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Abstract: Aboveground dry weight (AGDW) and leaf area index (LAI) are indicators of crop growth
status and grain yield as affected by interactions of genotype, environment, and management.
Unmanned aerial vehicle (UAV) based remote sensing provides cost-effective and non-destructive
methods for the high-throughput phenotyping of crop traits (e.g., AGDW and LAI) through the
integration of UAV-derived vegetation indexes (VIs) with statistical models. However, the effects
of different modelling strategies that use different dataset compositions of explanatory variables
(i.e., combinations of sources and temporal combinations of the VI datasets) on estimates of AGDW
and LAI have rarely been evaluated. In this study, we evaluated the effects of three sources of VIs
(visible, spectral, and combined) and three types of temporal combinations of the VI datasets (mono-,
multi-, and full-temporal) on estimates of AGDW and LAI. The VIs were derived from visible (RGB)
and multi-spectral imageries, which were acquired by a UAV-based platform over a wheat trial
at five sampling dates before flowering. Partial least squares regression models were built with
different modelling strategies to estimate AGDW and LAI at each prediction date. The results showed
that models built with the three sources of mono-temporal VIs obtained similar performances for
estimating AGDW (RRMSE = 11.86% to 15.80% for visible, 10.25% to 16.70% for spectral, and 10.25%
to 16.70% for combined VIs) and LAI (RRMSE = 13.30% to 22.56% for visible, 12.04% to 22.85% for
spectral, and 13.45% to 22.85% for combined VIs) across prediction dates. Mono-temporal models
built with visible VIs outperformed the other two sources of VIs in general. Models built with
mono-temporal VIs generally obtained better estimates than models with multi- and full-temporal
VIs. The results suggested that the use of UAV-derived visible VIs can be an alternative to multi-
spectral VIs for high-throughput and in-season estimates of AGDW and LAI. The combination of
modelling strategies that used mono-temporal datasets and a self-calibration method demonstrated
the potential for in-season estimates of AGDW and LAI (RRMSE normally less than 15%) in breeding
or agronomy trials.

Keywords: aboveground dry weight; leaf area index; high-throughput phenotyping; remote sensing

1. Introduction

Aboveground dry weight (AGDW) and leaf area index (LAI) are considered major
biological and physiological traits of plant growth as they are indicators of crop growth
status and grain yield that help to evaluate nutrient demands and supply in agricultural
management practices, and to select new cultivars in breeding programs [1,2].
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The conventional method of measuring AGDW and LAI is to manually and destruc-
tively sample quadrats (small portions of an experiment field) in order to represent the
whole. However, this method is destructive, time-consuming, labor-intensive, and prone
to sampling error, which is not suitable for large-scale surveys and breeding programs
comprising thousands of plots [3]. Remote/proximal sensing-based, high-throughput, non-
destructive phenotyping is increasingly applied to estimate AGDW and LAI (e.g., [1,4–6]).
Remote sensing-based phenotyping techniques normally depend on the premise that a
plant trait is related to specific wavelengths of spectral radiation and the intensity of spec-
tral reflectance, which can be remotely recorded by imaging techniques or sensors such as
visible and multi-spectral techniques [7]. In addition to using the spectral information of
remotely sensed imagery, remote sensing-based phenotyping techniques are feasible for
quantifying plant structure by image-based 3D canopy reconstruction [8].

Unmanned aerial vehicle (UAV) based remote sensing is flexible in data acquisition
regarding diverse sensors as well as spatial and temporal resolutions [7,9]. Given the
growing demand for high-throughput phenotyping to support crop breeding, great interest
has been expressed in using UAV-based platforms to rapidly and non-destructively collect
phenotypic data (e.g., imagery) under field conditions [9–11]. UAV-based high-throughput
phenotyping usually estimates crop traits through the integration of UAV-derived vegeta-
tion indexes (VIs) with statistical models [12]. VIs are the product of arithmetic operations
performed with the spectral reflectance information of the vegetation at different wave-
lengths, which were developed to enhance the information contained in spectral reflectance
data (e.g., greenness) and/or to reduce soil and atmospheric effects [13–17]. Numerous VIs
were developed with diverse sources of imageries in order to address different properties of
vegetation with unique characteristics. Therefore, VIs have been broadly used to estimate
phenotypic traits, including AGDW [18] and LAI [1].

Statistical models are often used to describe the relationship between VIs and phe-
notypic traits. The performance of a statistical model is related to the modelling strategy
involving the dataset composition of explanatory variables (i.e., VIs), including the source
and temporal combination of UAV-derived VIs. Given the availability of imaging sensors,
there are two modelling strategies to train models with VIs—the use of VIs derived from
imagery of a single source and the use of combined VIs from different sources. VIs derived
from different types of sources can provide diverse spectral reflectance information of veg-
etation at different wavelengths; therefore, models built with VIs of different sources may
have different performances of phenotypic estimates. VIs derived from visible imagery
(comprised of the red, green, and blue band) and multi-spectral imagery (comprised of
the red, green, blue, near-infrared, and red-edge band) are the most widely used VIs in
UAV-based phenotyping. Multi-spectral VIs were demonstrated to be more effective in
predicting some crop traits (e.g., yield) than visible VIs in a few cases (e.g., [19]), while
other literature reported opposite performances (e.g., [20]). But the effects of these two
sources of UAV-derived VIs on the statistical modelling of AGDW and LAI remain unclear
and need further investigation.

