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Abstract: The lack of adequate stereo coverage and where available, lengthy processing time, various
artefacts, and unsatisfactory quality and complexity of automating the selection of the best set of
processing parameters, have long been big barriers for large-area planetary 3D mapping. In this paper,
we propose a deep learning-based solution, called MADNet (Multi-scale generative Adversarial
u-net with Dense convolutional and up-projection blocks), that avoids or resolves all of the above
issues. We demonstrate the wide applicability of this technique with the ExoMars Trace Gas Orbiter
Colour and Stereo Surface Imaging System (CaSSIS) 4.6 m/pixel images on Mars. Only a single input
image and a coarse global 3D reference are required, without knowing any camera models or imaging
parameters, to produce high-quality and high-resolution full-strip Digital Terrain Models (DTMs)
in a few seconds. In this paper, we discuss technical details of the MADNet system and provide
detailed comparisons and assessments of the results. The resultant MADNet 8 m/pixel CaSSIS
DTMs are qualitatively very similar to the 1 m/pixel HiRISE DTMs. The resultant MADNet CaSSIS
DTMs display excellent agreement with nested Mars Reconnaissance Orbiter Context Camera (CTX),
Mars Express’s High-Resolution Stereo Camera (HRSC), and Mars Orbiter Laser Altimeter (MOLA)
DTMs at large-scale, and meanwhile, show fairly good correlation with the High-Resolution Imaging
Science Experiment (HiRISE) DTMs for fine-scale details. In addition, we show how MADNet
outperforms traditional photogrammetric methods, both on speed and quality, for other datasets like
HRSC, CTX, and HiRISE, without any parameter tuning or re-training of the model. We demonstrate
the results for Oxia Planum (the landing site of the European Space Agency’s Rosalind Franklin
ExoMars rover 2023) and a couple of sites of high scientific interest.

Keywords: DTM; digital terrain model; deep learning; 3D mapping; 3D reconstruction; real-time 3D;
TGO; CaSSIS; Oxia Planum; ExoMars; high-resolution 3D; Mars

1. Introduction

The Martian surface shows many distinct morphological features that have been
formed by different types of geological processes over its ancient history. These processes,
involving volcanism, tectonism, water and aeolian erosion, dust deposition, changes in
the polar ice caps, and hypervelocity impact cratering, have shaped the planet on a global
and local scale. Three-dimensional (3D) reconstruction and modelling using remotely, or
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locally sensed optical images are usually the necessary first step to studying such surface
processes of the Martian surface.

There has been a revolution in Martian 3D surface studies over the last 18 years,
since the first stereo photogrammetric imaging data acquired by the Mars Express’s High
Resolution Stereo Camera (HRSC) at 12.5 m/pixel in January 2004 [1], which was designed
to be used for high-resolution 3D mapping. Over that time, the resolution of orbital imagery
has improved from tens of metres per pixel down to 25 cm/pixel with different swath
width. These include images from the Mars Reconnaissance Orbiter (MRO) Context Camera
(CTX) at 6 m/pixel [2], MRO High Resolution Imaging Science Experiment (HiRISE) at
25 cm/pixel [3], and more recently, the ExoMars Trace Gas Orbiter (TGO) Colour and
Stereo Surface Imaging System (CaSSIS) at 4 m/pixel [4], as well as the recent Tianwen-1
High Resolution Imaging Camera (HiRIC) at 50 cm/pixel (panchromatic) and 2 m/pixel
(colour) [5]. Through photogrammetry and/or photoclinometry techniques, both large
scale and/or very detailed surface characteristics can now be studied with resultant digital
terrain models (DTMs) and orthorectified images (ORIs) from different orbiting spacecraft,
as well as the 2 landers and 4 rovers over this same time period.

However, building a high-quality full-strip 3D model not only requires specific pho-
togrammetry or photoclinometry conditions to be met, but such processes are also compu-
tationally very expensive. They also require substantial manual interactions to view, edit
and quality control the 3D products requiring years to process a few hundred orbital strips.
This has been the main obstacle to achieving high-resolution and large-area 3D mapping
tasks. Subsequently, the archived imaging data in the NASA Planetary Data System (PDS)
and ESA Planetary Science Archive (PSA) from past or ongoing missions are massively
under-exploited.

In this work, we propose a novel deep learning-based solution to achieve very rapid
DTM production from a single input Mars orbital image. We propose a novel Multi-scale
generative Adversarial [6] U-Net [7] with Dense Convolutional Block (DCB) [8] and up-
projection [9] for single-image DTM estimation (which we call MADNet) as the core, and
combined with 3D co-alignment and mosaicing, to produce high-resolution DTMs from
monocular Mars orbital imagery in near-real-time. The resultant DTM products from
MADNet are all co-aligned to the global reference DTM (areoid datum) from the Mars
Orbiter Laser Altimeter (MOLA) [10], and/or HRSC products, where available, to ensure
vertical congruence.

In this paper, we demonstrate the quality of MADNet DTMs using the 4 m/pixel
CaSSIS panchromatic band images (hereafter referred to as CaSSIS images for brevity) over
the ExoMars 2023 Rosalind Franklin rover’s landing site at Oxia Planum [11]. We show
quantitative assessments of the MADNet DTM results in comparison with stereo-derived
DTM products from CTX (produced by the Natural History Museum, London) and HiRISE
(available through PDS). In addition, two separate case studies, over a landslide slope and
a layered plateau, where there is no HiRISE nor CTX stereo coverage, are achieved using
CaSSIS images and the resultant MADNet DTM.

With MADNet, high-resolution DTM production of a full-strip CaSSIS image only
takes a few seconds on a single GPU (Nvidia® RTX3090%) machine. Figure 1 shows an
example of the input CaSSIS image crop (at 4 m/pixel) and the output MADNet DTM crop
(at 8 m/pixel). The proposed MADNet rapid DTM estimation system can be used for DTM
production where there are no stereo or serendipitous off-nadir images available, and/or
be used in large-area 3D mapping tasks with a large size of input data. In the future, such
techniques can also be applied to robotic missions, for real-time 3D mapping of the local
environment, supporting rover localisation, obstacle avoidance, and path planning tasks.
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Figure 1. An example of the input 4 m/pixel CaSSIS panchromatic band image (MY35_007623_019_0_PAN) and the output
8 m/pixel CaSSIS DTM (colour hillshaded) produced in near-real-time using the proposed MADNet single-image DTM

processing system.

The layout of this paper is as follows. In Section 1.1, we review previous technical
work in the field of supervised monocular depth estimation. In Section 2.1, we introduce the
network architecture of MADNet. This is followed by an explanation of the loss function
in Section 2.2, the training datasets in Section 2.3, and the training details in Section 2.4.
In Section 2.5, we outline the overall processing chain of the MADNet processing system.
Study sites are introduced in Section 2.6 and results are demonstrated in Section 3.1.
Intercomparisons, measurements, and assessments are provided in Section 3.2, which is
then followed by 2 science case studies in Sections 3.3 and 3.4. In Section 4.1, we discuss
the pros and cons of photogrammetry, photoclinometry, and deep learning-based methods.
In Section 4.2, we demonstrate the extendibility of the MADNet with other areas and other
input datasets. In Section 4.3, we discuss issues found and potential improvements in the
future. Finally, conclusions are drawn in Section 5.

