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Abstract: The Sanjiang Plain is the largest agricultural reclamation area and the biggest marsh area
in China. The regional vegetation coverage in this area is vital to local ecological systems, and
vegetation growth is affected by natural and anthropogenic factors. The clumping index (CI) is of
great significance for land surface models and obtaining information on other vegetation structures.
However, most existing ecological models and the retrieval of other vegetation structures do not
consider the spatial and temporal variations of CI, and few studies have focused on detecting factors
that influence the spatial differentiation of CI. To address these issues, this study investigated the
spatial and temporal characteristics of foliage CI in the Sanjiang Plain, analysing the correlation
between CI and leaf area index (LAI) through multiple methods (such as Theil−Sen trend analysis,
the Mann−Kendall test, and the correlation coefficient) based on the 2001−2015 Chinese Academy
of Sciences Clumping Index (CAS CI) and Global LAnd Surface Satellite Leaf Area Index (GLASS
LAI). The driving factors of the spatial differentiation of CI were also investigated based on the
geographical detector model (GDM) with natural data (including the average annual temperature,
annual precipitation, elevation, slope, aspect, vegetation type, soil type, and geomorphic type) and
anthropogenic data (the land use type). The results showed that (1) the interannual variation of
foliage CI was not obvious, but the seasonal variation was obvious in the Sanjiang Plain from 2001 to
2015; (2) the spatial distribution of the multiyear mean CI of each season in the Sanjiang Plain was
similar to the spatial distribution of the land use type, and the CI decreased slightly with increases in
elevation; (3) the correlation between the growing season mean CI (CIGS) and the growing season
mean LAI (LAIGS) time series was not significant, but their spatial distributions were negatively
correlated; (4) topographic factors (elevation and slope) and geomorphic type dominated the spatial
differentiation of foliage CI in the Sanjiang Plain, and the interactions between driving factors
enhanced their explanatory power in terms of the spatial distribution of foliage CI. This study can
help improve the accuracy of the retrieval of other vegetation structures and the simulation of land
surface models in the Sanjiang Plain, providing invaluable insight for the analysis of the spatial
and temporal variations of vegetation based on CI. Moreover, the results of this study support a
theoretical basis for understanding the explanatory power of natural and anthropogenic factors in
the spatial distribution of CI, along with its driving mechanism.

Keywords: clumping index; spatio-temporal variation; driving factors; Sanjiang Plain; geographical
detector model; trend analysis

1. Introduction

The surface vegetation ecosystem, an important component of the earth’s biosphere, is
crucial for human survival and is closely related to human productivity. During interactions
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between vegetation and the external environment, the vegetation canopy is the most direct
and active contributor. Most natural vegetation is distributed in different ecosystems
and subject to different climatic conditions and terrains. Therefore, the structure of the
canopy is complex, and leaves are not randomly distributed but clump to different degrees.
The clumping index (CI), as a parameter of vegetation structures, is used to quantify the
non-random distribution of foliage [1]. CI was defined as the ratio of the effective leaf
area index (LAIeff) to the true leaf area index (LAItrue) [2]. When foliage distributions
are clumped, random, and regular, the corresponding CI ranges are as follows: CI < 1,
CI = 1, and CI > 1, respectively. CI can be determined through field measurements or
retrieved based on remote sensing data, and the global CI values generally vary from
0.3 (foliage elements are very clumped) to 1.0 (foliage distributed randomly). Previous
studies have shown that the LAIeff obtained through indirect optical methods during field
measurements will be underestimated by at least 30% to 50% relative to LAItrue without
clumping correction [3–6]. If LAIeff derived from remote sensing data is directly used to
estimate forest evapotranspiration (ET) and gross primary productivity (GPP) without
taking foliage CI into consideration, the former will be substantially underestimated [7],
and the latter may be underestimated by up to 9% [8]. Furthermore, remote-sensing-based
CI plays an important role in determining the radiation transfer and photosynthesis of the
canopy [9,10]. Therefore, remote-sensing-estimated CI values are crucial for land surface
models in terms of hydrology, agriculture, ecology, and climate, as well as for the retrieval
of other vegetation structures [11,12].

The spatial distribution of vegetation foliage varies seasonally, and the CI exhibits cer-
tain characteristics of seasonal variation. Furthermore, climate change, land use variation,
global warming, and other factors can lead to interannual variations of the CI. Moreover,
the clumping effects of vegetation foliage vary from region to region, and the spatial distri-
bution of CI is not the same. However, owing to the difficulties associated with obtaining
CI, most existing ecological models and leaf area index (LAI) retrieval algorithms only
considered the variation of CI with land cover types but did not consider its spatial and
temporal variations [13,14]. This assumption leads to significant uncertainties in model
simulation and the retrieved LAI. Furthermore, previous studies on CI mainly focused on
improving the relevant retrieval methods [15–19] and comparing different CI estimation
methods [20–22]; there are relatively few studies that investigate the spatial and temporal
variations in regional CI and quantify its driving forces. Wei [23] has studied the sensi-
tivity of global CI to climatic factors based on pixel-level correlation analysis; the results
showed that CI was mainly negatively correlated to the temperature and precipitation.
Zhu et al. [24] found that vegetation growth is closely related to topographic conditions,
anthropogenic activities, and other factors; therefore, the spatial differentiation of CI is
affected by the comprehensive effects of natural and anthropogenic factors.

Theil−Sen trend analysis and the Mann−Kendall test have been increasingly applied
to investigate variation trends and the significance of long time series data and are not
affected by outliers. Moreover, the samples of long time series data do not need to follow a
normal distribution. The geographical detector model (GDM) is based on spatial variance
analysis and is a new statistical method used to investigate spatial differentiation and
reveal the driving factors behind it with no linear assumptions [25,26]. Its research area
ranges from the national scale [27] to the regional scale [28]. It has been widely used to
analyse vegetation cover variation [29–34], and the spatial differentiation of vegetation can
be ascertained effectively. For the CI, GDM not only can detect the influence of the spatial
distribution characteristics of numerical data such as the average annual temperature and
of qualitative data such as soil type on CI, but it can also determine the interactions among
different driving factors on the spatial differentiation of the CI.

