Satellite-Observed Multi-Scale Variability of Sea Surface Chlorophyll-a Concentration along the South Coast of the Sumatra-Java Islands
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results
3.1. Seasonal Variability: Roles of Monsoon
3.2. Intraseasonal Variability
3.2.1. Role of Atmospheric and Oceanic Intraseasonal Oscillations
3.2.2. Role of Mesoscale Eddies
3.3. Interannual Variability and Long-Term Trends
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martinez, E.; Brini, A.; Gorgues, T.; Drumetz, L.; Roussillon, J.; Tandeo, P.; Maze, G.; Fablet, R. Neural Network Approaches to Reconstruct Phytoplankton Time-Series in the Global Ocean. Remote Sens. 2020, 12, 4156. [Google Scholar] [CrossRef]
- Carr, M.; Friedrichs, M.; Schmeltz, M.; Noguchi, A.; Antoine, D.; Arrigo, K.; Asanuma, I.; Aumont, O.; Barber, R.; Behrenfeld, M. A comparison of global estimates of marine primary production from ocean color. Deep Sea Res. Part II 2006, 53, 741–770. [Google Scholar] [CrossRef] [Green Version]
- Taboada, F.G.; Barton, A.D.; Stock, C.A.; Dunne, J.; John, J.G. Seasonal to interannual predictability of oceanic net primary production inferred from satellite observations. Prog. Oceanogr. 2019, 170, 28–39. [Google Scholar] [CrossRef]
- Zhao, D.; Xu, Y.; Zhang, X.; Huang, C. Global chlorophyll distribution induced by mesoscale eddies. Remote Sens Environ. 2021, 254, 112245. [Google Scholar] [CrossRef]
- Lozovatsky, I.; Wijesekera, H.; Jarosz, E.; Lilover, M.-J.; Pirro, A.; Silver, Z.; Centurioni, L.; Fernando, H.J.S. A snapshot of internal waves and hydrodynamic instabilities in the southern Bay of Bengal. J. Geophys. Res. Oceans 2016, 121, 5898–5915. [Google Scholar] [CrossRef] [Green Version]
- Pirro, A.; Fernando, H.J.S.; Wijesekera, H.W.; Jensen, T.G.; Centurioni, L.R.; Jinadasa, S.U.P. Eddies and currents in the Bay of Bengal during summer monsoons. Deep Sea Res. II 2020, 172, 104728. [Google Scholar] [CrossRef]
- Thushara, V.; Vinayachandran, P.N.M.; Matthews, A.J.; Webber, B.G.M.; Queste, B.Y. Vertical distribution of chlorophyll in dynamically distinct regions of the southern Bay of Bengal. Biogeosciences 2019, 16, 1447–1468. [Google Scholar] [CrossRef] [Green Version]
- Gregg, W.W.; Rousseaux, C.S.; Franz, B.A. Global trends in ocean phytoplankton: A new assessment using revised ocean colour data. Remote Sens. Lett. 2017, 8, 1102–1111. [Google Scholar] [CrossRef] [PubMed]
- Syamsuddin, M.; Kaneko, A. Ocean variability along the southern coast of Java and Lesser Sunda Islands. J. Oceanogr. 2013, 69, 557–570. [Google Scholar] [CrossRef]
- Syamsuddin, M.; Saitoh, S.I.; Hirawake, T.; Syamsudin, F.; Zainuddin, M. Interannual variation of bigeye tuna (Thunnus obesus) hotspots in the eastern Indian Ocean off Java. Int. J. Remote Sens. 2016, 37, 2087–2100. [Google Scholar] [CrossRef]
- Lahlali, H.; Wirasatriya, A.; Gensac, E.; Helmi, M.; Kunarso; Kismawardhani, R.A. Environmental Aspects of Tuna Catches in the Indian Ocean, Southern Coast of Java, Based on Satellite Measurements. In Proceedings of the 2018 4th International Symposium on Geoinformatics (ISyG), Malang, Indonesia, 10 November 2018. [Google Scholar]