1.1. Previous Work

Over recent years, with the rapid development of deep learning techniques, deep
neural networks have achieved tremendous success in many classic fields of computer
vision, such as classification, detection, segmentation, and 3D reconstruction. In particular,
deep learning-based monocular depth estimation has become an active and challenging
research topic over the last 7 years, due to its wide applications and potential in the fields
of robotics, autonomous navigation, scene understanding, virtual reality, and etc. Over
this time period, a variety of successful deep networks have been proposed to tackle the
ill-posed problem of monocular depth estimation.

In a general context, these monocular depth estimation networks can be classified into
two categories according to the different training mechanisms, i.e., supervised methods,
which performs end-to-end training from image to ground-truth depth map, and unsu-
pervised methods (where we merge the semi-unsupervised methods with unsupervised
methods), which use geometric constraints between continuous or stereo input images
during training. Unsupervised methods estimate the depth map based on successful re-
generation of the other view(s) that have a different geometry (back-projecting images
captured from one view to another view). Due to the very limited public training resource
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of image-to-depth pairs, more networks follow the unsupervised designs, since they do
not require an input depth map in training.

In this section, we focus on representative works on the supervised category, which
is more relevant to our proposed method. Though, for comprehensive surveys of both
supervised and unsupervised methods, please refer to [12-14].

The fundamental work using supervised deep learning to solve the monocular depth
estimation problem was given in [15], wherein the authors proposed a two-scale Convo-
lutional Neural Network (CNN) to predict the depth of a scene at a global level and then
refine within local regions. They construct a global-scale network with 5 feature extraction
layers followed by 2 fully connected layers and use 3 fully convolutional layers for the
fine-scale network. Based on this work, the same authors further proposed a generalised
multi-scale framework [16] for monocular depth estimation and improved their initial
results using a three-scale refinement process. Aiming to tackle the training-expensive fully
connected layers, refs. [9,17] proposed fully convolutional architectures that have much
fewer parameters to train and are also able to capture “monocular cues” at both global
and local levels. In particular, the authors in [9] demonstrated much higher efficiency and
accuracy of using a fully convolutional network to produce a denser depth map, and as
well as proposed the up-projection block which combines up-convolutions with residual
learning. Further to this, ref. [18] compared the performance of three different architec-
tures for depth estimation, i.e., combined convolutional and fully connected network,
fully convolutional network, and combined convolutional and residual network (through
transfer learning). The authors then demonstrated the optimality and efficiency of their
proposed CNN-Residual network. Digging into more practical issues, ref. [19] proposed
the space-increasing discretisation strategy to discretise continuous depth into a number of
intervals and cast the network learning process as an ordinal regression problem. Ref. [20]
proposed to adapt camera parameters and to learn the “calibration-aware” patterns using
an encoder-decoder U-Net [7] based architecture. In order to achieve “onboard” capability,
ref. [21] proposed a lightweight U-Net architecture for monocular depth estimation, which
runs in real-time on an Nvidia® Jetson® TX-2 GPU.

In parallel to the aforementioned networks, many other methods follow the Condi-
tional Random Fields (CRFs) approach, based on the continuous characteristics of the depth
of neighbouring pixels. CRF-based methods contain two additional weighted terms, i.e.,
the smoothness term that enforce the relevance of neighbouring pixels, and the regression
term that enforce local structural relevance, on top of the general data term that models
the difference between ground-truth depth and predicted depth. The earliest work for
this is given by [22], wherein the authors proposed to use hierarchical CRF for fine-scale
refinement on top of CNN prediction. Around a similar time, ref. [23] proposed the deep
convolutional neural field model for depth estimation, using CNN and continuous CREF,
to explore the idea of segmented scene patches with semantically similar appearances
having similar depth distributions. Furthermore, the authors in [24] introduced a coupled
framework using fully connected CRF and CNN to simultaneously estimate monocular
depth and semantic labels.

More recently, Generative Adversarial Networks (GANSs) [6] have demonstrated
effectiveness and efficiency on the task of monocular depth estimation, although mostly
in the unsupervised domain [25-28]. GANs operate by training a generative model for
depth prediction, while in parallel, training a discriminator to distinguish the predicted
depth from ground-truth. The authors in [29] first introduced the adversarial learning
framework into supervised monocular depth estimation. The generator network in [29] is a
U-Net [7] based global-scale network followed by a fully convolutional fine-scale network.
Trained simultaneously, the discriminator in [29] follows the general layout introduced
by [30]. Instead of having a multi-scale generator, ref. [31] proposed to use two GANs for
global-scale and local-scale depth estimation.

Deep learning-based depth estimation networks can be effectively applied to relative
height estimation of planetary orbital images, coupled with the global MOLA or semi-
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global HRSC height references, the relative height estimations can be translated to absolute
height estimations, hence the DTM. Very recently, the authors in [32] presented their CNN-
based method for CTX DTM estimation while we were testing out a similar idea (i.e., this
work). In [32], a cascaded auto-denoising network and convolutional residual network is
trained with synthetic and CTX-HiRISE datasets. In this paper we introduce a different
deep network based on multi-scale GAN and U-Net, solely trained with HiRISE PDS
DTMs, to produce rapid DTM estimations from single CaSSIS imagery.

2. Materials and Methods
2.1. Network Architecture

GANSs provide a state-of-the-art framework for generative tasks. In this work, we
establish our MADNet model based on the GAN framework that we previously devel-
oped for super-resolution tasks [33]. For the generator, we replace the dense residual
network in [33] with a U-Net based architecture [7] using DCB [8] for the encoder and
up-projection [9] for the decoder. We adopt the adaptive weighted multi-scale reconstruc-
tion [33,34] concept for the generator network and the relativistic average discriminator [35]
concept for the discriminator network.