Additionally, the temporal combination of datasets of explanatory variables (i.e.,
VIs) can affect model performance [21]. In order to build a statistical model that could
estimate the phenotypic traits of the prediction date, the modelling strategy involving the
temporal combination of explanatory variables in the literature can normally be grouped
into three. The first group requires the use of (1) historical multi-temporal within-season
datasets (i.e., datasets derived from imagery collected before the prediction date within
the season) to build a model (e.g., [22]). The underlying assumption of this strategy is
that these characteristics (e.g., AGDW and LAI) continually change over the growing
season and that the prediction of the future could be inferred from historical datasets. A
typical application is the combination of temporal datasets for yield prediction in precision
agriculture. The second group uses (2) a mono-temporal dataset (i.e., imagery captured
on the prediction date) (e.g., [11,23]). The use of the mono-temporal model is based on
the correlation between a subset of destructively sampled plots and all the other plots in
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a trial. It is normally built with a subset of destructively sampled plots and then applied
to all the other plots, assuming that the UAV flight has been completed across the entire
trial. It is typically used in breeding programs that need to estimate crop traits from the
current or the only flight due to the lack of multi-temporal datasets [11,24]. The above
two modelling strategies require rebuilding or recalibrating at new growth stages. Hence,
the third strategy involves the use of (3) full-temporal datasets to build a global model,
which is normally established using a full-temporal subset of sampled plots, which is
subsequently used to temporally estimate/retrospect all the other plots after the season.
The global model is more practical as frequent model calibrations for different growth
stages could then be avoided [25,26]. The choice of modelling strategy depends on data
availability, model calibration requirement, research objective, and accuracy requirement.
These three modelling strategies of different temporal combinations of datasets have been
used for model establishments in previous studies, but the impacts of these strategies on
the estimates of phenotypic traits (e.g., AGDW and LAI) were not well evaluated.

The main objective of this study was to evaluate the effects of modelling strategies
regarding the dataset composition of explanatory variables (i.e., VIs) on estimates of AGDW
and LAI using UAV-derived VIs. For the modelling strategies involving the use of different
sources of UAV-derived VIs, the hypothesis was that statistical models built with the
multi-spectral VIs outperform visible VIs in estimates of AGDW and LAI, given the narrow
band sampling of multi-spectral cameras and the specific calibration of these bands for
such cameras. For the modelling strategies using different temporal combinations of
datasets of explanatory variables, the hypothesis was that statistical models built with VIs
derived from imagery captured on the prediction date (i.e., the mono-temporal model)
will be superior to models using multi- and full-temporal VI datasets. Therefore, a high-
throughput phenotyping workflow was developed to estimate plot-wise VI from visible
(comprised of the red, green, and blue band) and multi-spectral (comprised of the red,
green, blue, near-infrared, and red-edge band) UAV imagery. Subsequently, statistical
models were built using different modelling strategies to estimate AGDW and LAI at
prediction dates (i.e., flight dates); a modelling strategy was the synthesis of source and
temporal combinations of VI datasets. Based on the comparison of estimated and manually
measured AGDW and LAI, the effects of the modelling strategy on estimates of AGDW
and LAI were evaluated.

2. Materials and Methods
2.1. Field Experiment Setup and Measurements

Field experiments were conducted in 2016 at the CSIRO experimental station located
on the Gatton Campus of The University of Queensland (27.57◦ S, 152.33◦ E). The experi-
ment comprised 32 treatments, with each treatment having three replicates (i.e., 96 plots
in total). Contrasting canopy structures of wheat were established through four factors,
including two irrigation treatments (irrigation and rainfed), two nitrogen treatments (high
and low nitrogen), two plant densities (150 and 75 plants m−2), and seven cultivars (Gre-
gory, Suntop, 7770, 7770tin, Spitfire, Hartog, and Drysdale). On 21 May 2016, all cultivars
were sown at 150 plants m−2, except for 7770tin, which was sown at two plant densities
(i.e., 75 and 150 plants m−2). The field was 54 m wide and 161 m long, and divided into
four management blocks (Figure 1), which received irrigation and nitrogen treatments.
Irrigation was applied 12 times with 310 mm in total for the irrigation treatment, and
twice with 60 mm in total for the rainfed treatment. The crop received 220 mm of rainfall
between sowing and harvest. Fertilizer was applied at sowing with 205 kg ha−1 for the
high-nitrogen and 50 kg ha−1 for the low-nitrogen treatments (Urea, 46% N); this was
performed after measuring the pre-planting soil nitrogen, which was at ca. 32.3 kg ha−1

(0 to 0.6 m). Each plot was 2 m wide and 14 m long, and contained seven rows with a row
spacing of 22 cm (Figure 1).



Remote Sens. 2021, 13, 2827 4 of 19

Figure 1. The location (left) and layout (right) of the wheat field trial. The layout is presented using ortho-mosaics,
reconstructed from visible (A,B) and multi-spectral images (C,D) captured on 30 June 2016 (40 days after sowing). The
white boxes are the segmented plots and trimmed along the four edges (10% for the east, north, and south sides, 25% for the
west side). The trial was divided into four management blocks, including irrigation and high nitrogen (IHN), irrigation and
low nitrogen (ILN), rainfed and high nitrogen (RHN), and rainfed and low nitrogen (RLN).

Each plot was separated into two subplots; one was used for destructive harvest and
the other one for monitoring canopy development by UAV. The harvesting plots were used
to measure AGDW and LAI at approximately two-week intervals through the destructive
harvesting of an area 1.0 m (4 rows) wide × 0.5 m long (0.50 m wide × 0.5 m long in the
first harvest as smaller plants). The leaf area of a subsample of the harvested plants was
measured using a leaf area meter (Li-Cor LI-3000, LI-COR Inc., Lincoln, NE, USA). All
harvested samples (including leaves) were dried in an oven at 70 ◦C until the stabilization
of their mass and weighed by a scale for dry weight.