- Wirasatriya, A.; Setiawan, J.D.; Sugianto, D.N.; Rosyadi, I.A.; Haryadi, H.; Winarso, G.; Setiawan, R.Y.; Susanto, R.D. Ekman dynamics variability along the southern coast of Java revealed by satellite data. Int. J. Remote Sens. 2020, 41, 8475–8496. [Google Scholar] [CrossRef]
- Hendiarti, N.; Siegel, H.; Ohde, T. Investigation of different coastal processes in Indonesian waters using SeaWiFS data. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 2004, 51, 85–97. [Google Scholar]
- Susanto, R.D.; Moore, T.S., II; Marra, J. Ocean color variability in the Indonesian Seas during the SeaWiFS era. Geochem. Geophy. Geosy. 2006, 7, Q05021. [Google Scholar] [CrossRef]
- Chen, G.; Han, W.; Li, Y.; Wang, D. Interannual Variability of Equatorial Eastern Indian Ocean Upwelling: Local versus Remote Forcing. J. Phys. Oceanogr. 2016, 46, 789–807. [Google Scholar] [CrossRef]
- Schiller, A.; Wijffels, S.E.; Sprintall, J.; Molcard, R.; Oke, P.R. Pathways of intraseasonal variability in the Indonesian Throughflow region. Dyn. Atmos. Oceans 2010, 50, 174–200. [Google Scholar] [CrossRef] [Green Version]
- Iskandar, I.; Masumoto, Y.; Mizuno, K.; Sasaki, H.; Affandi, A.K.; Setiabudidaya, D.; Syamsuddin, F. Coherent intraseasonal oceanic variations in the eastern equatorial Indian Ocean and in the Lombok and Ombai Straits from observations and a high-resolution OGCM. J. Geophys. Res. Oceans 2014, 119, 615–630. [Google Scholar] [CrossRef]
- Chen, G.; Han, W.; Li, Y.; Wang, D.; Shinoda, T. Intraseasonal variability of upwelling in the equatorial Eastern Indian Ocean. J. Geophys. Res. Oceans 2015, 120, 7598–7615. [Google Scholar] [CrossRef] [Green Version]
- Horii, T.; Ueki, I.; Ando, K. Coastal upwelling events along the southern coast of Java during the 2008 positive Indian Ocean Dipole. J. Oceanogr. 2018, 74, 499–508. [Google Scholar] [CrossRef]
- Susanto, R.D.; Gordon, A.L.; Zheng, Q.N. Upwelling along the coasts of Java and Sumatra sand its relation to ENSO. Geophys. Res. Lett. 2001, 28, 1599–1602. [Google Scholar] [CrossRef]
- Wei, X.; Liao, X.; Zhan, H.; Liu, H. Estimates of potential new production in the Java-Sumatra upwelling system. Chin. J. Oceanol. Limnol. 2012, 30, 1063–1067. [Google Scholar] [CrossRef] [Green Version]
- Lumban-Gaol, J.; Leben, R.R.; Vignudelli, S.; Mahapatra, K.; Okada, Y.; Nababan, B.; Mei-Ling, M.; Amri, K.; Arhatin, R.E.; Syahdan, M. Variability of satellite-derived sea surface height anomaly, and its relationship with Bigeye tuna (Thunnus obesus) catch in the Eastern Indian Ocean. Eur. J. Remote Sens. 2015, 48, 465–477. [Google Scholar] [CrossRef]
- Hood, R.R.; Beckley, L.E.; Wiggert, J.D. Biogeochemical and ecological impacts of boundary currents in the Indian Ocean. Prog. Oceanogr. 2017, 156, 290–325. [Google Scholar] [CrossRef] [Green Version]
- Romero, O.E.; Rixen, T.; Herunadi, B. Effects of hydrographic and climatic forcing on diatom production and export in the tropical southeastern Indian Ocean. Mar. Ecol. Prog. Ser. 2009, 384, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Milliman, J.D.; Farnsworth, K.L. River Discharge to the Coastal Ocean: A Global Synthesis; Cambridge University Press: New York, NY, USA, 2011; pp. 316–323. [Google Scholar]