Our proposed MADNet network architecture for single-image relative height esti-
mation is shown in Figure 2. With MADNet, our goal is to train a generating function
G that estimates a relative height map H,s, given a single input image I. Here Hes; is
the estimated version of the “ground-truth” height map (also in relative values), i.e., Hgt,
derived from stereo reconstruction methods using a higher resolution dataset. In order to
achieve this, we train the multi-scale U-Net based generator network Gy, parameterised
by 6g, where 6 = {Wy.1; B1.L}, W and B denotes the weights and biases of a L layer
Gy, respectively. {Wy.r; By.1 } is obtained by optimising the total loss function I, (see
Section 2.2). For training images I’ n=1,2,...,N and corresponding training height

train’
map Hgt, n=12,...,N, our goal is to solve

. 1 X
0 = argmin= Y Liosa1 (Gog (Ifysin), Hir) (1)
6c N n=1

Following the GAN framework [6], the discriminator network Dy parameterised
by 6p should be optimised in an alternating manner along with Gy in order to solve the
adversarial min-max problem of Equation (2), which is based on the general idea of training
a generative model G with the goal to fool a discriminator D that is trained in parallel to
distinguish estimated height map Hest from ground-truth height map Hgy.

s~ 1N [log(l - DQD(GQG(Itrain>))] (2)

Ttrain train

min max £,
o 6p g

(~HIpN [log Dy, (Hgt)] +E

The MADNet generator G consists of three adaptively weighted U-Nets at different
scales, i.e., the fine-scale, the intermediate-scale, and the coarse-scale (see Figure 2). The
fine-scale U-Net contains five convolution-pooling-DCB stacks to encode the input image
I into a feature vector. The vector is then fed into five stacks of up-projection block,
concatenation (with the corresponded output of each pooling layer of the encoder), and
convolutional layers to reconstruct the height map HY, at the fine-scale (level-0).
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Figure 2. Network architecture of the proposed MADNet.

The intermediate-scale U-Net contains four convolution-pooling-DCB stacks to encode
a downsampled version (two times lower resolution) of the input image, i.e., f;5(I), where
fas denotes the down-sampling operation, and contains four stacks of up-projection, con-
catenation, and convolutional layers to reconstruct the height map H_, at the intermediate-
scale (level-1). Finally, the coarse-scale U-Net contains three convolution-pooling-DCB
stacks to encode a downsampled version (four times lower the resolution) of the input
image f4s(f4s(I)), and 3 stacks of up-projection, concatenation, and convolutional layers to
reconstruct the height map H2, at the coarse-scale (level-2).

The weighted sum of H,, HL,, and H2, forms the final height map Hes;.

est’ ~“est est
Hest = agHY% + alfuP(Helst) + a2 fup (fuP(Hezst)) 3)

where f,,;, denotes the up-sampling operation, ap, &1, and &, are the adaptive weights of
the three different scales, introduced to allow effective learning of both large-scale and
small-scale height variations. The three U-Nets, H>; ", where N denotes the depth of
the multi-scale U-Net (N = 3, 4, 5), can be expressed as an encoding-decoding process

as follows
HoN = free(TR) = free(fRR (fax (1)) 4)



Remote Sens. 2021, 13, 2877

7 of 27

where fN denotes the encoding process, f é\C’ denotes the decoding process, and f,¢. denotes
the final reconstruction convolutional (3 x 3) layer that brings the decoded tensor, i.e., Té\cf,
to the same dimension as Hgt (Hgt and Hes are at half the resolution of input image I in
this work).

The encoding process in Equation (4) can be described as

TEIX - felg(l) = fgCB(prool(fcIXnv(‘ . 'fl%CB(f;ool(fclonv(I))) . ))) (5)

where ng denotes the encoded tensor of the input image I, fconv denotes the convolutional
operation, fpool denotes the pooling operation, and fpcp denotes the operation of DCB [8].

The encoding process, as shown in Equation (5), starts from a convolutional layer
(7 x 7 kernel, 64 feature maps, stride 2) and a max-pooling layer (3 x 3 kernel, stride 2),
followed by N DCBs, each of which are followed by convolutional layers (1 x 1 kernel,
stride 1, and with increasing number of feature maps of 64, 128, 256, ... ) and average
pooling layers (2 x 2 kernel, stride 2).

For DCB, we follow the original design as described in [8], wherein DCBs were pro-
posed to connect multiple layers directly with each other to ensure maximum information
flow between layers in the network. One of the issues of the increasingly deep CNNs is
that the information contained in the input, or its gradient may get washed out before it
reaches the end of the network when passing through many layers. In contrast to the dense
residual blocks used in MARSGAN [33], DCB combines features by concatenating the
feature maps from each previous layer instead of using summation. Having much fewer
parameters to train is the most significant advantage of using DCB, especially when there

is a limited training dataset. A | layer DCB, i.e., fpcp, has @ connections since each

of the j-th layer of a DCB has j inputs (j € J) consisting of feature maps of all preceding
convolutional blocks.

An | layer DCB, can be formulated as a sequence of non-linear operations, denoted by
fut, then the output of the j-th layer DCB, i.e., Xji1, can be formulated as

Xjp1 = fur([x0,X1,...,%]]) (6)

where f,;; can be defined as a sequential operation of Batch Normalisation (BN), Rectified
Linear Unit (ReLU) function, and convolution.
The decoding process in Equation (4) can be expressed as

Té\c] = fé\c]<Telg> = fclgnv(fclgnv<P1 H fl{\IIPB(' "fclonv(fclonv(PN H fl}lPB(TeIg))) ))) (7)

where fi;pp denotes the operation of up-projection [9], and P denotes the output of the
pooling layers of the encoder, which is concatenated with the corresponding output of the
up-projection block in a reversed order, e.g., P° || fpp (%), P* || fipg(*), ..., PY || fiipp(*)
for the fine-scale U-Net (N = 5).

The encoding process, as shown in Equation (7), consists of N up-projection operations
(N fupp), each of which are followed by concatenation and two convolutional layers
(3 x 3 kernel, stride 1, and with decreasing number of feature maps, which are in an
inverted order of the convolutional layers of the encoder).

Each of the up-projection blocks, following the original design described in [9], consists
of an unpooling layer, two branches of convolutional layers to connect the lower resolution
feature map with the up-sampled feature map. In particular, unpooling is the inverse
operation of the pooling layer, as used in the encoder, designed to restore (increase) the
spatial size of the feature maps. Unpooling layer maps each input entry into the top-left
corner of a 2 x 2 kernel (fill Os for the rest), which is then followed by the convolutional
layers to remove the 0 s, to achieve “up-convolution”.

For the discriminator, we slightly modify the architecture that was used in [33] to
include a concatenation layer that concatenates the input image I with the height-map H.
The discriminator network consists of 8 convolutional layers with an increasing number of
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feature maps and strides of 2 each time the number of features is doubled (3 x 3 kernels;
64 feature maps, stride 1; 64 feature maps, stride 2; 128 feature maps, stride 1; 128 feature
maps, stride 2; ... ; 512 feature maps, stride 1, 512 feature maps, stride 2). The resulting
512 feature maps are followed by two fully connected dense layers together with a final
sigmoid activation function to output a single scalar. The scalar represents the probability
that the input is relatively more likely from Hg; than all Hest on average (within a mini-
batch), or relatively less likely from Hg than all Hgt on average (within a mini-batch). This

concept was proposed in [35], namely, the relativistic average discriminator.
Let Dg, denote the relativistic average discriminator, for real input H, and fake input

Hy, DR, can be expressed as

DRrq(Hy, Hy) = o0(C(H,) — EHf(C(Hf))) — 1(more real than fake) g
Drq(Hy, Hy) = 0(C(Hy) — Ep,(C(Hy))) — O(less real than real) ®

where ¢ is the sigmoid function, C is the non-transformed discriminator output, and Ep,
and Ep, represent the operation of computing the mean of all fake inputs and all real
inputs in a mini-batch, respectively.