2.2. UAV Campaigns and Image Processing

A UAV-based phenotyping platform was used to capture images in the field following
protocols developed by [9]. A UAV (Iris+ quadcopter, 3DR Robotic Systems, Palo Alta, CA,
USA) mounted with a digital camera (DSC-RX100M3, 5472× 3648, Sony, Inc., Tokyo, Japan)
and a five-band multi-spectral camera (Micasense RedEdge, 1280 × 800, Seattle, WA, USA;
https://micasense.com/rededge-mx/; Access date: 17 July 2021) were flown over the
wheat field to capture visible and multi-spectral images, respectively. The multi-spectral
camera simultaneously captured five images for five bands (i.e., 475 nm for Blue with a
20 nm bandwidth calculated as a full-width half-maximum bandwidth, 560 nm for Green
with a 20 nm bandwidth, 668 nm for Red with a 10 nm bandwidth, 840 nm for Near Infrared
(NIR) with a 40 nm bandwidth, and 717 nm for Red Edge with a 10 nm bandwidth).

The UAV campaigns were conducted with a controlled flight pattern as substantial
image overlap was required to obtain satisfactory ortho-mosaics. Autonomous flight
plans (‘lawnmower’ designs) were constructed using a mission planner to have substantial
overlap (i.e., 70% forward and 80% side). Ground control points (GCPs) were established
across the whole field from the beginning of the growing season (15 GCPs in total). Co-
ordinates of GCPs were recorded before the first flight using the Trimble Geo 7X GPS
(http://www.trimble.com; Access date: 17 July 2021). Flight heights were set at 20 or
30 m above ground level (higher at later growth stages) with a flight speed of 3 m per
second, resulting in a ground sampling distance of 4 mm (at 20 m flight height) for digital
flights, and 13 mm and 18 mm for multi-spectral flights with 20 m and 30 m flight heights,
respectively. The total flight time was approximately 10 min. The camera was triggered at
a one-second interval, with a shutter speed of <1/1200 s. The ISO was adjusted according
to the weather and light conditions (in general, 100 for sunny and 200 for cloudy), and
the aperture mode was set to automatic. Extra images were captured for a calibrated

https://micasense.com/rededge-mx/
http://www.trimble.com
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reflectance panel at 1 m height immediately before and after each flight in order to calibrate
the reflectance data of multi-spectral flights. Both visible and multi-spectral flights were
conducted on the same dates (i.e., 9 June, 30 June, 11 July, 19 July, and 1 August 2016; five
times in total) before flowering.

The visible and multi-spectral image sets were processed with a cloud-based platform,
which is based on Pix4DMapper (Pix4D, SA, Prilly, Switzerland; https://www.pix4d.com/;
Access date: 17 July 2021) and designed for UAV survey in agricultural experiments
(PhenoCopter; [9]). The image sets were processed to generate undistorted images and
ortho-mosaics (e.g., Figure 1) using the same GCP set; multi-spectral ortho-mosaics were
calibrated by images of a reflectance panel. A workflow was applied to segment ortho-
mosaics of the field into individual plots according to experimental design [27]. Segmented
plots were trimmed by a percentage along the four edges (10% for the east, north, and
south sides; 25% for the west side) to exclude soil and marginal effects (e.g., Figure 1).

2.3. Calculation of Vegetation Indexes

Vegetation indexes (VIs) and/or ground coverage (GC) were widely used to estimate
AGDW and LAI in the literature (e.g., [28]). In this study, seven VIs derived from visible
ortho-mosaics (visible index) and six VIs extracted from multi-spectral ortho-mosaics (spec-
tral index) were selected, which were commonly used in previous studies (e.g., [1,5,17,29]).
See Table 1 for detailed information on all the VIs, including names, abbreviations, and equa-
tions. The spectral index was derived from segmented multi-spectral ortho-mosaics, while
the visible index was calculated with normalized digital numbers (Equation (1)) [14,19]:

r =
R

R + G + B
; g =

G
R + G + B

; b =
B

R + G + B
(1)

GC was computed using a decision tree-based machine learning model, which was
applied to classify image pixels into two classes, i.e., vegetation and background [30],
before computing the GC (Table 1). The model was trained separately for each flight date
following three steps. The first step was to create a training set by selecting vegetation and
background pixels from undistorted images, with an assigned value of 1 for vegetation and
0 for background. Using the color values (R, G, and B) of pixels in the training set, 18 color
features in 6 color spaces were derived, and redundant features were eliminated by a feature
selection technique [30]. The decision tree was generated using the selected color features
of the training set and the CART classifier. The trained model was then used for image
segmentation on undistorted images and the classified images were saved as binary images,
with 1 used for vegetive pixels and 0 for background pixels. Finally, a reverse calculation
workflow was used to extract the plot areas from classified undistorted images using the
information of the corresponding segmented plot on the ortho-mosaic [27]. The final GC
of a plot was the average of GCs of extracted plot areas on undistorted images. More
information on training a decision tree-based machine learning model for the calculation
of GC from UAV imagery was further described in [27]. GC was also treated as a visible
index (eight visible indexes in total) as it was extracted from visible ortho-mosaics.

https://www.pix4d.com/
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Table 1. Vegetation indexes derived from visible and multi-spectral ortho-mosaics. R, G, B, RE, and
NIR are red, green, blue, near-infrared, and red edge bands, respectively. r, g, and b are normalized
red, green, and blue bands of visible ortho-mosaic, respectively. NPveg and NPbg are the number of
pixels in vegetation and background classes in each plot, respectively.