- Koropitan, A.F.; Ikeda, M. Influences of physical processes and anthropogenic influx on biogeochemical cycle in the Java Sea: Numerical model experiment. Procedia Environ. Sci. 2016, 33, 532–552. [Google Scholar] [CrossRef] [Green Version]
- Sachoemar, S.I.; Yanagi, T.; Aliah, R.S. Variability of sea surface chlorophyll-a, temperature and fish catch within Indonesian region rivealed by satellite data. Mar. Res. Indonesia 2012, 37, 75–87. [Google Scholar] [CrossRef]
- Syamsuddin, M.; Sunarto; Yuliadi, L. Seasonal Variations of Oceanographic Variables and Eastern Little Tuna (Euthynnus affinis) Catches in the North Indramayu Waters Java Sea. In Proceedings of the 3rd International Conference on Tropical and Coastal Region Eco Development 2017, Yogyakarta, Indonesia, 2–4 October 2017; Riyadi, M.A., Winarni, T.I., Wijayanti, D.P., Tsuchiya, M., Susanto, H., Jamari, G.H., Ambariyanto, Z.M., Faraz, S.M., Pals, G., Eds.; IOP Publishing: Philadelphia, PA, USA, 2018; Volume 116, p. 012073. [Google Scholar]
- Behrenfeld, M.J.; Falkowski, P.G. Photosynthetic Rates Derived from Satellite-Based Chlorophyll Concentration. Limnol. Oceanogr. 1997, 42, 1–20. [Google Scholar] [CrossRef]
- Campbell, J.; Antoine, D.; Armstrong, R.; Arrigo, K.; Balch, W.; Barber, R.; Behrenfeld, M.; Bidigare, R.; Bishop, J.; Carr, M.E. Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance. Glob. Biogeochem. Cycl. 2002, 16, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.; Dong, Q.; Xiang, K.; Yin, Z.; Li, Y.; Liu, J. Spatiotemporal Variability of Remote Sensing Ocean Net Primary Production and Major Forcing Factors in the Tropical Eastern Indian and Western Pacific Ocean. Remote Sens. 2019, 11, 391. [Google Scholar] [CrossRef] [Green Version]
- Osawa, T.; Julimantoro, S. Study of Fishery Ground around Indonesia Archipelago Using Remote Sensing Data. In Adaptation and Mitigation Strategies for Climate Change; Sumi, A., Fukushi, K., Hiramatsu, A., Eds.; Springer: Tokyo, Japan, 2010; Chapter 4; pp. 57–69. [Google Scholar]
- Siswanto, E.; Horii, T.; Iskandar, I.; Gaol, J.L.; Setiawan, R.Y.; Susanto, R.D. Impacts of climate changes on the phytoplankton biomass of the Indonesian Maritime Continent. J. Mar. Syst. 2020, 212, 103451. [Google Scholar] [CrossRef]
- Susanto, R.D.; Marra, J. Effect of the 1997/98 El Nino on Chlorophyll-a Variability along the Southern Coasts of Java and Sumatra. Oceanography 2005, 4, 124–127. [Google Scholar] [CrossRef]
- Setiawan, R.Y.; Setyobudi, E.; Wirasatriya, A.; Muttaqin, A.S.; Maslukah, L. The Influence of Seasonal and Interannual Variability on Surface Chlorophyll-a Off the Western Lesser Sunda Islands. IEEE J. Stars 2019, 12, 4191–4197. [Google Scholar] [CrossRef]
- Iskandar, I.; Rao, S.A.; Tozuka, T. Chlorophyll-a bloom along the southern coasts of Java and Sumatra during 2006. Int. J. Remote Sens. 2009, 30, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Iskandar, I.; Sasaki, H.; Sasai, Y.; Masumoto, Y.; Mizuno, K. A numerical investigation of eddy-induced chlorophyll bloom in the southeastern tropical Indian Ocean during Indian Ocean Dipole-2006. Ocean Dyn. 2010, 60, 731–742. [Google Scholar] [CrossRef]
- Sari, Q.W.; Utari, P.A.; Setiabudidaya, D.; Yustian, I.; Siswanto, E.; Iskandar, I. Surface chlorophyll-a variations in the Southeastern Tropical Indian Ocean during various types of the positive Indian Ocean Dipole events. Int. J. Remote Sens. 2020, 41, 171–184. [Google Scholar] [CrossRef]