The Sanjiang Plain is the largest concentrated area of freshwater marshes in China and
is a vital base for grain production [35]. It ensures regional ecological security and food
security in China. The vegetation coverage in this area can indicate the overall condition
of the ecological system. Although some researchers have studied the variation of the
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vegetation normalized difference vegetation index (NDVI) in the Sanjiang Plain, the effects
of land use type and climatic factors on vegetation coverage are usually the focus [36,37].
However, vegetation growth is affected by climate, terrain, land use type, soil type, and
other factors [38]. Moreover, NDVI can easily become saturated during the flourishing
period of vegetation growth, and the disturbance of background soil on NDVI cannot be
ignored [39].

The main aims of this study were to (1) investigate the spatial and temporal varia-
tion characteristics of foliage CI in the Sanjiang Plain from 2001 to 2015; (2) explore the
correlation between CI and LAI; and (3) quantify the impacts of natural and anthropogenic
factors on the spatial distribution of CI. This study determines reliable clumping effects for
the Sanjiang Plain, improving the accuracies of the retrieval of vegetation structures and
the simulation of land surface models. In addition, it provides a research foundation for
analysing the driving mechanism of CI.

2. Materials and Methods
2.1. Study Area

The Sanjiang Plain, formed by the conflation and alluviation of the Amur, Ussuri,
and Songhua Rivers, is located in the eastern region of Heilongjiang Province, China
(Figure 1). With its developed water system, the Sanjiang Plain is an important concentrated
distribution area of freshwater marshes and the largest agricultural reclamation area in
China [40]. The study area for this research is located between 45◦01′05′ ′–48◦27′56′ ′N and
130◦13′10′ ′–135◦05′26′ ′E, and the administrative cell includes 23 counties, such as Luobei
County and Fuyuan County, with a total area of about 10.89 × 104 km2. The elevation in
the northeast region of the study area is low, while the elevation in the southwest region is
high [35], with a mean altitude of more than 150 m. The study area experiences a temperate
humid and subhumid continental monsoon climate; the summer is hot and rainy, and
the winter is cold and dry [41]. The annual precipitation is 500–600 mm, and the average
temperatures in January and July are −20 to −18 ◦C and 21 to 22 ◦C, respectively [42]. The
main land use types in the Sanjiang Plain are cultivated land and forestland. In 2015, for
example, 50.61% and 32.10% of the overall study area were occupied by cultivated land
and forestland, respectively. The cultivated land is mainly located in the plain area (with an
elevation less than 200 m), and the forestland is mainly distributed in the hilly area (with
an elevation greater than 200 m). The growing season of vegetation ranges from May to
September [37], corresponding to DOY (day of year) 153–273.
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Figure 1. Study area.

2.2. Data Sources

Data including CI, LAI, natural factors, and anthropogenic factors were used in this
study (Table 1).

Table 1. Driving factors.

Factor Types Abbreviations Factors Sources

Natural factors

Elev Elevation USGS (https://earthexplorer.usgs.gov/ accessed on
11 May 2021)

Slop Slope
Derived from SRTM DEMAspe Aspect

Temp Average annual temperature

Resource and Environment Science and Data Center,
RESDC (http://www.resdc.cn/ accessed on 11 May 2021)

Prec Annual precipitation
Veget Vegetation type
Soilt Soil type

Geomt Geomorphic type

Anthropogenic
factors

Landt Land use type
RESDC (http://www.resdc.cn/ accessed on 11 May 2021)GDP Gross domestic product

POP Density of population

https://earthexplorer.usgs.gov/
http://www.resdc.cn/
http://www.resdc.cn/
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2.2.1. CI Products

The remote sensing estimated CAS (Chinese Academy of Sciences) CI products were
acquired from the National Earth System Science Data Center, National Science & Technol-
ogy Infrastructure of China, NESSDC (http://www.geodata.cn/ accessed on 11 May 2021).
Their spatial resolution was 500 m with a sinusoidal projection, and the temporal resolution
was 8 days. Here, we used the 2001−2015 CAS CI. The CAS CI algorithm is introduced
briefly, as follows: firstly, the LUT (lookup table) database was generated using the Ross−Li
model based on the MODIS BRDF (bidirectional reflectance distribution function) products,
and daily CI products were then estimated based on the LUT database; subsequently, the
snow contaminated pixels were removed, and the daily products were synthesized into
8-day products [18]. CAS CI products considered different zenith angles, from 0◦ to 60◦ (in
increments of 10◦), and different crown shapes (cone/cylinder, ellipsoid, and half ellipsoid).
Validation indicated that the CAS CI was consistent in time with moderate accuracy. In this
study, Arcpy was used to mosaic, reproject, and clip the CAS CI. Subsequently, we used the
mean composition method to obtain the temporal CI dataset for the 2001−2015 growing
season mean CI (CIGS) and seasonal mean CI (CISP, CISU, CIAU CIWI) in the study area.

2.2.2. LAI Products

The GLASS (Global LAnd Surface Satellite) LAI products were obtained from NESSDC.
Their spatial resolution was 1 km with a sinusoidal projection, and the temporal resolution
was 8 days. The 2001−2015 GLASS LAI data were used for correlational analysis. The
GLASS LAI algorithm can be briefly described as follows: first, the GRNNs (general
regression neural networks) were trained using preprocessed MODIS/AVHRR reflectance
data; subsequently, GLASS LAI products were generated through a rolling processing
approach [43,44]. Among the various global LAI products, GLASS LAI is much more
continuous in time and complete in space [43]. In this study, we used MRT (MODIS
Reprojection Tools) to transform the format of GLASS LAI from HDF to GeoTiff and
reproject it. Then, we clipped the GLASS LAI using Arcpy. Finally, the mean composition
method was used to calculate the temporal LAI dataset for the 2001−2015 growing season
mean LAI (LAIGS).