Source Name Abbrev. Equation Reference

Visible index Ground coverage GC NPveg
NPveg+ NPbg

[27]

Green leaf index GLI 2g−r−b
2g+r+b

[31]

Normalized green-red
difference index NGRDI g−r

g+r [32]

Visible atmospherically
resistant index VARI g−r

g+r−b [33]

Vegetative VEG g
r0.667×b1−0.667 [34]

Red green blue vegetation
index RGBVI g2−b×r

g2+b×r
[18]

Excess green index ExG 2g− r− b [35]
Excess red index ExR 1.4r− g [36]

Spectral index Normalized difference
vegetation index NDVI NIR−R

NIR+R [37]

Green normalized difference
vegetation index GNDVI NIR−G

NIR+G [38]

Enhanced vegetation index EVI 2.5(NIR−R)
NIR+6R−7.5B+1

[16]

Soil adjusted vegetation index SAVI 1.5(NIR−R)
NIR+R+0.5

[39]
Normalized difference red edge NDRE NIR−RE

NIR+RE [40]
Renormalized difference

vegetation index RDVI NIR−R
(NIR + R)0.5 [41]

2.4. Model Establishment and Statistical Analysis

The plot-wise VI was summarized as the median value of the pixel-wise VI within
each plot. The coefficient of variation of the VIs within each plot was demonstrated in
Figure S1, which was normally less than 50% across different VIs and sampling dates.
Linear spline interpolations were applied to fit the AGDW and LAI into the dates of UAV
flights if the dates of destructive sampling were not matched. The largest difference in the
timing of UAV campaigns and destructive measurements was five days; however, this was
usually less than three days.

In this study, different modelling strategies were used to build statistical models
(i.e., partial least squares regression models) for estimating the AGDW and LAI of each
prediction date (i.e., flight date). Modelling strategies were the combinations of sources
(Table 1) and temporal combinations of datasets of VIs (Table 2). There were three sources
of VIs and three types of temporal combinations of VI datasets so that a total of nine
models were built for estimates of each prediction date. The three sources of VIs included
visible VIs (eight) derived from visible ortho-mosaics, spectral VIs (six) derived from multi-
spectral ortho-mosaics (Table 1), and the collection of all the visible and spectral VIs (i.e.,
14 combined VIs).

Table 2. Temporal combination of datasets of explanatory variables to build models for estimates at each prediction date
(represented by days after sowing, DAS). Temporal combinations were grouped into three types (Type 1, 2, and 3; see text
for details). The number set in each cell represents dates of dataset collection and is a temporal combination of datasets of
explanatory variables.

Prediction Date 19 DAS 40 DAS 51 DAS 59 DAS 72 DAS

Type 1 19 40 51 59 72
Type 2 \ 19 19, 40 19, 40, 51 19, 40, 51, 59
Type 3 19, 40, 51, 59, 72 19, 40, 51, 59, 72 19, 40, 51, 59, 72 19, 40, 51, 59, 72 19, 40, 51, 59, 72
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The three types of temporal combinations of VI datasets were composed of mono-,
multi-, and full-temporal datasets of VIs (Type 1, 2, and 3, respectively) and listed in Table 2.
Models built with mono-temporal VIs (Type 1) were trained for each prediction date using
the VIs derived from UAV imagery of the date. For a particular prediction date, the Type
2 model was built using all the within-season, historical, and multi-temporal datasets of
VIs before the prediction date; this means that more historical and multi-temporal datasets
were used to build a Type 2 model for a later prediction date. For instance, a Type 2 model
for estimations at 40 DAS was built with the historical dataset of 19 DAS, while the Type 2
model for 51 DAS was built using datasets of 19 and 40 DAS. Note that since the earliest
prediction day (i.e., 19 DAS) lacked within-season historical VIs, the Type 2 model could
not be built for that date (Table 2). The Type 3 model was built with all the available
datasets of the season (i.e., five temporal VI datasets) so that this global model was used
for estimates of all prediction dates (Table 2).

The partial least squares regression (PLSR) has been applied to estimate phenotypic
traits with VIs in multiple studies (e.g., [42]). As a regularized version of the ordinary
least squares regressor, PLSR is capable of dealing with high dimensional explanatory
variables with a high degree of collinearity through the construction of noncorrelated
latent components (factors) from the explanatory variables (VIs), which are relevant to
the response variable (AGDW or LAI in this study) and reduce the dimensionality of the
variables to avoid overfitting and multi-collinearity issues [43]. More information on the
PLSR is further described in [44].

For the model development of each modelling strategy, the dataset was partitioned
into two subsets with 75% for model calibration (training set) and the remaining 25%
for model validation (testing set). The hyperparameter of the PLSR model (number of
components, Ncomp) was tuned using the training set with the repeated grid-search cross-
validation method (10 repeats of 8-fold cross-validation in this study). The range of Ncomp
depended on the sources of VIs, with Ncomp varying from 1 to 8 for the visible index, 1 to 6
for the spectral index, and 14 for the combined index. The mean cross-validated root mean
square error (RMSE; Equation (2)) was then calculated for each Ncomp from the 10 repeats of
8-fold cross-validation of the PLSR. The Ncomp with the smallest mean RMSE was selected
as the optimum Ncomp to build the final PLSR model. Finally, the trained model was used
to predict the testing set for validation.

Statistical criteria were used to evaluate model performance, including RMSE (Equation (2))
and relative root mean square error (RRMSE; Equation (3)). A lower RMSE or RRMSE
often indicates better estimation performance.

RMSE =

√√√√ 1
n

i=n

∑
i=1

(mi − pi)
2 (2)

RRMSE =
RMSE

m
× 100% (3)

where mi and pi are the values of manual measurements and estimates, respectively, n
is the number of measurements, and m is the mean value of manual measurements. To
evaluate the effects of the three sources on model performance, the difference between the
estimates of any two models built with the three sources at a prediction date was evaluated
by the paired t-test at a significance level of 0.05 (i.e., α = 0.05), the null hypothesis being
that there was no significant difference between the two groups of estimates. Calculations
of VIs, model establishments, and statistical analyses were implemented in R scripts, with
the caret [45] and pls [46] package for the training of the PLSR models.