- Qiu, B.; Mao, M.; Kashino, Y. Intraseasonal variability in the Indo-Pacific throughflow and the regions surrounding the Indonesian Seas. J. Phys. Oceanogr. 1999, 29, 1599–1618. [Google Scholar] [CrossRef] [Green Version]
- Iskandar, I.; Mardiansyah, W.; Masumoto, Y.; Yamagata, T. Intraseasonal Kelvin Waves along the Southern Coast of Sumatra and Java. J. Geophys. Res. 2005, 119, C04013. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wei, Z.; Susanto, R.D.; Zhu, Y.; Setiawan, A.; Xu, T.; Fan, B.; Agustiadi, T.; Trenggono, M.; Fang, G. Observations of intraseasonal variability in the Sunda Strait throughflow. J. Oceanogr. 2018, 74, 541–547. [Google Scholar] [CrossRef]
- Xu, T.; Li, S.; Hamzah, F.; Setiawan, A.; Susanto, R.D.; Cao, G.; Wei, Z. Intraseasonal flow and its impact on the chlorophyll-a concentration in the Sunda Strait and its vicinity. Deep Sea Res. Part I Oceanogr. Res. Pap. 2018, 136, 84–90. [Google Scholar] [CrossRef]
- Drushka, K.; Sprintall, J.; Gille, S.T.; Brodjonegoro, I. Vertical Structure of Kelvin Waves in the Indonesian Throughflow Exit Passages. J. Phys. Oceanogr. 2010, 40, 1965–1987. [Google Scholar] [CrossRef] [Green Version]
- Garnesson, P.; Mangin, A.; Bretagnon, M. Quality Information Document: Ocean Colour Production Centre Satellite Observation Copernicus-GlobColour Pruducts. Available online: https://resources.marine.copernicus.eu/documents/QUID/CMEMS-OC-QUID-009-030-032-033-037-081-082-083-085-086-098.pdf (accessed on 24 June 2020).
- Boyer, T.P.; Baranova, O.K.; Coleman, C.; Garcia, H.E.; Grodsky, A.; Locarnini, R.A.; Mishonov, A.V.; Paver, C.R.; Reagan, J.R.; Seidov, D.; et al. World Ocean Database 2018; Mishonov, A.V., Ed.; NOAA Atlas NESDIS 87; 2018. Available online: https://www.ncei.noaa.gov/sites/default/files/2020-04/wod_intro_0.pdf (accessed on 30 November 2020).
- Donlon, C.J.; Casey, K.S.; Robinson, I.S.; Gentemann, C.L.; Reynolds, R.W.; Barton, I.; Arino, O.; Stark, J.; Rayner, N.; Leborgne, P.; et al. The Godae High-Resolution Sea Surface Temperature Pilot Project. Oceanography 2009, 22, 34–45. [Google Scholar] [CrossRef]
- Donlon, C.; Robinson, I.; Casey, K.S.; Vazquez-Cuervo, J.; Armstrong, E.; Arino, O.; Gentemann, C.; May, D.; LeBorgne, P.; Piolle, J.; et al. The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. B Am. Meteorol. Soc. 2007, 88, 1197–1213. [Google Scholar] [CrossRef]
- Ducet, N.; Le Traon, P.Y.; Reverdin, G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2. J. Geophys. Res. Oceans 2000, 105, 19477–19498. [Google Scholar] [CrossRef]
- Atlas, R.; Hoffman, R.N.; Ardizzone, J.; Leidner, S.M.; Jusem, J.C.; Smith, D.K.; Gombos, D. A Cross-Calibrated Multiplatform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications. B Am. Meteorol. Soc. 2011, 92, 157–174. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Adler, R.F. TRMM (TMPA) Precipitation L3 1 Day 0.25 Degree × 0.25 Degree V7, Edited by Andrey Savtchenko, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2016. Available online: https://cmr.earthdata.nasa.gov/search/concepts/C1282032631-GES_DISC.html (accessed on 30 November 2020).