2.2.3. Natural Factors

The topographic data, climatic data, vegetation type, soil type, and geomorphic type
were used as the natural factors in this study. Topographic data were derived from the 30 m
SRTM DEM, including elevation, slope, and aspect [45]. The 2001−2015 average annual
temperature and annual precipitation were used as climatic data, and we calculated the
multiyear mean temperature and precipitation based on the mean composition method.
The soil type, vegetation type, and geomorphic type were published in 1995, 2001, and
2009, respectively. The spatial resolutions of the climatic data and these type maps were
1 km. ArcGIS 10.4 software was used to reproject and clip the natural factor data.

2.2.4. Anthropogenic Factors

The anthropogenic factor data used in this study included the land use type, gross
domestic product [46], and density of population [47] in 2000, 2005, 2010, and 2015. The
spatial resolutions of all these images were 1 km, which were reprojected and clipped using
ArcGIS 10.4. The mean value over the four years was then calculated.

2.3. Methods

The framework of this study is given in Figure 2, including three modules: preprocess-
ing, method, and analysis. The details of each method are introduced in Sections 2.3.1–2.3.5.

http://www.geodata.cn/
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2.3.1. Theil–Sen Trend Analysis

Linear regression trend analysis has been widely used to understand vegetation
dynamics [48]; however, it is sensitive to outliers or missing data [49]. Theil−Sen trend
analysis, first proposed by Sen et al. [50], is also known as Sen’s slope. It is a non-parametric
statistical method, which is robust for calculating the variation trend of a time series, and it
is not sensitive to abnormal data [30]. The computational formula used to calculate Sen’s
slope is shown below:

β = Median
(

CIj −CIi

j− i

)
, i < j (1)

where β indicates the variation trend of the CI times series data from 2000 to 2015; β < 0
indicates that CI exhibits a downward trend, and β > 0 indicates an upward trend. Median
is a function used to calculate the median of a data set. CIj refers to the jth year CI data,
and CIi is the CI data in year i.

2.3.2. Mann−Kendall Test

The Mann−Kendall test, which shows the insensitivity to outliers, is a non-parametric
statistical test. Theil−Sen trend analysis is often combined with Mann−Kendall testing,
which has been increasingly used to investigate the variation trend and test the statistical
significance of a long time series data [51,52]. The Mann−Kendall test was originally
proposed by Mann [53] and enhanced by Kendall and Sneyers [54]. Moreover, the samples
of the long time series data do not need to follow a normal distribution or a linear variation
trend. The equation is as follows:

Z =



S− 1√
var(S)

, S > 1

0, S = 0
S + 1√
var(S)

, S < 0

(2)

S = ∑n−1
i=1 ∑n

j=i+1 sign
(
CIj −CIi

)
(3)
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sign
(
CIj −CIi

)
=


1, CIj −CIi > 0
0, CIj −CIi = 0
−1, CIj −CIi < 0

(4)

var(S) =
n(n− 1)(2n + 5)−∑m

i=1 ti(ti − 1)(2ti + 5)
18

(5)

where Z denotes the standard normal test statistic; S is the test statistic; var is the variance
function; n is the length of the time series; sign denotes the symbolic function; CIj and CIi
are the CI data in year j and i, respectively; m refers to the datasets that repeat during the
study period; and ti refers to the datasets that recur in group i. In this study, α was defined
as 0.05, and |Z| > Z1−α/2 indicates the significant variation trend of CI time series.

Here, we used a combination of the above two methods to analyse the spatial and
temporal variation characteristics of foliage CI in the Sanjiang Plain from 2001 to 2015
based on MATLAB software. Based on criteria in previous literature [55] and the actual
features of the study area, areas with β < 0 and |Z| > 1.96 were classified as significantly
degraded areas, areas with β > 0 and |Z| > 1.96 were classified as significantly improved
areas, areas with β < 0 and |Z| ≤ 1.96 were classified as lightly degraded areas, and areas
with β > 0 and |Z| ≤ 1.96 were classified as the lightly improved areas.

2.3.3. Correlation Coefficient

The correlation between two variables was often analysed using Pearson’s correlation
coefficient. In this study, Pearson’s correlation analysis was performed to explore the
correlation between CI and LAI at the pixel scale. The correlation coefficient can be found
using the following formula:

R =
∑n

i=1
(
LAIi − LAI

)(
CIi −CI

)√
∑n

i=1
(
LAIi − LAI

)2(CIi −CI
)2

(6)

where R ranges from −1 to 1, and the bigger the |R| value is, the higher the degree
of correlation is between LAI and CI. LAIi and CIi are the LAI and CI in the year i,
respectively; LAI and CI are the mean values of LAI and CI during the study period,
respectively. Furthermore, n refers to the length of the study period. R > 0 indicates that
the variation trends of LAI and CI are the same, R = 0 indicates that LAI and CI have
no relationship, and R < 0 indicates that the variation trends of LAI and CI are inversely
related [56].

2.3.4. Geographical Detector Model

The geographical detector model, proposed by Wang et al. [25], was first applied to
explore the driving mechanism of environmental risks and human health in the Heshun
Region of China. GDM is based on spatial variance analysis with no linear assumptions.
It is a novel spatial statistical method used to explore the driving forces behind spatial
differentiation [26]. GDM not only can quantify the influences of different driving factors
on the spatial differentiation of the CI, but it can also ascertain the interactions between
different driving forces [57]. Furthermore, when using GDM, the explanatory variable can
be numerical data or qualitative data. The core concept behind GDM is that the spatial
distribution of a response variable will be similar to its driving factors [58]. In other
words, if some driving factors affect the spatial differentiation of the CI, then the spatial
distribution of the CI and the driving factors may show greater consistency. The power
of determinant (q) is used to measure the spatial correspondence or similarity between CI
and driving forces, which can be expressed as

q= 1−∑L
i=1 Niσ

2
i

Nσ2 (7)
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where L denotes the total strata number of the driving factors; Ni and N denote the sample
number in stratum i and the total sample number, respectively; and σi

2 and σ2 refer to the
local variance of CI within stratum i and the global variance of CI, respectively. The range
of q is [0, 1]; thus, q = 0 indicates that the spatial distribution of CI is not affected by the
driving forces, and q = 1 indicates that the driving forces completely determine the spatial
characteristics of CI. The larger the value of q, the higher the spatial correlation between CI
and driving factors.