3. Results
3.1. Broad Ranges of AGDW, LAI, and VIs

At each flight date, AGDW and LAI showed obvious variations among the 96 plots
(Figure 2, Figures S2 and S3). AGDW rapidly increased from 14.5 ± 3.3 g m−2 (me-
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dian ± standard deviation) at 19 days after sowing (DAS) to 364.3 ± 67.3 g m−2 at 72 DAS.
The values of LAI also rapidly increased until 51 DAS (2.0 ± 0.6 m2 m−2) and then sta-
bilized on average until flowering (2.5 ± 1.0 m2 m−2). AGDW and LAI demonstrated
obvious spatial and temporal variations among irrigation and nitrogen treatments at each
flight date (Figures S2 and S3).

Figure 2. Dynamic changes of aboveground dry weight (A) and leaf area index (B) before wheat flowering.

VIs showed obvious variations among treatments at each flight date. For the vis-
ible VIs, ExG, GLI, NGDRI, RGBVI, VARI, and VEG followed a similar dynamic pat-
tern, i.e., values of VIs increased until 51 DAS (0.09 ± 0.02 for ExG, 0.40 ± 0.05 for GLI,
0.38 ± 0.05 for NGDRI, 0.69 ± 0.06 for RGBVI, 0.52 ± 0.06 for VARI, and 2.33 ± 0.25 for
VEG) and then decreased until flowering (Figure 3). On the contrary, ExR decreased until
51 DAS (−0.03 ± 0.01) and then increased to −0.01 ± 0.004. GC increased until 59 DAS
(0.80 ± 0.10), and then kept almost constant until flowering (0.82 ± 0.10). For spectral
indexes, EVI, RDVI and SAVI increased until 51 DAS (0.82 ± 0.18 for EVI, 0.66 ± 0.12 for
RDVI and 0.70 ± 0.12 for SAVI) and then decreased until flowering (Figure 4). GNDVI and
NDRE increased until 59 DAS (0.79 ± 0.04 for GNDVI and 0.51 ± 0.06 for NDRE) and then
slightly changed until flowering (0.80 ± 0.05 for GNDVI and 0.51 ± 0.08 for NDRE). NDVI
increased from 0.45 ± 0.04 at 19 DAS to 0.88 ± 0.03 at 51 DAS, and then slightly changed
until flowering (0.87 ± 0.04).

Figure 3. Dynamic changes of the visible indexes before wheat flowering. Visible indexes were calculated from ortho-
mosaics that were generated from UAV-sensed RGB images. Detailed information of indexes is listed in Table 1.
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Figure 4. Dynamic changes of spectral indexes before wheat flowering. Spectral indexes were calculated from ortho-mosaics
that were created from UAV-sensed multi-spectral images. Detailed information of indexes is listed in Table 1.

3.2. Estimation of AGDW Using the Mono-Temporal Dataset of VIs

The PLSR models were trained with the mono-temporal datasets of the three sources of
VIs (i.e., visible, spectral, and combined indexes) to estimate the AGDW of each prediction
date. Figure 5 shows the changes of RRMSE, with an increasing number of components
when tuning the hyperparameter (i.e., Ncomp) with training sets. The optimal Ncomp used
in these PLSR models and its corresponding RRMSE are summarized in Table 3. The
calibration results of the models showed that the three sources of VIs obtained similar
results, with the differences in RRMSE ranging between 0.4% and 2.3% when using the
three sources of VIs to predict AGDW for the same prediction date (Table 3). The loadings
indicated the contribution of each VI to the PLSR models, with the contributions of VIs
to these models varying across different prediction dates (Figure S5). Generally, GC and
EVI were the most influential VIs in models built to estimate AGDW as these VIs achieved
higher loadings across different sources and dates.

Figure 5. The averaged cross-validated relative root mean square error (RRMSE) of the number of components in training
the PLSR model to estimate the aboveground dry weight of wheat. The mean RRMSE of each number of components was
calculated from the 10 repeats of 8-fold cross-validations of the PLSR models. Models were trained using mono-temporal
datasets of visible (red), spectral (green), and combined (blue) indexes at prediction dates (days after sowing, DAS).
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Table 3. The optimal number of components (Ncomp) and relative root mean square error (RRMSE) for
training the PLSR models to estimate the aboveground dry weight of wheat. The models were trained
using mono-temporal datasets of the visible, spectral, and combined indexes at prediction dates.

Prediction Date
(Days after Sowing)

Visible Index Spectral Index Combined Index

Ncomp
RRMSE

(%) Ncomp
RRMSE

(%) Ncomp
RRMSE

(%)

19 6 13.5 6 15.8 3 14.2
40 2 18.6 4 18.2 2 18.6
51 8 15.9 5 17.6 2 18.4
59 2 18.0 2 17.6 2 17.7
72 3 12.8 2 13.0 9 11.1

The PLSR models were validated using the measurement of AGDW at each prediction
date. Models built with the three sources of VIs had similar performances at each date
(visible: RRMSE = 11.86% to 15.80%; spectral: RRMSE = 10.25% to 16.70%; combined:
RRMSE = 10.25% to 16.70%; Figure 6). The visible index models achieved slightly better
estimates at 40, 51, and 59 DAS (RRMSE = 11.867% at 40 DAS; RRMSE = 15.53% at 51 DAS;
RRMSE = 15.80% at 59 DAS), and both the spectral and combined indexes produced the
highest accuracy at 19 (RRMSE = 10.25%) and 72 DAS (RRMSE = 11.87%). However,
there were no significant differences between estimates of any two models built with three
sources of VIs at each prediction date (t-test at significance level α = 0.05; data not shown).