2.2. Loss Functions

The standard loss function for optimisation of the regression problem is the I, loss,
minimising the squared Euclidean norm between the generated predictions and ground-
truth. In the field of monocular depth estimation, many different loss functions have
been proposed. These include the early work from [15] who used scale-invariant loss
(mean squared error of the depth in log space), which has been improved in [16] as the
local structure loss (the gradients of the depth difference in the horizontal and vertical
directions). It is worth noting that the Structure Similarity Index Measurement (SSIM) [36]
based loss has also been widely used in monocular depth estimation tasks, but SSIM loss
is mostly used in unsupervised cases to quantify the differences between back-projected
images. This is demonstrated in [37] who coupled the SSIM loss with /; loss. Finally, the
Berhu [38] loss was also proven optimal to I based loss functions in [9]. In this work,
we use a weighted sum of the gradient loss (denoted as [,,44), the Berhu loss (denoted as
lpn), and the adversarial loss under the GAN framework (denoted as l¢;) as our total loss
function to solve Equation (1). This can be expressed as

liotal = /\lgmd + Ylpn + Nlgen )

where A, 7, and 7 are the hyperparameters to balance different loss terms.
The gradient loss of Equation (9) can be expressed as

1 R C
lyraa = e L L (Va(Hy, Hest)) + Vy (Hgt, Hest)’] (10)
r=1lc=

where r and c are the row and column of a R-row and C-column height map H, respectively
Vxand V, compute the differences of the horizontal and vertical gradients of the height
maps, respectively.

The Berhu loss of Equation (9) can be expressed as

|Hgt — Hest|, if |Hgt _Hest| <7

lbh(Hgt/Hest) = Ho—Hoo)24+12 .
B Het 4T i | Hoy — Host| > 7

(11)

where T is a threshold that is set to T = %maxylc(‘Hgt — Hest|), so when ’Hgt - Hest‘ <7,
lon(Hgt, Hest) equals to the Iy loss, and when |Hgt — Hest| > T, Iy (Hgt, Hest) equals to
the I, loss.
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Finally, based on Equations (2) and (8), the relativistic discriminator loss [35], denoted
as I; can be expressed as

li = ~Eu, [log (Dra(Hr, Hy)| — Ea, [log (1~ Dra(Hy, Hy)) | (12)

The adversarial loss in Equation (9) can be expressed as a symmetrical form of
Equation (12)

loen = —Ep, [log (1— Dra(Hy, Hf))} ~Ep, [log (Dro(Hy, Hr))} (13)

Training of the MADNet follows the stochastic gradient descent approach of the
relativistic average GAN framework [35]. Based on Equations (2) and (8), initially, p is
updated by ascending the stochastic gradient of

VopEmom [EHf (Cop, (Gog (Itrain))) — Cop (Hr) + Cop, (Gog, (Itrain)) — En, (Cop, (Hr))] (14)

for samples m in a mini-batch M, and ly,sin, Hf, Hr € M. Then update 6 by ascending the
stochastic gradient of

Voo Emot | En, (Cop (Hr)) = Cop (Gog ain)) + Cap (Hr) = Eri, (Cay (Gog (Iyain)))] (15

then iteratively update 6p and 6 in the next mini-batch (iteration) until all training
iterations complete.

The loss function plays an important role in deep learning methods. In this work,
we use a combination of three commonly used loss functions, including the standard
adversarial loss as under the generative adversarial framework, the standard Berhu loss
that directly measures the difference between the prediction and the ground-truth height
map, and the gradient loss to penalise the structural similarity of the prediction and the
ground-truth height map. This is a basic and practical combination of a variety of loss
functions that have been proposed in the field of monocular depth estimation. Although
it performs well for this work after some tuning of the weights (provided in Section 2.4),
there is still room to improve in the future with more experiments. For example, we have
not yet found an efficient way of penalising the high-frequency depth details.

2.3. Training Dataset

Our training datasets are formed from 450 unique HiRISE PDS ORIs (0.25 cm/pixel)
and DTMs (1 m/pixel) that are available through the University of Arizona’s HiRISE
site (see https:/ /www.uahirise.org/dtm/ (accessed on 21 July 2021)). These ORl/DTM
products are manually selected to contain a variety of different features of the Martian
surface with fairly good quality.

We form two sets of training datasets, for network initialisation and for full training.
The first training dataset contains 4,200 (12,600 after data augmentation) pairs of cropped
and randomly selected samples (512 x 512 pixels) of the ORIs and DTMs at lower spatial
resolution (4 m/pixel) and is used for initial training of the network. Down-sampling of the
original HiRISE ORIs and DTMs is achieved using the GDAL's “cubicspline” resampling
method (https://gdal.org/programs/gdal_translate.html (accessed on 21 July 2021)). For
each DTM cropped sample, the height values are rescaled to relative floating-points values
in the range of [0, 1] from their original min/max height values. Note that we do not
normalise the digital values of the ORIs in this work. During the HiRISE cropping process,
if any of the ORI or corresponding DTM crop contains “nodata” value, then the paired ORI
and DTM samples are removed from the training dataset. The second training dataset con-
tains 15,500 (46,500 after data augmentation) pairs of cropped samples (512 x 512 pixels)
of the ORIs and DTMs downsampled at 2 m/pixel and is used for full training of the
network. Some examples of the second training dataset are shown in Figure 3 (HiRISE
image IDs are shown on each sub-figures). This collection of examples contains a variety
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of different surface features, such as large-structures, large-sized craters, layers on slopes,
cones, small-scale semi-flat features, high-peaks, layered peaks, dunes, small-sized craters,
and flat features on slopes (in the order of top-left-to-bottom-right).

Figure 3. Examples of the training datasets: 1st and 3rd rows are the cropped HiRISE PDS ORIs (image IDs superimposed
on the image in red colour); 2nd and 4th rows are the corresponding HiRISE PDS DTMs (rescaled to relative heights of [0, 1]).
Size: 2560 m width, 1920 m height.

For both of the two training datasets, we manually scan all DTM crops, and removed
the paired samples, when artefacts or significant noise are found. The artefact/noise could
be minor errors in a full-strip DTM, but they become obvious after rescaled (stretched)
within a small crop. The aforementioned numbers of the two training datasets are after
these scenes were removed. For training data augmentation, we apply both vertical and
horizontal flipping. Such data augmentation processes enrich our training datasets, can
help prevent overfitting in training, and meanwhile reduce the effect of the similar shading
directions from HiRISE as captured in similar Mars local time.

It should be noted that we do not use the original resolution of the PDS DTMs in
this work, because the effective resolution of the HiRISE DTMs is generally lower than
1 m/pixel, as we can observe that there are fewer details from the PDS DTM in comparison
to the 1 m/pixel downsampled ORI. We deem the spatial resolution of the DTMs are
approximately between 2 m/pixel and 4 m/pixel. In order to achieve semi-pixel-to-pixel
level image-to-height learning, the full training is achieved at a scale of 2 m/pixel.