GDM, which can mitigate the inherent limitations of the statistical methods [59],
primarily involves four detectors: factor, risk, ecological, and interaction. Therefore, GDM
has been increasingly used to explore the driving mechanism behind spatial differentiation.
http://www.geodetector.cn/ accessed on 11 May 2021 is the Geodetector website, where
more details regarding GDM can be found, along with the free software.

The factor detector assesses the explanatory power of each driving factor for the
spatial differentiation of CI based on calculating the q value. A risk detector can determine
the favourable ranges or characteristics of the driving factors to the foliage clumping effects
with a confidence of 95%. The difference in the influences of two driving forces on the
spatial differentiation of CI was ascertained using the ecological detector. The interactions
between two driving forces were determined by the interaction detector. The q value of
the two interactive factors was compared with that of a single factor; thus, the types of
interactions can be divided into five classes (Figure 3).
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2.3.5. Selection and Classification of Driving Factors

Owing to the comprehensive impacts of natural and anthropogenic factors, CI shows
spatial characteristics in the Sanjiang Plain. In this study, we considered the main driving
factors which have an important influence on the spatial differentiation of CI based on
previous studies and the vegetation coverage in the Sanjiang Plain. Eight natural factors—
the vegetation type (Veget), soil type (Soilt), geomorphic type (Geomt), average annual
temperature (Temp), annual precipitation (Prec), elevation (Elev), slope (Slop), and aspect
(Aspe)—and three anthropogenic factors—the land use type (Landt), gross domestic prod-
uct (GDP), and population density (POP)—were selected as the driving factors. The spatial
resolutions and the data sources of the CAS CI, natural factor data, and anthropogenic
factor data differed. Therefore, this study took the GDM’s computing power and accuracy
into consideration, resampling the resolution to 1 km based on the nearest neighbour
method [60]. Moreover, all of the data were uniformly projected as Albers equal area
conic projections.

When GDM is applied to analyse the driving mechanism, all of the driving factors
must be qualitative data. Therefore, the numerical driving factors must be discretized into
several strata. Discretization methods, such as the standard deviation, natural breaks, equal
interval, geometrical interval, and quantile methods, are often used to discretize the nu-
merical data. Natural breaks [61] were proposed to divide the numerical data into different
intervals, with the minimum variance within intervals and the maximum variance between
intervals. In this study, the natural breaks method was applied to reclassify the elevation,

http://www.geodetector.cn/
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slope, average annual temperature, annual precipitation, population density, and gross
domestic product into six classes. The aspect was reclassified into eight classes according
to the eight geographical directions. The vegetation type, land use type, geomorphic type,
and soil type were reclassified into seven, five, five, and six classes, respectively, according
to their major types.

3. Results
3.1. Spatial and Temporal Variations of Land Use Type in the Sanjiang Plain from 2000 to 2015
3.1.1. Temporal Variations

According to the main features of the land cover in the Sanjiang Plain and the Level 1
type of land use in Current Land Use Classification (http://www.gov.cn/ accessed on 11 May
2021), there were six kinds of land use types: cultivated land, water, grassland, forestland,
residential land, and wetland. The cultivated land area in the Sanjiang Plain increased by
0.25 × 104 km2 from 2000 to 2015, and its area proportion increased from 48.29% in 2000 to
50.61% in 2015 (Table 2). However, both the forestland area and the wetland area exhibit
decreasing trends. The area proportion of the forestland decreased by 0.95% from 2000
to 2015, which represents a decrease of 0.10 × 104 km2. The wetland area decreased by
0.15 × 104 km2 from 2000 to 2015, and the area proportion of wetland areas decreased from
8.07% in 2000 to 6.70% in 2015. Grassland, water, and residential land exhibited stable
variations, with small fluctuations in the area proportion (<0.05%).

Table 2. Temporal variation of land use type.

Year Cultivated Land (%) Forestland (%) Grassland (%) Water (%) Residential Land (%) Wetland (%)

2000 48.29 33.05 3.89 4.78 1.92 8.07
2005 48.64 32.96 3.99 4.82 1.92 7.67
2010 49.27 32.66 3.95 4.83 1.92 7.37
2015 50.61 32.10 3.85 4.82 1.92 6.70

3.1.2. Spatial Variations

The entire study area exhibited relative stability in terms of land use type (Figure 4),
and the cultivated land area increased gradually, while the forestland area and wetland
area decreased gradually. The northeastern and central regions of the study area were the
major areas with decreased wetland, and the area with a larger reduction in forestland was
mainly located in the northeastern region (Figure 5). The main spatial variations of land
use type were the transformations from wetland to cultivated land and from forestland
to cultivated land; the corresponding areas were 0.14 × 104 km2 and 0.11 × 104 km2,
respectively (Table 3). Therefore, exploiting forestland and wetland were the primary
methods to develop cultivated land, and cultivated land area increased greatly in the
northeastern and central parts of the Sanjiang Plain from 2000 to 2015. Moreover, areas
with grassland, water, and residential areas exhibited no obvious variations.

http://www.gov.cn/


Remote Sens. 2021, 13, 2797 10 of 23Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 23 
 

 

 
Figure 4. Spatial distribution of land use type. Figure 4. Spatial distribution of land use type.



Remote Sens. 2021, 13, 2797 11 of 23Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 5. Spatial variation of land use type. 

Table 3. Transfer matrix of land use type. (Unit: km2). 

