (70%) 3.4 (3.5) 2.6 (4.8)

BCN2 4 91% (91%) 4.9 (4.8) 5.2 (5.3)
BCN2 5 93% (93%) 4.7 (4.7) 5.5 (5.7)
BCN2 6 95% (93%) 4.6 (5.3) 5.5 (5.2)

CFA1 - 70% (70%) 4.5 (4.4) 2.0 (4.0)

3.4. Automatic Calibration of Several Years

Several years of images were automatically calibrated for all three stations (see Table 5).
Using the critical values proposed above ( fC = 5 pixels and KC = 4), Table 6 shows the
percentage of automatically calibrated images satisfying f 6 fC and K > KC. While
the values are different than in Table 4, the same trends are observed, namely: (1) the
percentage increased with np and (2) the worst station was CFA1, and the best one was
BCN2. Table 6 also shows the results for more restrictive values ( fC = 2 pixels, KC = 5):
the percentages are smaller for these more restrictive conditions, particularly for BCN1
and CFA1.

Table 5. Years analyzed and amount of images available for all three stations.

Station From To # of Images

BCN1 2002 2014 60,160
BCN2 2016 2020 22,053
CFA1 2013 2017 18,929

Table 6. Percentage of automatically calibrated images satisfying f 6 fC and K > KC for different
stations and basis and for the years in Table 5.

fC = 5 Pixel fC = 2 Pixel
Station np KC = 4 KC = 5

BCN1 4 64% 50%
BCN1 5 73% 61%
BCN1 6 80% 68%

BCN2 4 87% 82%
BCN2 5 89% 85%
BCN2 6 90% 85%

CFA1 - 44% 35%
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For illustration purposes, Figure 10 shows the time evolution of the eulerian angles for
BCN2 and np = 4 for fC = 5 pixels and KC = 4 (87% of the total images according to Table 6).
In this Figure, the black dots also satisfy more demanding conditions fC = 2 pixels and
KC = 5 (82% according to Table 6). Most of the outliers in Figure 10, mainly observable in
roll σ, correspond to red dots, i.e., those not satisfying the more demanding conditions.

The signal also shows a noise that is related to intra-day oscillations (see below).
This noise has, in tilt τ, a seasonal behavior, with larger amplitudes in summer than in
winter. Several permanent jumps are also observed in azimuth φ, the most significant at
the beginning of year 2019. These jumps correspond to uncontrolled movements of the
camera (e.g., due to a gust of wind) and are not always easily detected by visual inspection
of the images.

Figure 10. The time evolution of the eulerian angles obtained through automatic calibration for
BCN2 with np = 4, fC = 5 pixels and KC = 4. Black dots further satisfy fC = 2 pixels and KC = 5.

Following similar procedures to those in Section 2, which allow transforming pixels
coordinates from two calibrated images, all images can be represented as in, e.g., the first
image of the series, i.e., images are stabilized or registered. Time averaging the resulting
images and comparing the result with the time average of raw images is a usual way to
verify that the stabilization (here automatic calibration) is being performed well (e.g., [32]).
Figure 11 shows the results for the same conditions as for Figure 10 (np = 4, fC = 5 pixels
and KC = 4). The blurring observed in Figure 11A is very much reduced in Figure 11B
(stabilized).

While obtaining the timex of stabilized images is a common way to show that auto-
matic calibration is working properly, it does not allow for a quantification of the errors
before and after the process. To illustrate such a quantitative information, one same feature
was manually tracked in the images through the series of years (a total of 2000 positions,
randomly distributed in time along the years, were obtained). The feature is the left bottom
corner of the sculpture marked with a white circle in Figure 11B. The estimated error when
manually tracking the feature was around 2 pixels.

Figure 12A shows the distribution of the pixels coordinates: four clouds were observed,
corresponding to the permanent jumps in Figure 10. The Root Mean Square (RMS) of
the distances of pixels to the center of mass of the distribution was 7.0 pixels, and the
elongated shape of the clouds in this Figure 12A was due to intra-day oscillations. When all
pixel coordinates were stabilized to the first image using automatic calibrations, the result
(Figure 12B) was a single compact cloud. The RMS of the distances to the center of mass of
the distribution was reduced to 1.1 pixels, consistent with the estimation of the error when
tracking the feature.
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Figure 11. BCN2 with np = 4, fC = 5 pixels and KC = 4: time average of images before (A) and after
(B) stabilization.

Figure 12. 2D-histograms of the pixel coordinates tracking a feature before (A) and after (B) stabiliza-
tion and similar results expressed in the xy coordinates (C and D, respectively). The colorbar stands
for the frequency.

These results can be, alternatively, expressed in meters (Figure 12C,D). For this purpose,
we considered that the feature was at z = 4 m. If all clicked pixel coordinates (Figure 12A)
are projected into the xy-plane using a constant calibration (the first one, here), the resulting
distribution is shown in Figure 12C. However, if the corresponding automatic calibrations are
used for each pixel, the distribution is the one in Figure 12D, whose RMS of the distances to
the center of mass is 3.0 m.