2.4. Training Details

We propose a two-stage training for the proposed MADNet. At the first stage, initial
training is achieved on each of the three single-scale adversarial U-Nets, with the lower-
resolution training dataset. Note the U-Net encoders are pre-initialised using ImageNet [39].
The first stage training has 78,750 iterations, with a batch size of 8, and with an initial
learning rate of 10 * with standard Adam optimisation [40] (81 = 0.9 and B2 = 0.999).
The weights of the loss function in Equation (9) are set at A = 0.5, v = 5 x 1072, and
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1 =5 x 1073, For the second stage, the multi-scale adversarial U-Nets are trained jointly,
with each of them pre-trained for the first stage and initialised with adaptive weights of
xy = 0.5, a1 = 0.25, and ap = 0.25 as shown in Equation (3). The second stage training
achieved 581,250 iterations, with a batch size of 8, and the learning rate and loss function
setups as the first stage training. All training and testing are achieved on the latest Nvidia®
RTX3090° GPU.

2.5. Overall Processing Chain

The MADNet single-image height prediction process still has several restrictions. In
this section, we resolve these remaining issues with pre-processing and post-processing
methods. Firstly, the input image size for MADNet is limited to 512 x 512 pixels subject
to the design of the network and GPU memory constraints. In order to achieve full-strip
DTM prediction, we need to use tiling and mosaicing processes at the pre-processing and
post-processing. Secondly, the predicted heights are in relative height units with a scale of
[0, 1] the same as the rescaled training datasets. In order to recover the absolute heights, we
use reference HRSC DTM (for this work) or MOLA DTM (in general) to rescale the relative
heights. Thirdly, the geo-information encoded within the CaSSIS images currently has a
systematic error, due to issues with the onboard clock. In this case, we cannot directly use
a MOLA DTM for rescaling as the spatial locations of CaSSIS are wrong. Therefore, we
include image co-registration of CaSSIS and HRSC in a pre-processing in order to achieve
the height rescaling using HRSC DTM.

An overall processing chain for the proposed MADNet based single-image CaSSIS
DTM processing system is shown in Figure 4. This includes six steps and can be briefly sum-
marised as follows: (1) CaSSIS-to-HRSC image co-registration, following our in-house fea-
ture matching and fitting algorithms described in [41,42]; (2) cropping of the co-registered
CaSSIS image into small overlapping tiles (512 x 512 pixels per tile, with 100-150 overlap-
ping pixels in the horizontal and vertical directions) and simultaneously storage of the geo-
headers of each of the tiles that need to be re-attached to the output DTM tiles (geoinforma-
tion is not kept within the prediction process); (3) batch MADNet prediction of all input tiles;
(4) re-attach the geo-header files of the input image tiles from step (2) to the output DTM
tiles from step (3), and rescale the height range of the DTM tiles from [0, 1] to [min, max]
using the corresponding HRSC DTM,; (5) 3D co-alignment of the rescaled DTM tiles us-
ing a reference DTM, which could be MOLA, HRSC (as used in this work), CTX stereo
products, or the United States Geological Survey (USGS) MOLA-HRSC blended DTM prod-
uct (available at https:/ /astrogeology.usgs.gov/search/map/Mars/Topography/HRSC_
MOLA_Blend/Mars_HRSC_MOLA_BlendDEM_Global_200mp (accessed on 21 July 2021));
(6) finally we achieve DTM blending and mosaicing with the Ames Stereo Pipeline [43]
“dem_mosaic” function (see https://github.com/NeoGeographyToolkit/StereoPipeline
(accessed on 21 July 2021)).

2.6. Study Sites

The main experiments shown here are made over the Rosalind Franklin ExoMars
2022 rover’s landing site at Oxia Planum [11]. Oxia Planum (centred near 18.275°N,
335.368°E) is on the south-eastern edge of Chryse Planitia, one of the three main basins
that comprise the northern plains of Mars. The landing site is at around 18°N and located
at the mouth of several channels that drain from the southern uplands. One of the drivers
for selecting this site was that the area is characterised by extensive clay minerals, thought
to present excellent targets for seeking potential biomarkers—one of the primary objectives
of the mission.

We use two other sites to demonstrate the potential of MADNet. The first is a landslide
in the southern part of Baetis Chaos. The chaos terrain forms a depression that is thought
to have been formed by collapse engendered by the outflow from an underground aquifer
(e.g., [44]). On the southern wall of the depression, there are a series of landslides, which
overlie the ejecta deposits of a nearby fresh 13 km diameter complex impact crater. Because
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of this superposition, we know that the impact did not directly cause the landslides, but it
may have weakened the bedrock in the area leading to their formation.
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Figure 4. Flow diagram of the MADNet single-image CaSSIS DTM processing system.

The second site is located in Aeolis Mensae, an area characterised by wind erosion
of a thick pile of sedimentary rocks (e.g., [45]). The region is crossed by the Aeolis Dorsa,
thought to represent inverted channel deposits (e.g., [46]). In this particular scene, there are
numerous yardangs and two notable ridges, which are likely inverted channels, running
broadly east-west, which join a fan shaped-deposit with distributary-ridges to the east [47].

3. Results
3.1. Overview of Data and Products for Oxia Planum

Our test inputs for Oxia Planum include six 4 m/pixel CaSSIS panchromatic band
images (the image IDs are MY34_003806_019_1; MY34_005664_163_1; MY35_006504_018_0;
MY35_007337_020_0; MY35_007623_019_0; MY35_008275_165_0). Our reference dataset
is the 12.5 m/pixel MC11-West ORI mosaic and 50 m/pixel MC11-West DTM mosaic
produced by the HRSC team (HMC_11W24_nd5 and HMC_11W20_da5; available at
http:/ /hrscteam.dlr.de/HMC30 (accessed on 21 July 2021)). We use the 20 m/pixel CTX
DTM Oxia Planum mosaic produced by the Natural History Museum (London) and Open
University (CTX_OXIA_DTM_20m_r) and the 1 m/pixel HiRISE PDS DTMs (the image
IDs are DTEEC_009880_1985_009735_1985_L01; DTEEC_036925_1985_037558_1985_L01;
DTEEC_003195_1985_002694_1985_101; DTEEC_039299_1985_047501_1985_L01; DTEEC_
042134_1985_053962_1985_L01; available through the University of Arizona’s HiRISE site
at https:/ /www.uahirise.org/dtm/ (accessed on 21 July 2021)) as our validation datasets.