       2015 
2000 Cultivated Land Forestland  Grassland  Residential Land Water  Wetland  Aggregate 

Cultivated land 51,956 155 100 76 11 16 52,314 
Forestland 1147 34,577 64 5 4 8 35,805 
Grassland 193 28 3941 1 28 24 4215 

Residential land 75 2 1 2001 0 0 2079 
Water 29 0 1 0 5151 4 5185 

Wetland 1430 15 70 3 25 7200 8743 
Aggregate 54,830 34,777 4177 2086 5219 7252 108,341 

3.2. Spatial and Temporal Variations of CI in the Sanjiang Plain from 2000 to 2015 
3.2.1. Interannual Variations 

In this study, we used the growing season mean CI (CIGS) to assess the interannual 
variation of foliage CI in the Sanjiang Plain from 2001 to 2015. The mean value of CI in the 
growing season approximately ranged between 0.662 and 0.717, and the slope during the 
study period was 0.021∙10 a–1, which indicated that the overall interannual variation ex-
hibited a slight upward trend. The overall CIGS value exhibited a decreasing trend from 
2001 and 2004 and then increased from 2004 to 2006. Subsequently, the CIGS value de-
creased again in 2006−2007 and continued to fluctuate slightly after 2007 (Figure 6a). The 
area proportions of the variation trend of CIGS in the Sanjiang Plain from 2001 to 2015 are 
shown in Figure 6b. A total of 46.40% of the study area exhibited a downward trend, with 
a corresponding area of 4.80 × 104 km2. The area of the region with an upward trend ac-
counted for 53.60% of the study area and was 5.54 × 104 km2. Lightly improved and lightly 
degraded areas exhibited the primary variation trends of CIGS in the Sanjiang Plain from 
2001 to 2015, whose area proportions were 46.18% and 42.25%, respectively. 

Figure 5. Spatial variation of land use type.

Table 3. Transfer matrix of land use type. (Unit: km2).

2000
2015 Cultivated

Land Forestland Grassland Residential
Land

Water Wetland Aggregate

Cultivated land 51,956 155 100 76 11 16 52,314
Forestland 1147 34,577 64 5 4 8 35,805
Grassland 193 28 3941 1 28 24 4215

Residential land 75 2 1 2001 0 0 2079
Water 29 0 1 0 5151 4 5185

Wetland 1430 15 70 3 25 7200 8743
Aggregate 54,830 34,777 4177 2086 5219 7252 108,341

3.2. Spatial and Temporal Variations of CI in the Sanjiang Plain from 2000 to 2015
3.2.1. Interannual Variations

In this study, we used the growing season mean CI (CIGS) to assess the interannual
variation of foliage CI in the Sanjiang Plain from 2001 to 2015. The mean value of CI in
the growing season approximately ranged between 0.662 and 0.717, and the slope during
the study period was 0.021·10 a−1, which indicated that the overall interannual variation
exhibited a slight upward trend. The overall CIGS value exhibited a decreasing trend
from 2001 and 2004 and then increased from 2004 to 2006. Subsequently, the CIGS value
decreased again in 2006−2007 and continued to fluctuate slightly after 2007 (Figure 6a).
The area proportions of the variation trend of CIGS in the Sanjiang Plain from 2001 to 2015
are shown in Figure 6b. A total of 46.40% of the study area exhibited a downward trend,
with a corresponding area of 4.80 × 104 km2. The area of the region with an upward trend
accounted for 53.60% of the study area and was 5.54 × 104 km2. Lightly improved and
lightly degraded areas exhibited the primary variation trends of CIGS in the Sanjiang Plain
from 2001 to 2015, whose area proportions were 46.18% and 42.25%, respectively.
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3.2.2. Seasonal Variations

The seasonal mean CI in the Sanjiang Plain from 2001 to 2015 was obtained by the
mean of a composition method, including the spring mean CI (CISP), summer mean CI
(CISU), autumn mean CI (CIAU), and winter mean CI (CIWI). Figure 7 shows that the
seasonal variation of CI was obvious throughout the study period. The overall CISU was
the smallest value in the whole year, while the overall CIWI was the largest value in the
whole year. In spring, the vegetation begins to grow, and foliage gradually becomes denser;
therefore, the clumping effects are strengthened, and the CI value decreases gradually. The
clumping effects in summer are the most obvious, and the multiyear mean CISU was 0.614.
In autumn, the foliage begins to fall off and the clumping effects decrease gradually; thus,
the CI value increases with time. In winter, the foliage is sparser than that in other seasons,
and the multiyear mean CIWI was 1.206.
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3.2.3. Spatial Variations

A slight overall variation of the clumping effects in the Sanjiang Plain during the study
period was found, and the total area proportion of the areas with slight variations (light
improvement and light degradation) was 88.43%. Most of the significantly improved areas
were distributed in Fuyuan County, Tongjiang City, Suibin County, and eastern Luobei
County. Areas with significant degradation were mainly distributed in northwestern
Luobei County, northwestern Hegang City, Qitaihe City, west Mishan City, Jidong County,
Jixi City, and Muling City (Figure 8).



Remote Sens. 2021, 13, 2797 13 of 23Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 23 
 

 

 
Figure 8. Spatial variation of CIGS. 

The multiyear mean CI of each season was calculated by compositing a mean CI map 
for each season over fifteen years based on the mean composition method. The spatial 
distribution of the multiyear mean CI of each season was related to the spatial distribution 
of land use type (Figure 9). The main land use types in the Sanjiang Plain are cultivated 
land and forestland. In 2015, for example, 50.61% and 32.10% of the study area were oc-
cupied by cultivated land and forestland, respectively. Most of the cultivated land areas 
were distributed in the northern study area, and areas with forestland were mainly lo-
cated in the southern, central, eastern, and northwestern regions of the study area. The 
multiyear mean CI of each season for cultivated land was greater than that for forestland; 
in other words, the clumping effects of the woody plants were more significant than those 
of herbaceous plants. Moreover, the multiyear mean CI values of cultivated land and for-
estland reached their maximum values in winter and decreased gradually in spring. The 
clumping effects of cultivated land and forestland in summer were the most intensive, 
and foliage later became sparse in autumn. 
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The multiyear mean CI of each season was calculated by compositing a mean CI map
for each season over fifteen years based on the mean composition method. The spatial
distribution of the multiyear mean CI of each season was related to the spatial distribution
of land use type (Figure 9). The main land use types in the Sanjiang Plain are cultivated land
and forestland. In 2015, for example, 50.61% and 32.10% of the study area were occupied
by cultivated land and forestland, respectively. Most of the cultivated land areas were
distributed in the northern study area, and areas with forestland were mainly located in the
southern, central, eastern, and northwestern regions of the study area. The multiyear mean
CI of each season for cultivated land was greater than that for forestland; in other words,
the clumping effects of the woody plants were more significant than those of herbaceous
plants. Moreover, the multiyear mean CI values of cultivated land and forestland reached
their maximum values in winter and decreased gradually in spring. The clumping effects
of cultivated land and forestland in summer were the most intensive, and foliage later
became sparse in autumn.