This RMS, noise, is due, in part, to the manual tracking procedure but also to the
possible errors in automatic calibrations. Reasonably assuming that the center of mass of
the distribution in Figure 12D, at (x, y) = (−548.56 m,−1228.59 m) , corresponds to the
actual position of the point, the RMS of the distances in Figure 12C to this position is 16.6 m,
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with a maximum distance between points of the cloud being around 70 m. These errors
are directly those that would be transmitted to the position of the shoreline if, e.g., the
objective was to calculate the area of a beach.

4. Discussion
4.1. Camera Position and Intrinsic Calibration

The proposed process for georeferencing images using homographies is based on
the assumption that cameras remain nearly immobile. This hypothesis may appear to be
contradicted by the results of this study since the full manual calibration (case 2) of basis
images shows a movement of the cameras of several meters in the three spatial directions.
These movements must be taken with caution, as displacements of up to 20 m meter in the
horizontal and almost 10 m in the vertical are absolutely unrealistic. The manual calibration
of several images forcing a common camera position (case 1) provided a camera position
that corresponded approximately to the average position obtained in case 2.

Calibration errors resulting from these two cases are so that the difference of the mean
values of the errors are less than half of the statistical deviations of the errors (see Table 3). We
understand that, in the full calibration, the apparent movement of the cameras was actually
compensated by other parameters of the calibration (see Figure 8), mainly through the
intrinsic parameters (radial distortion and pixel size). Calibrations forcing common values
of the intrinsic parameters (case 0) have errors that are again equivalent to those of the
other two cases.

We conclude, therefore, that the apparent camera movements and their internal defor-
mations can be perfectly assimilated by the changes in camera orientation. Furthermore,
since the complete calibration of the camera results in unrealistic displacements, we con-
sider that it is more appropriate to allow only changes in the camera orientation and
thus avoid spurious fluctuations in the position and intrinsic parameters. The results for
the three calibration approximations also validate approaches made in previous studies
(e.g., [31,32]) in which the camera positions were fixed without further verification.

4.2. Method Applicability

The results show that the method described here can be used to calibrate automatically
images from Argus-type stations from a basis of manually calibrated images. In contrast to
other studies (e.g., [32]), it was not necessary to predefine targets in certain regions of interest.
Instead, it is feasible to use arbitrary features located in the real world with unknown exact
locations. This makes the method very flexible as it does not require permanent points in the
image. The only important conditions are that features must be automatically detected and
that the cameras must remain motionless.

The results demonstrated that cameras of different resolutions did not cause any major
inconvenience. Neither does the fact that the environment is urban or natural and, therefore,
with a large number of ephemeral elements. However, a number of images could not be
calibrated due to the lack of common features with basis images. It is possible that the use
of other algorithms (e.g., a Canny Edge Detector, [38]) could improve the performance. This
remains for further research.

As an extension of the present work, the same method could be used in stations
where several cameras are used to take images from a fixed position, as it is the case of the
CoastSnap stations [15]. In this case the calibrations share a unique location; however, both
the images from the basis and the images to be calibrated would have different internal
calibrations. In this scenario, the calibrations discussed in Sections 2.1 and 2.5 for the
specific case 1 would need to be applied. The analysis of the method presented here on
CoastSnap type stations is beyond the scope of this paper.

There is also an option to perform calibrations based on homographies when the
camera position is not fixed (case 2) as occurs for cameras mounted on UAVs. This option
has not been further developed in the paper as it is a very theoretical approach. In the case
where the camera moves, the homography between different images is only valid when
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the points in the real world are placed over a common plane. For some beaches, it can be
assumed that the surface is at the same height, as [24] does in a first estimation; however, in
general, this approximation can introduce significant errors.

4.3. Horizon Line in Manual Calibrations

Whenever the water zone is of interest [e.g., for bathymetry inversion[21,24]], it is
necessary that calibrations perform well at it. Whenever the horizon line is observable,
errors εH at the horizon give a hint of the performance of the calibration in the water
zone, far from the GCPs for calibration, and also far from the features detected by the ORB
algorithm (green dots in Figure 5C,F) for automatic calibration. Table 4 (errors using control
images) shows the 95th percentile of the errors at the GCPs, εG, as well as on the horizon,
εH . The results of Table 4 list the manual calibrations of the basis where the horizon line was
introduced in the optimization procedure whenever it was available. As seen, the errors in
the horizon, εH , are of the same order of the errors εG.

However, it is very often the case that the horizon is not considered in the manual
calibrations. If the basis images are manually calibrated ignoring the error in the horizon,
the errors of the derived automatic calibrations are shown in parentheses in Table 4. Con-
sidering the horizon in the calibration of basis images has little effect on εG but significantly
reduces the errors εH . This is despite that the automatic calibration uses the same ORB
points in both cases. In other words, the better performance of the manual calibrations
of the basis in regard the horizon (and, likely, in the water zone) is transmitted to the
automatic calibrations.