Figure 5 shows an overview of the aforementioned datasets, and our results from the
proposed MADNet single-image CaSSIS DTM processing system, over the Oxia Planum
area. Figure 5A shows the 6 input CaSSIS panchromatic band images (after co-registration)
superimposed on the HRSC MC11-West ORI mosaic. Figure 5B shows the tiled CaSSIS
DTM predictions (in relative height values of [0, 1]), which are the outputs from step (4)
of the overall processing chain described in Section 2.5, superimposed on the 6 CaSSIS
images and HRSC. Figure 5C shows the final mosaiced CaSSIS DTM at 8 m/pixel using
the proposed MADNet method (after height rescaling from relative [0, 1] to absolute
[min, max] of the HRSC MC11-West DTM mosaic over the same location. The mosaiced
CaSSIS DTM shows no transition error/artefact between adjacent tiles. Figure 5D shows
the 6 available HiRISE PDS DTMs (for validation) superimposed on the 6 CaSSIS image,
CTX DTM mosaic, and HRSC MC11-West ORI mosaic. It should be noted that in order to
achieve a more accurate comparison, in Section 3.2, we co-align our CaSSIS DTM results
and the HiRISE PDS DTM with the CTX DTM mosaic, which is pre-aligned with the HRSC
MC11-W ORI/DTM and MOLA.
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Figure 5. Overview of the testing and validation datasets at Oxia Planum: (A) input 6 CaSSIS images superimposed on
HRSC ORI (B) tiled CaSSIS DTM prediction outputs in relative height (black-0-low elevation; white—1-high elevation),
superimposed on CaSSIS image and HRSC ORI; (C) final CaSSIS DTM outputs (colour hill-shaded) in absolute height
co-aligned with HRSC, superimposed on CaSSIS image and HRSC ORI; (D) available validation dataset, i.e., HIRISE PDS
DTM (colour hill-shaded) superimposed on CaSSIS image and CTX DTM mosaic (colour hill-shaded), superimposed on the

HRSC ORI mosaic. Colour key for (C,D) is showing in (C). The locations for the zoom-in views and profile measurements
shown in Section 3.2 are labelled as red squares in (C).

3.2. Oxia Planum Results and Assessments

In this section, we compare in small-scale details of the resultant 8 m/pixel CaSSIS
DTM, validation 20 m/pixel CTX DTM, and validation 1 m/pixel HiRISE DTM, for 8 se-
lected areas (A-H) that have overlapping HiRISE PDS DTM available. We further compare
in larger-scale of the resultant 8 m/pixel CaSSIS DTM and validation 20 m/pixel CTX DTM,
for four selected areas (I-L) that do not have overlapping HiRISE PDS DTM available. We
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tend to select areas that contain more terrain variations (like craters or peaks) in order to
better assess the results. Locations of all areas (A-L) are shown and labelled in Figure 5C.

Figure 6 shows zoom-in views of the 4 m/pixel CaSSIS image, 8 m/pixel MADNet
CaSSsIS DTM, 20 m/pixel CTX DTM, 1 m/pixel HiRISE DTM, and measured profiles
(location shown on the HiRISE DTMs), for areas A, B, C, and D. In general, we observe
good alignments for CaSSIS, CTX and HiRISE DTMs. The maximum measured difference
for all three DTMs are within 12 m. CaSSIS DTM tends to have better agreement with CTX
DTM in all places, and meanwhile shows the small topographic details that have fairly
good agreement with the corresponding HiRISE DTM. No obvious artefact is found from
the MADNet CaSSIS DTM in all areas. Noting the small craters in areas A and D, and
rippled dune feature in area B, have both been successfully captured and reconstructed by
MADNet. The CaSSIS DTM shows a lower crater edge in area C compared to the HiRISE
DTM, however, the CaSSIS DTM shows less overshoot and undershoot of the crater edges
in area D.

Figure 7 shows zoom-in views of the 4 m/pixel CaSSIS image, 8 m/pixel MADNet
CaSSIS DTM, 20 m/pixel CTX DTM, 1 m/pixel HiRISE DTM, and measured profiles
(location shown on the HiRISE DTMs), for areas E, F, G, and H. In general, the same
characteristics from Figure 6 can also be observed in these 4 areas, good agreement between
CaSSIS DTM and CTX DTM at the large-scale, while at small-scale, CaSSIS DTM is picking
up a similar level of details as HIRISE DTM. Noting in area E, the two connected peaks
seem to have different heights, whereas the CaSSIS DTM is opposite to the HiRISE DTM.
Looking on the image, the CaSSIS DTM seems to be visually more correct. Area F and G
also shows good agreement at the crater edges for all 3 DTMs. It is worth pointing out,
in area H, there is a very small peak at the centre of the crater. This information has been
successfully picked up with MADNet. The relative height for the small peak in the CaSSIS
DTM is very similar to the HiRISE DTM, despite the CaSSIS DTM being better correlated
to the CTX DTM at a larger scale.

In Figure 8, we show 4 further areas, i.e., I, ], K, and L, where there are no HiRISE
stereo data. Zoom-in views and profile measurements (location shown on the CaSSIS
images) are given for 8 m/pixel MADNet CaSSIS DTM and 20 m/pixel CTX DTM. We
can observe good alignment between the CaSSIS DTM and CTX DTM in general, while
the CaSSIS DTM shows more details. In particular, area I is a field with many small and
medium sized craters, and the MADNet results have obviously captured more craters and
there is no generative artefact found for the craters. Area I also shows good agreement in
height between the CTX DTM and CaSSIS DTM for a small hill in the centre. Area ] shows
MADNet has successfully captured the rippled dunes inside the crater as well as a sharp
peak feature in the south. Areas K and L also show good alignment between the CTX and
CaSSIS DTMs, and meanwhile shows more details in the CaSSIS DTM.

We observe no artefacts from the DTM results using the proposed MADNet system
with the 6 CaSSIS images. The CaSSIS DTM effective resolution (although sampled at
8 m/pixel) appears qualitatively to be very similar to the 1 m/pixel HiRISE DTM. For
areas with or without available HiRISE DTM, the CaSSIS DTM mosaic shows consistently
good agreement with the 20 m/pixel CTX DTM mosaic, while capturing more details, like
craters and small peaks. The hill-shaded images, difference map, and scatter plot for the
CaSSIS and CTX DTM mosaics are shown in Figure 9. We can observe a good correlation
between the CaSSIS and CTX DTM mosaics.

In addition to the visual comparisons of the DTMs and their associated profile analysis,
hill-shaded images using eight different azimuth angles at 45° increments from 0° to 315°,
and 30° of illumination elevation, for eight randomly selected peak and crater areas are
shown in Figure 10. No artefacts are found in these results.
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20m CTX DTM 8m MADNet CaSSIS DTM 4m CaSSIS image
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Figure 6. Zoom-in views of the 4 m/pixel CaSSIS image, 8 m/pixel MADNet CaSSIS DTM, 20 m/pixel CTX DTM, 1 m/pixel
HiRISE DTM, and measured profiles (location shown on the HiRISE DTMs; black: CTX, red: CaSSIS, blue: HiRISE), for area
(A-D) (location shown in Figure 5). All DTMs are colour hillshaded. To look into details—please refer to the full-resolution
figures provided in Supplementary Materials.
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4m CaSSIS image