The CI variation trend with elevation in each season was explored based on the pixel-
level statistics of the seasonal multiyear mean CI and elevation. As shown in Figure 10,
the multiyear mean CI of each season exhibited a slight downward trend with elevation.
The variation range of the multiyear mean CI in winter was the largest, while that of the
multiyear mean CI in summer was the smallest. As the elevation increased by 100 m, the
multiyear mean CI in winter and summer decreased by 0.06 and 0.01, respectively.
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3.3. Correlation between CI and LAI in the Sanjiang Plain

In this study, we used the growing season mean CI (CIGS) and growing season mean
LAI (LAIGS) to analyse the correlation between CI and LAI in the Sanjiang Plain from
2001 to 2015. Figure 11c shows that both the CIGS and LAIGS exhibited slight upward
trends, and their low growth rates were 0.021·10 a−1 (p < 0.05) and 0.097·10 a−1 (p < 0.05),
respectively. The spatial distribution of the variation trend of LAIGS revealed an overall
slight variation in LAI in the Sanjiang Plain during the study period, and areas with slight
variations (light improvement and light degradation) occupied 80% of the total study area
(Figure 11a). As described in Section 3.2.3, areas with slight variations (light improvement
and light degradation) in CIGS occupied 88.43% of the total study area. Therefore, CIGS
and LAIGS exhibited relative stability from 2001 to 2015.

The correlation coefficient of CIGS and LAIGS was calculated based on their time series
over fifteen years, as shown in Figure 11b. Areas with positive correlation and negative
correlation were 55% and 45% of the study area, respectively. However, only 7% of the
study area was occupied by pixels with a significant correlation. Thus, temporally, the
correlation between CIGS and LAIGS time series was not significant in the Sanjiang Plain
from 2001 to 2015. Moreover, the multiyear mean CIGS and multiyear mean LAIGS were
obtained using the mean composition method, and pixel-level statistical analysis showed
that CIGS was negatively correlated with LAIGS in space. The two concentrated areas of
scattered points in Figure 11d represent cultivated land and forestland, respectively. In
other words, the LAI of cultivated land was larger than that of forestland, but the clumping
effects of forestland were more intensive than those for cultivated land.
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3.4. Geographical Detection of the Spatial Differentiation of CI in the Sanjiang Plain
3.4.1. Detection of the Significant Driving Factors for the Spatial Differentiation of CI

As mentioned in Section 2.3.5, eight natural factors and three anthropogenic factors
were selected to analyse the driving factors for the spatial differentiation of CI in the San-
jiang Plain. Here, we first identified the driving factors that had a significant influence on
the spatial differentiation of CI based on the factor detector. As shown in Table 4, the gross
domestic product and population density had little influence on the spatial differentiation
of CI and did not pass the significance test (p > 0.05). Therefore, the vegetation type (Veget),
soil type (Soilt), geomorphic type (Geomt), average annual temperature (Temp), annual
precipitation (Prec), elevation (Elev), slope (Slop), aspect (Aspe), and land use type (Landt)
were used to investigate the driving mechanism of CI.
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Table 4. Detection of the significant driving factors for the spatial differentiation of CI.

Factor Elev Geomt Slop Veget Landt Soilt Temp Prec Aspe GDP POP

q 0.7118 0.7071 0.6096 0.4793 0.4657 0.1812 0.0943 0.0549 0.0077 0.0047 0.0015
p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 1.000 1.000

3.4.2. Detection of the Single Factors

The factor detector of GDM was applied to investigate the impact of each driving
factor on the CI by calculating the q value. The higher the q value, the stronger the spatial
association between the CI and division factors. In this study, we defined the driving
factors with q values greater than 50% as the dominant driving factors, and driving factors
with q values greater than 10% as the secondary driving factors. Natural factors and
anthropogenic factors were ranked in descending order according to the magnitude of their
impacts on the spatial distribution of CI: Elev > Geomt > Slop > Veget > Landt > Soilt >
Temp > Prec > Aspe (first row in Table 5). All of the driving factors passed the significance
test (p < 0.05).

Table 5. The q value of each driving factor.

Factor Elev Geomt Slop Veget Landt Soilt Temp Prec Aspe

q 0.7122 0.7073 0.6102 0.4800 0.4664 0.1818 0.0949 0.0554 0.0079
p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006

The q values of the elevation, geomorphic type, and slope were the largest (0.7122,
0.7073, and 0.6102, respectively) and accounted for more than 50% of the spatial distribution
of CI. Therefore, the dominant factors affecting CI were elevation, geomorphic type, and
slope. Furthermore, the secondary driving forces of CI were vegetation type (0.4800),
land use type (0.4664), and soil type (0.1818), all of which accounted for more than 10%
of the spatial distribution of the CI. The q values of average annual temperature, annual
precipitation, and aspect were below 10%, indicating that they had only a slight impact on
the spatial differentiation of CI. However, the factor detector only revealed the impact of a
single factor on CI based on the q value; thus, some driving factors might have a significant
influence when interacting with others.

3.4.3. Detection of the Interactions among Factors

The interaction detector was applied to ascertain whether there was an interaction
among two driving factors and to determine whether these interactions were weakened or
enhanced by calculating the interactive q value. As shown in Figure 12, interactions between
pairs of driving factors would enhance their impacts on the CI, and the types of interactions
among driving factors included mutual enhancement and nonlinear enhancement. The q
values of the interactions between the dominant driving factors and others were the largest;
thus, topographic factors (elevation and slope) and geomorphic type dominated the spatial
distribution of the CI.