Figure 6. Comparisons of measurements and estimates of aboveground dry weights of wheat in the testing set at five
prediction dates (represented by days after sowing, DAS) before flowering. Aboveground dry weights were estimated by
PLSR models, which were built using the mono-temporal datasets of visible, spectral, and combined indexes at prediction
dates, respectively. Dashed lines are one-to-one lines.
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3.3. Estimation of LAI Using the Mono-Temporal Dataset of VIs

The PLSR models were established using mono-temporal datasets of visible, spectral,
and combined indexes to estimate LAI at prediction dates. Figure 7 shows the changes of
RRMSE with an increasing number of components when tuning the Ncomp with training
sets, and the optimal Ncomp with the smallest RRMSE is listed in Table 4. The calibration
results of the models indicated that models built with the three sources of VIs obtained
similar results, with the differences of RRMSE less than 4.2% when using the three sources
of VIs for predicting LAI for the same date (Table 4). The contributions of VIs differed
among the PLSR models of different prediction dates. Overall, the most influential VIs on
the models were GC and SAVI across different sources and dates (Figure S6).

Figure 7. The mean of cross-validated relative root mean square error (RRMSE) of the number of components in training
the PLSR model to estimate the leaf area index of wheat. The mean RRMSE of each number of components was calculated
from the 10 repeats of 8-fold cross-validations of the PLSR models. The models were trained using mono-temporal datasets
of visible (red), spectral (green), and combined (blue) indexes at prediction dates (days after sowing, DAS).

Table 4. The optimal number of components (Ncomp) and the corresponding relative root mean
square error (RRMSE) in training PLSR models to estimate the leaf area index of wheat. The models
were developed using the mono-temporal datasets of the visible, spectral, and combined indexes at
prediction dates.

Prediction Date
(Days after Sowing)

Visible Index Spectral Index Combined Index

Ncomp
RRMSE

(%) Ncomp
RRMSE

(%) Ncomp
RRMSE

(%)

19 2 12.8 6 14.4 3 12.2
40 2 21.9 1 22.4 2 22.2
51 6 19.7 2 21.5 3 21.2
59 8 25.0 1 26.9 2 26.8
72 7 21.7 2 25.9 7 21.8

The PLSR models were tested using the measurement of LAI at each prediction
date. The PLSR models built with the three sources of VIs had similar performances at
each date (visible: RRMSE = 13.30% to 22.56%; spectral: RRMSE = 12.04% to 22.85%;
combined: RRMSE = 13.45% to 22.85%; Figure 8). The visible index obtained slightly better
estimates at 40 and 51 DAS (RRMSE = 21.72% at 40 DAS and RRMSE = 17.38% at 51 DAS),
while both the spectral and combined indexes outperformed at 19 (RRMSE = 12.04%),
59 (RRMSE = 17.91%), and 72 DAS (RRMSE = 15.00%). However, there were no significant
differences among estimates of the three sources of VIs at each prediction date (t-test at
significance level α = 0.05; data not shown).
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Figure 8. Comparisons of measurements and estimates of leaf area index of wheat in the testing set at five prediction dates
(represented by days after sowing, DAS) before flowering. Leaf area index was estimated by PLSR models, which were
developed using the mono-temporal datasets of visible, spectral, and combined indexes at prediction dates, respectively.
Dashed lines are one-to-one lines.

3.4. Evaluation of Temporal Combinations of VI Datasets for Estimates of AGDW and LAI

Models built with different strategies of temporal combinations of VI datasets were
used for AGDW and LAI estimates at each prediction date. These modelling strategies
were grouped into three types and then evaluated by RRMSE (Figure 9 and Table 2).
Type 1 models (using only the prediction date’s VIs, i.e., mono-temporal VIs) generally
outperformed the other types of models with the smallest RRMSE; the values of RRMSE
ranged from 10.24% to 22.85%. Type 2 models (using within-season multi-temporal datasets
of VIs before the prediction date) had the worst performance, with the values of RRMSE
normally larger than the corresponding values in Type 1 and Type 3 models. Type 2 models
also obtained a large variation of RRMSE, ranging from 17.99% to 150.26%. Type 3 models
(using all the temporal datasets of the season) had slightly worse performances (RRMSE
from 14.61% to 120.70%) than Type 1 models, except at 19 and 40 DAS as the earliest
prediction dates. The differences of RRMSE between the two types of models mainly
varied between 0.40% and 14.14%, and 20 out of 30 cases (except cases at 19 and 40 DAS)
were less than 10%; some models of Type 3 (2 out of 30 cases) had even smaller RRMSE than
the corresponding Type 1 models. Values of RRMSE of Type 3 models generally decreased
from 19 DAS to 72 DAS for each source of VIs.
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Figure 9. Comparisons of performances of PLSR models built with different modelling strategies of temporal combinations
of VI datasets for estimating aboveground dry weight and leaf area index before flowering. Model performance was
evaluated with the relative root mean square error (RRMSE). The three types of models included mono- (Type 1), multi-
(Type 2), and full-temporal VIs (Type 3) and were built using the visible, spectral, and combined indexes, respectively.