8m MADNet CaSSIS DTM

20m CTX DTM

1m HiRISE DTM
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Figure 7. Zoom-in views of the 4 m/pixel CaSSIS image, 8 m/pixel MADNet CaSSIS DTM, 20 m/pixel CTX DTM, 1 m/pixel
HiRISE DTM, and measured profiles (location shown on the HiRISE DTMs; black: CTX, red: CaSSIS, blue: HiRISE), for area
(E-H) (location shown in Figure 5). All DTMs are colour hillshaded. To look into details—please refer to the full-resolution
figures provided in Supplementary Materials.
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8m CaSSIS DTM  4m CaSSIS image

20m CTX DTM

Profile-A

Profile-B

I [ . | [ . |
CTX CaSSIS -3165m I-K -2950m -3178m L -2704m

Figure 8. Zoom-in views of the 4 m/pixel CaSSIS image, 8 m/pixel MADNet CaSSIS DTM, 20 m/pixel CTX DTM, and
measured profiles (location shown on the CaSSIS images; black: CTX, red: CaSSIS), for area (I-L), where there are no HiRISE
stereo (location shown in Figure 5). All DTMs are colour hillshaded. To look into details—please refer to the full-resolution
figures provided in Supplementary Materials.
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Standard deviation: 2.218

-3000

-3020 400

-3040

-3060

-3080

CassIS DTM mosaic

-3100

-3120

-3140

o~ 1 -3140 -3120 ~3100 -3080 -3060 —3040 ~3020 -3000
CTX DTM mosaic

Figure 9. Hill-shaded image of the CaSSIS DTM mosaic superimposed on the hill-shaded image of the CTX DTM mosaic
(left); difference map of between the CaSSIS and CTX DTM mosaics (middle); scatter plots of the CaSSIS and CTX DTM

mosaics (right).

Figure 10. Hill-shaded images of 8 different crops (from 1st column to the 8th column) of peaks and craters from the
resultant CaSSIS MADNet DTM using 8 different illumination angles (from the 2nd row to the 9th row at 45° increments,
ie., 0°,45°,90°, 135°, ..., 315°. The original CaSSIS image crops is displayed in the 1st row. N.B. elevation of the light

source is 30° for all azimuths.
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3.3. Science Case Study: Site-1

Figure 11 shows that metres to tens of metres details of the landslide and its surround-
ing terrain have been successfully captured by MADNet. Of particular interest is the fact
that the topographic signature of the bedrock spurs located near the top of the escarpment
are clearly visible. The topography of these spurs can give important information on
erosion rates of the bedrock (e.g., [48]). In addition, the subtle topography related to the
parallel ridges and troughs running northwest-to-southeast which represent the underlying
crater ejecta, are also partially reproduced and their topographic relief can be used to better
understand the surface over which the landslide propagated. Finally, the lateral levees, toe
scarp, and detailed surface textures of the landslide deposits are reproduced (including
superposed small craters), which is of use for understanding the dynamics of the landslide
(e.g., [49]). On the other side, the CaSSIS DTM has not shown so well at the hundred-metre
to kilometre-scale where some details have been smoothed out, including some of the
bulges on the deposit and the fallen block of the plateau. This is mostly due to the final 3D
co-alignment process using a coarse reference DTM that cancelled some of the large-scale
topography or falsely correctly the MADNet DTM onto a reference that has large-scale
artefacts. Please refer to Section 4.3 for discussions on this. This can be improved in the
future using a coarse-to-fine approach (i.e., to produce MADNet HRSC DTM at higher
resolution using MOLA as the reference, then produce MADNet CaSSIS DTM using the
MADNet HRSC DTM as the reference).

Figure 11. A crop of the 4 m/pixel CaSSIS image and 8 m/pixel MADNet CaSSIS DTM (colourised and hillshaded using
similar solar angle as the image) showing landslide at site 1. The landslide is located on a steep escarpment. Part of the

plateau has displaced downslope and a nearly intact block of plateau material is now located mid-slope. The southeast-to-

northwest ridge and trough texture on the floor of the depression is the ejecta from an impact crater located to the southeast.

To look into details—please refer to the full-resolution figures provided in Supplementary Materials.
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3.4. Science Case Study: Site-2

Figure 12 shows that MADNet has successfully reproduced the metre to tens of metre
scale topographic features in the Aeolis Mensae region, including north-south elongated
yardangs and subtlety expressed eroded impact craters. In the south part of Figure 12
layers in the eroded bedrock are picked out in topographic relief and are only metres in
thickness. Topographic analysis of sedimentary deposits is important for understanding
their rate of formation and erosion (e.g., [50]). On the other side, the flat-topped nature of
the ridge and its overall elevation changes along its length do not seem to have been kept in
the final resultant DTM, but instead to be over-influenced by the HRSC topography during
3D co-alignment. To correct this, a coarse-to-fine step (MOLA-MADNet HRSC-MADNet
CaSSIS) can be followed.

-

Figure 12. A crop of the 4 m/pixel CaSSIS image and 8 m/pixel MADNet CaSSIS DTM (colourised and hillshaded using
similar solar angle as the image) over site-2, showing Yardangs running north-south and an inverted channel curving from
west to east. To look into details—please refer to the full-resolution figures provided in Supplementary Materials.

4. Discussion
4.1. Photogrammetry, Photoclinometry, or Deep Learning?

In this section, we briefly discuss the pros and cons of the three different types of DTM
production approaches for Mars orbital data. We believe this discussion would provide
the readers with some perspective and outlook to introducing more deep-learning-based
approaches into planetary mapping in the near future. We compare the three approaches
in five aspects, i.e., artefactual, resolution, accuracy, flexibility, and speed.

The artefacts in photogrammetry generally have the appearance of obvious error,
such as stripes, gaps, patterned noise, or discrete fluctuation. In general, artefacts from
photogrammetry methods are fairly common, especially when input images are different
in imaging conditions (e.g., contrast, shading, resolution, noise), and subsequently, addi-
tional efforts on post-processing are always required to reduce their effects. In particular,
photoclinometry methods are sometimes employed to correct such photogrammetric arte-
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facts [51]. However, new artefacts may be introduced from the photoclinometry method
itself. These generally refer to overshooting, undershooting, or offsets. Due to the thin
Martian atmosphere and limited availability of the atmospheric parameters and surface
bidirectional reflectance distribution function (BRDF), photoclinometry for Mars is still
challenging.

In contrast, a well-trained deep learning network has a much lower frequency to
produce an artefact. However, any artefacts produced from a well-trained deep network
could be very difficult to be detected, as they are unlikely to look like artefacts, and thus
are more dangerous (like dark sand might be translated into lumps if the network not
being able to see such features in training data). On the other hand, potential artefacts
from photoclinometry and deep learning cannot be pre-modelled, whereas artefacts from
photogrammetry can be automatically modelled or pre-detected via matching uncertain-
ties [52]. For large-area mapping tasks, artefacts are almost inevitable with all methods,
however, applying constraints using a reference source (like MOLA) could always limit the
upper bounds of such artefacts.