The top five interactive q values were as follows, in descending order: Elev ∩ Geomt
(0.7855) > Elev ∩ Landt (0.7697) > Elev ∩ Temp (0.7696) > Geomt ∩ Landt (0.7568) > Elev ∩
Prec (0.7548), indicating that interactions between elevation, geomorphic type, land use
type, and climatic factors (average annual temperature and annual precipitation) had the
greatest influence on CI. It is important to note that the q values of climatic factors were
small (0.0949 and 0.0554), but the q values associated with the interactions between them
and the elevation reached 0.7696 and 0.7548. Therefore, climatic factors also had a notable
influence on the spatial differentiation of CI when they interacted with other driving factors.
Moreover, nonlinear enhancement mainly occurred in the interactions between the aspect
and other driving factors; therefore, the aspect also had an important influence on the
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spatial distribution of CI, and this impact also manifested in the interactions with other
driving factors.
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3.4.4. Detection of the Factor Ranges/Types Suitable for Clumping Effects of Foliage

The risk detector was applied to determine the optimal range/type of the driving
factors for foliage clumping effects, with a confidence of 95%. The factor ranges/types with
the smallest mean values of CIGS were most suitable for the clumping effects of foliage. The
relationships between the spatial differentiation of CI and different driving forces differed
(Table 6). Only relationships between CIGS and elevation, slope, and annual precipitation
were monotonic; thus, the mean value of CIGS increased with them. The most optimal
ranges of elevation, slope, and annual precipitation for the clumping effects of foliage
were 589–1035 m, 5.8–13◦, and 638.7–725.7 mm, respectively. Therefore, areas with high
elevation, steep terrain, and abundant precipitation were more likely to be conducive to
the clumping effects of foliage.

Table 6. The optimal range/type for clumping effects of foliage.

Factor Optimal Range/Type Mean Value of CIGS

Elev (m) 589–1035 0.643
Geomt Moderate relief mountain 0.648
Slop (◦) 5.8–13 0.670
Veget Coniferous and broad-leaved mixed forest 0.682
Landt Forestland 0.746
Soilt Leached soil 0.808

Temp (◦C) 0.9–2.1 0.818
Prec (mm) 638.7–725.7 0.822
Aspe (◦) 0–22.5, 337.5–360 0.852

Moreover, the relationships between other driving factors and CIGS were non-monotonic.
The mean values of CIGS decreased first and then increased with increasing average annual
temperature, and the minimum mean value of CIGS appeared when the average annual
temperature was 0.9–2.1 ◦C. In terms of the aspect, the mean value of CIGS reached 0.852
in the north. The geomorphic type with the smallest mean value of CIGS (0.648) was
the moderate relief mountain; among all vegetation types, the mean value of CIGS of the
coniferous and broad-leaved mixed forest was the smallest. For land use type and soil type,
the minimum mean values of CIGS were found for forestland and leached soil, reaching
0.746 and 0.808, respectively.
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3.4.5. Detection of the Significant Differences between Factors

In terms of the impacts on CI, the presence of significant differences between driving
forces was detected by the ecological detector in GDM, with a confidence of 95%. In
Figure 13, the green circles denote that the two driving factors had a significant difference,
and the red circles denote that the two driving factors had no significant difference. For
dominant driving factors, there was no significant difference between elevation and geo-
morphic type, with corresponding q values of 0.7122 and 0.7073, respectively. Furthermore,
for secondary driving factors, vegetation type and land use type exhibited similarities
in terms of their influence on CI. The average annual temperature (0.0949) and annual
precipitation (0.0554) had similar q values; thus, the difference between them was not
significant. Furthermore, the statistical significance of the other driving factors indicated
that they significantly differed.

Remote Sens. 2021, 13, x FOR PEER REVIEW 19 of 23 
 

 

3.4.5. Detection of the Significant Differences between Factors 
In terms of the impacts on CI, the presence of significant differences between driving 

forces was detected by the ecological detector in GDM, with a confidence of 95%. In Figure 
13, the green circles denote that the two driving factors had a significant difference, and 
the red circles denote that the two driving factors had no significant difference. For dom-
inant driving factors, there was no significant difference between elevation and geo-
morphic type, with corresponding q values of 0.7122 and 0.7073, respectively. Further-
more, for secondary driving factors, vegetation type and land use type exhibited similar-
ities in terms of their influence on CI. The average annual temperature (0.0949) and annual 
precipitation (0.0554) had similar q values; thus, the difference between them was not sig-
nificant. Furthermore, the statistical significance of the other driving factors indicated that 
they significantly differed. 

 
Figure 13. Statistical significance of driving factors. 

4. Discussion 
Previous studies have often used NDVI to investigate the spatio-temporal variations 

of regional vegetation. However, NDVI tends to become saturated during the flourishing 
period of vegetation growth and is affected by background soil disturbance [62]. Further-
more, CI is a significant parameter in the simulation of the interaction between the eco-
system and atmosphere. In this study, the spatial and temporal variation characteristics 
of CI in the Sanjiang Plain from 2001 to 2015 were analysed to provide a novel perspective 
for investigating variations in vegetation based on the CI and provide reliable foliage 
clumping effects for the retrieval of other vegetation structures and the simulation of land 
surface models. Furthermore, the effects of natural and anthropogenic forces on the spa-
tial differentiation of CI were quantitatively explored to provide theoretical support for 
understanding the driving mechanism between CI and driving factors. However, the cli-
matic factors, topographic factors, and anthropogenic factors that influenced the spatial 
distribution of CI were not fully considered. Although the time series of 15 years could 
indicate the relationships between CI and its driving factors to a certain extent, an even 
longer time series should be used to investigate the driving mechanism of the spatial dif-
ferentiation of CI. Moreover, the spatio-temporal variations of CI for different vegetation 
types were not investigated. 

4.1. Spatio-Temporal Variations of CI 
Temporally, the overall interannual variation of CI in the Sanjiang Plain from 2001 to 

2015 exhibited a slight upward trend with a slow growth rate of 0.021∙10 a–1 (p < 0.05). 
However, the seasonal variation was obvious, with the strongest clumping effects in the 

Figure 13. Statistical significance of driving factors.