4. Discussion
4.1. AGDW and LAI of Wheat Were Accurately Estimated by Statistical Models Built with
UAV-Derived VIs

In this study, the effects of modelling strategies involving the dataset composition of
explanatory variables (i.e., sources and temporal combinations of datasets of UAV-derived
VIs) on the estimates of AGDW and LAI were evaluated. Three sources of VIs (i.e., visible
index, spectral index, and the combination of all the visible and spectral indexes) were
applied to estimate AGDW and LAI with PLSR models. These models built with mono-
temporal datasets of VIs showed the ability to accurately estimate AGDW (RRMSE as small
as 10.25%; Figure 6) and LAI (RRMSE as small as 12.04%; Figure 8) across prediction dates.

The performances of estimation models in this study were comparable to previous
studies of AGDW [25,28,42] and LAI [1,47]. It should be noted that the measurements from
different treatments (i.e., irrigation, nitrogen, and cultivar treatments) with contrasting
canopy structures were pooled together to build models, as this study intended to obtain a
broad range of AGDW, LAI, and VIs (Figures 2–4, Figures S2 and S3) in order to build more
comprehensive and robust models. However, the relationship between the explanatory
variable (AGDW or LAI) and the response variables (VIs) might be different among treat-
ments, so that pooling them together might introduce errors and uncertainty in coefficient
estimates (different models might be mixed).

The estimation accuracy of AGDW and LAI could be improved by introducing new
data sources and data processing techniques. Hyperspectral VIs computed from specific
narrow bands have shown great potential in estimating AGDW and LAI as they are more
sensitive to vegetation [42,48]. Data fusion techniques utilize both the strength and com-
pensation of individual data sources and thus provide more accurate estimates such as
fusing VIs and the three-dimensional (3D) information of vegetation structure provided by
LiDAR, Radar, ultrasonic sensors, or 3D reconstruction from image sequences [1,28,48,49].
As alternatives to PLSR, machine learning algorithms such as support vector machine [50]
and random forest [25,48] may offer better estimates of plant traits than normal statistical
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models (e.g., PLSR models). But their applicability may be limited as their results are diffi-
cult to interpret given that they do not structure knowledge with mathematical functions
in order to express modelling processes and that they require relatively big datasets to
train models.

4.2. UAV-Derived Visible VIs Are Alternative to Multispectral VIs for In-Season Estimates of
AGDW and LAI

No obvious advantages were observed in this study for the use of multi-spectral indexes
instead of visible indexes to build models for estimating AGDW and LAI (Figures 6 and 8).
The models built with the three sources of mono-temporal VIs generally obtained similar
estimates of AGDW and LAI, and the visible index slightly outperformed the other two
sources of VIs at most prediction dates (3 out of 5 dates for both AGDW and LAI). Therefore,
these results did not provide support for our hypothesis that the spectral VIs would
outperform visible VIs in in-season estimates of AGDW and LAI. This may be due to the
fact that visible VIs were derived from high-resolution images (5472 × 3648 in this study)
containing canopy structural information and rich texture information, resulting in less
effects of mixed pixels on the VI calculations and obtaining relatively clear phenotypes
of crops like GC [14,25,51]. Multi-spectral sensors can offer more spectral information
indicating physiological characteristics of vegetation, but the saturation effect could impair
the estimates of phenotypic traits when using these sensors to screen dense vegetation
canopies. Multi-spectral imageries normally have relatively coarse resolutions (1280 × 800
in this study), which might result in more severe mixed pixel problems that cause inaccurate
extractions of VIs. Unlike the visible indexes calculated from uncalibrated visible ortho-
mosaics, multi-spectral ortho-mosaics were rectified by reflectance panels, which could
reduce the influence of meteorological conditions on spectral imaging and thus improve
the accuracy of VIs.

It is convenient to choose the most suitable sensor based on the requirement of a study.
Our results suggested that visible imagery could be an alternative to multi-spectral imagery
for the phenotyping of AGDW and LAI with UAV surveys, and also for phenotyping other
traits in previous literature (e.g., [52]). Some studies suggested that combinations of
multiple variables may improve the estimation accuracy of vegetation parameters [48,53].
The combined index in this study obtained similar estimates to the other two sources of VIs
and did not substantially improve the estimation performance (Figures 6, 8 and 9). This
might be due to the high correlations among these indexes (Figure S4) and the dimension
reduction nature of PLSR (Tables 3 and 4) [43,44].

The VIs showed different contributions to the PLSR models for estimating AGDW
and LAI at different dates (Figures S5 and S6). Overall, GC was the most influential index.
GC could serve as an overall estimator for AGDW and LAI, which was consistent with
previous studies that showed that GC is correlated with AGDW and LAI before flowering
(e.g., [28]). The varying contributions of VIs might be due to the fact that most VIs tended
to be species-specific with different canopy architectures and leaf structures [17] and may
be limited to certain growth stages [18,29].

4.3. Introducing More Temporal VI Datasets Inconsistently Affected Model Performances of
Phenotypic Estimates

The model performance was also impacted by the temporal combinations of VIs for
estimates of AGDW and LAI (Figure 9). Previous studies have shown that multi-temporal
VIs could improve the prediction accuracy of phenotypic traits as the use of multi-temporal
remotely sensed data could mitigate the effects of soil background and can provide more
useful information [19,21,21,54]. Our results showed that Type 2 models (built with within-
season historical multi-temporal datasets of VIs before prediction dates) had the worst
performances with large variations of RRMSE values (Figure 9). This might be due to the
fact that prior knowledge or skill could not be extended to the current prediction date as the
dynamic plant growth, leading to the change of relationships between phenotypic traits and
reflectance of canopy structure [17], especially for the early growth stages. Type 3 models
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(built with all the within-season temporal datasets of VIs) obtained similar estimates to
(or potentially better than) Type 1 models (built with mono-temporal VIs of the prediction
date). However, Type 3 did not always substantially improve the performance, especially
when it was used for early season estimates (e.g., 19 DAS) (Figure 9).