- Harrigan, S.; Zsoter, E.; Alfieri, L.; Prudhomme, C.; Salamon, P.; Wetterhall, F.; Barnard, C.; Cloke, H.; Pappenberger, F. GloFAS-ERA5 operational global river discharge reanalysis 1979-present. Earth Syst. Sci. Data 2020, 12, 2043–2060. [Google Scholar] [CrossRef]
- Greene, C.A.; Thirumalai, K.; Kearney, K.A.; Delgado, J.M.; Schwanghart, W.; Wolfenbarger, N.S.; Thyng, K.M.; Gwyther, D.E.; Gardner, A.S.; Blankenship, D.D. The Climate Data Toolbox for MATLAB. Geochem. Geophys. Geosystems 2019. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Moore, J.C. Empirical Orthogonal Functions. In Mathematical and Physical Fundamentals of Climate Change; Zhang, Z., Moore, J.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 161–197. [Google Scholar]
- Wang, Y.; Ma, W.; Zhou, F.; Chai, F. Frontal variability and its impact on chlorophyll in the Arabian sea. J. Mar. Syst. 2021, 218, 103545. [Google Scholar] [CrossRef]
- Park, J.; Oh, I.-S.; Kim, H.-C.; Yoo, S. Variability of SeaWiFs chlorophyll-a in the southwest Atlantic sector of the Southern Ocean: Strong topographic effects and weak seasonality. Deep Sea Research I 2010, 57, 604–620. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef]
- Madden, R.A.; Julian, P.R. Observations of the 40–50-day tropical oscillation—A review. Mon. Weather Rev. 1994, 122, 814–837. [Google Scholar] [CrossRef]
- Zhou, L.; Murtugudde, R. Oceanic Impacts on MJOs Detouring near the Maritime Continent. J. Clim. 2020, 33, 2371–2388. [Google Scholar] [CrossRef]
- Xu, T.F.; Wei, Z.X.; Cao, G.J.; Li, S.J. Pathways of intraseasonal Kelvin waves in the Indonesian Throughflow regions derived from satellite altimeter observation. Atmos. Ocean. Sci. Lett. 2016, 9, 375–380. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, X.; Li, Y.; Liu, L.; Yu, W. Chlorophyll variability induced by mesoscale eddies in the southeastern tropical indian ocean. J. Mar. Syst. 2019, 199, 103209. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Wei, Z.; Li, S.; Susanto, R.D.; Radiarta, N.; Yuan, C.; Setiawan, A.; Kuswardani, A.; Agustiadi, T.; Trenggono, M. Satellite-Observed Multi-Scale Variability of Sea Surface Chlorophyll-a Concentration along the South Coast of the Sumatra-Java Islands. Remote Sens. 2021, 13, 2817. https://doi.org/10.3390/rs13142817
Xu T, Wei Z, Li S, Susanto RD, Radiarta N, Yuan C, Setiawan A, Kuswardani A, Agustiadi T, Trenggono M. Satellite-Observed Multi-Scale Variability of Sea Surface Chlorophyll-a Concentration along the South Coast of the Sumatra-Java Islands. Remote Sensing. 2021; 13(14):2817. https://doi.org/10.3390/rs13142817
Chicago/Turabian StyleXu, Tengfei, Zexun Wei, Shujiang Li, Raden Dwi Susanto, Nyoman Radiarta, Chao Yuan, Agus Setiawan, Anastasia Kuswardani, Teguh Agustiadi, and Mukti Trenggono. 2021. "Satellite-Observed Multi-Scale Variability of Sea Surface Chlorophyll-a Concentration along the South Coast of the Sumatra-Java Islands" Remote Sensing 13, no. 14: 2817. https://doi.org/10.3390/rs13142817
APA StyleXu, T., Wei, Z., Li, S., Susanto, R. D., Radiarta, N., Yuan, C., Setiawan, A., Kuswardani, A., Agustiadi, T., & Trenggono, M. (2021). Satellite-Observed Multi-Scale Variability of Sea Surface Chlorophyll-a Concentration along the South Coast of the Sumatra-Java Islands. Remote Sensing, 13(14), 2817. https://doi.org/10.3390/rs13142817