4.4. Critical Values for the Homography Error fC and the Number of Pairs KC

When performing the automatic calibration of an image, the output consists of the
calibration parameters together with f (pixels) and K. Based on the results on control
images, we decided that an automatic calibration can be considered to be good if f 6 fC
and K > KC, with critical values of fC = 5 pixels and KC = 4. These values were chosen
as a compromise between the percentage of calibratable images and the quality of the
calibrations for all three stations and different basis. For the stations under consideration,
these critical values appear to be essentially independent of the station and basis. However,
the values of fC and KC can be arbitrarily chosen by the user. Low fC and high KC, i.e., more
restrictive conditions, will reduce the percentage of automatic calibrations, which should
be more trustful.

Figure 10 shows the results for fC = 2 pixels and KC = 5 (black dots), showing
that most of the outliers are avoided. In order to reduce the outliers in Figure 10 for
fC = 5 pixels and KC = 4 (all dots, red and black), one could alternatively try time filtering
taking into account that the characteristic filtering time window has to be small enough
not to filter the intra-day oscillations of the signal. In addition, from the results for all
three stations, the more relevant questions to obtain a large percentage of good automatic
calibrations appear to be: (1) the amount of fixed features observable in the images (BCN1
and BCN2 give better results than CFA1) and, less, (2) the image size (BCN2 works better
than BCN1).

4.5. On the Origin of the Camera Movements

One main result from the manual calibration of the basis is, as mentioned, that the
camera position can be considered constant in time (Figure 8 and Table 3) and that all the
modifications of the camera can be assumed by the three eulerian angles. This does not
necessarily mean that the camera is not having any movement, but that these movements
can be considered sufficiently small and can be compensated by the eulerian angles.

According to [31], “the viewing angle deformations are controlled by thermal defor-
mation of the pole where they are mounted”, and they proposed predictive expressions
to correct the viewing (eulerian) angles based on the cloudiness, solar azimuth angle,
. . . . In this work, similar to [32], the goal was not to propose such an expression for our
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stations but to automatically calibrate as many images as possible departing from a basis
of calibrated images.

However, once the images have been (automatically) calibrated, it can be of use to
shed some light on the possible mechanisms that cause the viewing angles to change.
Pretending only to be illustrative, we consider the time evolution of τ (tilt) for the five
cameras in station CFA1 (Figure 13); thus far, only the results for camera D in Figure 13
were shown for CFA1. Figure 14 shows the time evolution of the demeaned angle, ∆τ,
for the five cameras of CFA1 during 7 days in summer 2013. From the figure, the tilt
behavior changed from camera to camera. Focusing on the outer cameras (A and E in
Figure 13), e.g., while, for camera A, the tilt τ tended to increase during the daylight hours,
the trend was the opposite for camera E, suggesting that the whole concrete structure had
a (small) deflection that was captured by the cameras.

Figure 13. Castelldefels video monitoring station (CFA1) with five cameras (A–E).

Figure 14. Time evolution of the demeaned tilt, ∆τ, for the five cameras (A–E) of CFA1 in 7 summer
days of 2013.

5. Conclusions

In this paper, an automatic calibration procedure was proposed to stabilize images
from video monitoring stations. The proposed methodology was based on well-known
feature detecting and matching algorithms and allows for massive automatic calibrations
of an Argus camera provided a set, or basis, of calibrated images. From a theoretical point
of view regarding computer vision, the single hypothesis supporting the approach is that
the camera position can be regarded to be nearly constant. In the cases considered here
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(Argus-like station), we proved that the intrinsic parameters and the camera position can
actually be considered constant (case 0). However, the procedure proposed here was able
to manage the case in which intrinsic calibration parameters change in time, which makes
the approach valid for CoastSnap stations.

The number of images of the basis can be chosen arbitrarily (here, through the required
pairs, np) and, the higher this is, the more images can be properly calibrated. All the
automatic calibrations are performed directly through the basis of images, i.e., second
or higher order generations of automatic calibrations have not been considered to avoid
error accumulations. If the calibrations are to be applied to analyze the water zone (e.g.,
for bathymetric inversion), we recommend that the horizon line is introduced as an input
in the basis calibration.

The proposed methodology offers the automatic calibration of an image together with
the homography error f and the number of pairs K that give a measure of the reliability
of the calibration itself. Imposing f 6 5 pixels and K > 4, the percentage of calibrated
images ranges from ∼ 40% for the worst conditioned case (Castelldefels beach, with very
few features) to ∼ 90% (high resolution cameras in Barcelona, where there are plenty of
fixed features), the errors in pixels being significantly reduced (e.g., from 7 pixels to 1 pixel
in the analyzed case).
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