4. Discussion

Previous studies have often used NDVI to investigate the spatio-temporal variations
of regional vegetation. However, NDVI tends to become saturated during the flourishing
period of vegetation growth and is affected by background soil disturbance [62]. Fur-
thermore, CI is a significant parameter in the simulation of the interaction between the
ecosystem and atmosphere. In this study, the spatial and temporal variation characteristics
of CI in the Sanjiang Plain from 2001 to 2015 were analysed to provide a novel perspective
for investigating variations in vegetation based on the CI and provide reliable foliage
clumping effects for the retrieval of other vegetation structures and the simulation of
land surface models. Furthermore, the effects of natural and anthropogenic forces on the
spatial differentiation of CI were quantitatively explored to provide theoretical support
for understanding the driving mechanism between CI and driving factors. However, the
climatic factors, topographic factors, and anthropogenic factors that influenced the spatial
distribution of CI were not fully considered. Although the time series of 15 years could
indicate the relationships between CI and its driving factors to a certain extent, an even
longer time series should be used to investigate the driving mechanism of the spatial
differentiation of CI. Moreover, the spatio-temporal variations of CI for different vegetation
types were not investigated.

4.1. Spatio-Temporal Variations of CI

Temporally, the overall interannual variation of CI in the Sanjiang Plain from 2001 to
2015 exhibited a slight upward trend with a slow growth rate of 0.021·10 a−1 (p < 0.05).
However, the seasonal variation was obvious, with the strongest clumping effects in the
summer and the weakest clumping effects in the winter. Zhu [63] investigated the temporal
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characteristics of CI for major vegetation types in China from 2000 to 2013, finding that the
mean values of CI in the growing season for all vegetation types exhibited relative stability,
and the seasonal variation of CI was significant. The results in this study were relatively
consistent with the abovementioned conclusions. Areas with significant improvement for
CIGS in the Sanjiang Plain were mainly distributed in plain areas, with flat terrains and
gentle slopes, and the variation of land use type was mainly from forestland to cultivated
land. Therefore, CIGS showed a significant upward trend. Most areas with significant
degradation were located in hills and small relief mountains that had gentle slopes, with
elevations greater than 200 m, and the major land use type was forestland. Thus, the
increase of clumping effects in the Sanjiang Plain could be related to improvements in
vegetation growth.

The spatial distribution of the multiyear mean CI in each season was related to the
spatial distribution of the land use type; this finding was consistent with the conclusion
reached by Huang et al. [64] in the Daxing’an Mountains, Northeast China. Moreover,
the multiyear mean CI of each season exhibited a slight downward trend with increasing
elevation; the reason for this is that the main land use types of the plain with elevations
less than 200 m and greater than 200 m were cultivated land and forestland, respectively.
Thus, the overall multiyear mean CI in each season decreased with increasing elevation.

4.2. Driving Factors of the Spatial Distribution of CI

At present, to the best of our knowledge, there is no consistent conclusion on the
correlation between CI and LAI. Based on field measurements, Fang et al. [21] believed that
the CI of paddy rice was negatively correlated with LAI, while Qu et al. [65] found that the
CI of deciduous coniferous forest was positively correlated with LAI. However, the pixel-
level statistical analysis conducted herein indicated that CIGS was negatively correlated
with LAIGS in space, and the correlation between their time series was not significant.

Furthermore, previous studies have shown that the main climatic factor that domi-
nated the vegetation growth in the Sanjiang Plain was precipitation [37]. However, we
found that topographic factors (elevation and slope) and geomorphic type dominated the
vegetation growth in the Sanjiang Plain, thus dominating the spatial differentiation of CI.
Topographic factors (elevation and slope), which were of great importance in redistributing
the solar energy and precipitation [30], generally controlled the soil condition through
different processes [66], determining the spatial characteristics of CI. Notably, climatic
factors (average annual temperature and annual precipitation) and aspect had the smallest
q values, but they still had a notable impact on the spatial differentiation of CI when they
interacted with other driving factors. Related studies have also shown that the interac-
tions between two driving forces could enhance the impact of a single factor [30,59,66].
Therefore, the government should use the land rationally according to the characteristics
of topographic factors (elevation and slope) and geomorphic type in the Sanjiang Plain to
improve grain production and ensure regional ecological security.

5. Conclusions

CAS CI products from 2001 to 2015 were used to analyse the spatial and temporal
variation characteristics of CI in the Sanjiang Plain. Furthermore, the correlation between CI
and LAI was explored based on the CAS CI and GLASS LAI products from 2001 to 2015. In
addition, two climatic datasets (average annual temperature and annual precipitation) from
2001 to 2015, soil type data, vegetation type data, three topographic data sets (aspect, slope,
and elevation), geomorphic type data, and land use type data were used to quantify the
driving forces of the spatial distribution of CI. The major conclusions drawn are as follows:

(1) In terms of temporal variations, the interannual variation of CI in the Sanjiang Plain
from 2001 to 2015 was not obvious, and the overall variation exhibited a slight upward
trend, with a slow growth rate of 0.021·10 a−1 (p < 0.05). However, the seasonal variation
was obvious, with the strongest clumping effects in summer and the weakest clumping
effects in winter.
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(2) In terms of spatial variations, lightly improved and lightly degraded areas were the
main variation trends of CIGS in the Sanjiang Plain from 2001 to 2015, with area proportions
of 46.18% and 42.25%, respectively. The spatial distribution of the multiyear mean CI of
each season was related to the spatial distribution of the land use type, and the multiyear
mean CI in each season exhibited a slight downward trend with increasing elevation.
Moreover, the multiyear mean CI of each season for cultivated land was greater than that
for forestland.

(3) Temporally, the correlation between the CI time series and LAI time series was
not significant in the Sanjiang Plain from 2001 to 2015. Spatially, CI exhibited a negative
correlation with LAI.

(4) The elevation, geomorphic type, and slope were the main factors dominating the
spatial differentiation of CI. Furthermore, the vegetation type, land use type, and soil
type were the secondary driving forces of the spatial distribution of CI. Notably, as single
driving factors, climatic factors (average annual temperature and annual precipitation) and
aspect had the smallest q values but still had a notable impact on the spatial differentiation
of CI when they interacted with other driving factors. Furthermore, each driving factor
had the optimal range/type for foliage clumping effects.
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