These results provide support for our second hypothesis that models built with mono-
temporal datasets of VIs will be superior to models using multi- and full-temporal datasets
in estimates of AGDW and LAI. Integrations of temporal datasets might include noise
values introduced by the contrasting reflectance of the canopy structure as plant growth,
VI calculation biased by effects of mixed pixels and saturation, and the representativeness
of sample plots. In contrast, Type 1 models could minimize these impacts as the highest
correlations between plots for building models and plots for estimates in a trial and between
current biophysical variables (i.e., AGDW or LAI) and current reflectance of canopies.
From a practical perspective, Type 1 models were preferred when the UAV imagery
for the prediction date was available for in-season estimates of phenotypic traits [21].
However, Type 1 models require recalibrations at new prediction dates, so global models
(Type 3) are alternatives and more practical as they allow for the avoidance of frequent
model calibrations [25,26]; however, they might not be preferable for early growth stages
(e.g., 19 DAS; Figure 9) as the model establishments could be biased by larger values of
phenotypic traits collected at later stages (Figure 2). Moreover, global models were not
feasible for in-season estimates as they were established after the season.

4.4. Self-Calibration Modelling Strategy Was Useful for in-Season Phenotyping of Crop Traits with
UAV Surveys

Modern breeding programs require phenotyping thousands of plots in multi-environment
trials distributed across target regions [7,55,56]. It is a challenge to cost- and time-efficiently
evaluate phenotypic traits under field conditions by traditional phenotyping methods,
which are expensive, laborious, and time-consuming. UAV-based platforms are flexible
in the temporal and spatial resolution of data collection and can easily visit multiple
locations, which can greatly broaden their applicability in high-throughput phenotyp-
ing [7,9,57]. This study demonstrated that both the UAV-derived visible and multi-spectral
VIs were reliable for the high-throughput phenotyping of AGDW and LAI of wheat trials
(Figures 6, 8 and 9).

Statistical models are normally required for the estimation or prediction of pheno-
typic traits using UAV-based platforms in breeding programs, which are developed with
manually measured data from destructive sampling (response variables; e.g., AGDW and
LAI) and quantitative values of diverse properties (explanatory variables; e.g., VIs) ex-
tracted from UAV imagery. However, destructive sampling may be prohibitive in costs
or small breeding plots may not allow enough for multi-temporal destructive sampling
in a breeding program [58]. Moreover, models should be built with datasets from only
one UAV campaign for within-season estimates in breeding and precision agriculture [29].
This study demonstrated the potential of models built with mono-temporal datasets of VIs
(Type 1 models) for timely monitoring and accurate real-time estimates, as they generally
outperformed other types of models built with multi- and full-temporal datasets of VIs
(Type 2 and Type 3 models) for AGDW and LAI estimates (Figure 9 and Table 2). To
address issues of destructive sampling for the establishment of statistical models, this study
recommends a self-calibration strategy to build statistical models, i.e., each plot should be
separated into two subplots, in which one is used for destructive sampling and the other
for extracting quantitative values of diverse properties [59]. When applying UAV-based
high-throughput phenotyping in breeding programs, this strategy can be adjusted to build
statistical models by adding check lines with larger plots for multi-temporal destructive
sampling and UAV monitoring; the established statistical models can then be used to
estimate phenotypic traits of other breeding plots. The self-calibration strategy combined
with the mono-temporal dataset can offer a pragmatic, robust, and universal approach to
high-throughput phenotyping of crop traits with UAV surveys.
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5. Conclusions

UAV-based remote sensing provides cost-effective and non-destructive methods for
the high-throughput phenotyping of crop traits through the integration of UAV-derived
VIs with statistical models. This study evaluated the effects of the dataset composition of
explanatory variables (i.e., sources and temporal combinations of UAV-derived VIs) on
estimates of AGDW and LAI. The results demonstrated that the use of UAV-derived visible
VIs can be an alternative to multi-spectral VIs for in-season estimates of AGDW and LAI.
The multi-temporal datasets of VIs did not substantially improve the accuracy of estimates.
The combination of the modelling strategy of using a mono-temporal VI dataset and the
self-calibration method demonstrated the potential for in-season estimates of AGDW and
LAI in breeding or agronomy trials.

Further research needs to be carried out to improve this study in terms of data
availability. As this study was conducted using data collected from a wheat trial, the
outcomes might be site- and/or specie-specific. More data from different sites, crops, and
growing seasons could be used to confirm the conclusions drawn in this study. Although
UAV-based remote sensing was feasible for the accurate assessments of crop traits in
this study, the integration of complementary/ancillary data (e.g., growing degree days,
temperature, and plant height) with UAV-derived VIs using statistical modelling techniques
to obtain more accurate estimates should be investigated.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13142827/s1. Figure S1: Spatial distribution of coefficient of variation of vegetation indexes
of each plot of the wheat trial at different dates (represented by days after sowing, DAS) before
flowering; Figure S2: Spatial distribution of the aboveground dry weight of the wheat trial at different
dates (represented by days after sowing, DAS) before flowering; Figure S3: Spatial distribution of the
leaf area index of the wheat trial at different dates (represented by days after sowing, DAS) before
flowering; Figure S4: Spearman correlations among aboveground dry weight (AGDW), leaf area
index (LAI), and vegetation indexes (VIs) of the wheat trial at each prediction date (represented
by days after sowing, DAS) before flowering; Figure S5: Loadings of vegetation indexes in PLSR
models for estimating aboveground dry weight at different prediction dates (represented by days
after sowing, DAS; colored lines) before flowering; Figure S6: Loadings of vegetation indexes in
PLSR models for estimating leaf area index at different prediction dates (represented by days after
sowing, DAS; colored lines) before flowering.
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