In terms of resultant DTM resolution, photoclinometry generally produces per-pixel
height reconstructions, thus has the highest resolution. Photogrammetry generally pro-
duces the lowest resolution among the three approaches as “averaging” is consistently
introduced over the whole workflow through the application of area-based image matching
procedures. A deep learning-based method should produce resolutions similar to photocli-
nometry but depends on whether there is sufficient training data. Even though the pro-
posed supervised method is trained with photogrammetric DTMs, we can down-sample
such DTMs (and associated ORIs) to their effective resolution and perform pixel-level
image-to-height training/learning. In this way, artefacts could be mostly eliminated as they
mostly occur in fine-scale features (in the case of the HiRISE PDS DTMs). N.B. Training
DTMs that have large-scale errors or strong noise have been pre-removed as stated in
Section 2.3. This also explains how deep learning-based methods are not reproducing any
artefact that might be contained in the original training data. For example, after train-
ing with the down-sampled data, the network has learnt how to produce the best DTM
for an “artefact-free” big crater, then the learnt parameter sets can be used to produce
the most appropriate DTM for a much smaller crater, where many artefacts may appear
using photogrammetry.

Not taking any potential artefacts into consideration or resolution differences, pho-
togrammetry should have the highest (or most reliable) accuracy as the height values
are based on solid computation without assumption/stochastic inputs. However, as a
large proportion of the scene is likely to be affected more or less by matching artefacts/or
post-smoothing (frequently used to reduce such artefacts) on real-world applications, due
to various inferences and imperfections, and thus the above statement is only true “in
theory”. Photoclinometry methods could be highly accurate for the Moon, but on Mars, it
is considered less accurate due to issues with atmospheric dust scattering and unknown
BRDF effects. According to [53], there are height variations of about 10-20 m, between
the CaSSIS DTMs and HiRISE DTMs, that are commonly seen at crater ridges (known
as “overshooting”), but in this work, such height variations at the same and other crater
ridges are generally less than 5 m (10 m maximum) according to the profile measurements
presented in Section 3.2.

In terms of flexibility and processing speed, the proposed MADNet system clearly
outperforms photogrammetry and photoclinometry approaches by a large margin. Once
the MADNet model is fully trained, which takes a few days on a Nvidia® RTX3090 GPU,
the DTM inference process only takes from a few seconds (e.g., CaSSIS and CTX) to a
few minutes (e.g., HiRISE) without the need to know the camera models (as required by
photogrammetry) or imaging, atmospheric and surface BRDF conditions (as required by
photoclinometry). Adding in the required processing time from 3D co-alignments and
other pre- and post-processing steps, producing a DTM from CTX and CaSSIS sized images
generally takes ~20 min, and producing a DTM using MADNet from larger images like
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HiRISE generally takes 1-2 h. In contrast to photogrammetry approaches, based on our
experience, producing a DTM from CTX and CaSSIS sized images generally takes about
3-10 h depending on the different stereo matching algorithms, and is also subject to trade-
offs between the complexity of the processing system and the DTM quality. Producing a
DTM from much larger images like HiRISE using photogrammetry often takes more than
8 h up to a few days. Photoclinometry, to the best of our knowledge, takes a similar or
longer time to process than photogrammetry.

4.2. Extendibility with Other Datasets

This paper focuses on single-image fast DTM estimation of the TGO CaSSIS images.
However, it should be pointed out that the proposed MADNet model can also be applied to
other Mars datasets at different resolutions, e.g., HRSC, CTX, and HiRISE, without the need
for re-training or parameter tuning. Figure 13 demonstrates the MADNet DTM results
for HRSC, CTX, and HiRISE, which are produced instantly (in a few seconds for CTX and
HRSC and less than a minute for HiRISE), in comparison to the photogrammetric DTM
results from PSA (for HRSC) and PDS (for HiRISE). This experiment shows the proposed
MADNet system outperforms photogrammetric methods both on speed and on quality.

4.3. Future Improvements

There is still room to improve the proposed method in many aspects, such as (1) re-
defining the loss functions to take perceptual similarity into consideration; (2) re-designing
the multi-scale scheme to deal with different performance on flat regions and steep slopes;
(3) re-forming a better (larger) training dataset combining with different instruments;
(4) using segmentation to help capture smaller features; (5) combining with shape-from-
shading oriented networks [54] using a multi-stage reconstruction strategy.

In particular to point (2), we observed the fact that MADNet (with the current available
training dataset) has poorer performance for capturing fine-scale details on steep slopes
and on comparably flatter terrain. See Figure 14 as an example (see arrowed areas on the
CaSSIS image and measured height profile) demonstrating the height variations on steep
slope appears to be too small (smooth). Note that there is no HiRISE or CTX stereo data
available for this area. This could be an issue with the current multi-scale implementation
that when coarse-scale height variation dominates an input tile, fine-scale variation is
neglected in the intermediate-scale U-Net and thus not receiving enough attention in the
network. Future improvement could be implemented to use the height variation of the
coarse-scale prediction as a threshold to control the reconstruction strategy of the two
finer-scale predictions. Point (4) may also be a way forward to improve this issue.

As for discussion point (3), currently, the finest scale U-Net is trained with 2 m/pixel
HiRISE ORI/DTM samples and the two coarser scale U-Nets are trained with 4 m/pixel
sample. However, if there are more high-quality training data (HiRISE ORI/ DTM) avail-
able, then ideally, we can train the fine-scale U-Net with 4 m/pixel samples and the two
coarser scale U-Nets with 8 m/pixel samples for better performance. This is because even
the HiRISE DTMs are officially (in PDS) gridded at 1 m/pixel, their effective resolutions
are actually between 4-8 m/pixel. This is a general issue with photogrammetric methods
as “averaging” is everywhere in the process. In other words, the fine-scale details you
can see even from the downsampled 4 m/pixel HiRISE ORI do not show up at all on
the 1 m/pixel HiRISE DTM. Therefore, currently, we are able to predict heights for some
small-to-medium-sized features, but we are not able to capture the very fine-scale features
on the predicted DTM (e.g., some very small-sized craters are missing in the predicted DTM
—see previous examples). In order to train a pixel-to-pixel level height estimation, (ideally)
both HiRISE ORI and DTM should be resampled to between 4 m/pixel and 8 m/pixel.
However, in this case, we wouldn’t have enough training data.
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Photogrammetric DTM

MADNet DTM
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Figure 13. MADNet single-image DTM results for HRSC, CTX, and HiRISE, over a crater and plateau area at Oxia Planum,
in comparison to photogrammetric DTM results. Source of photogrammetric DTMs: HRSC (PSA; HMC_11W20_da5); CTX
(NHM; CTX_OXIA_DTM_20m_r); HiRISE (PDS; DTEEC_036925_1985_037558_1985_L01). All DTMs are colour hillshaded.
To look into details—please refer to the full-resolution figures provided in Supplementary Materials.

This leads to another question, i.e., whether we should form a larger training dataset by
combining the HiRISE PDS ORIs and DTMs with other Mars observation data and products
(e.g., CTX ORI/DTMs [52]) or opts to use the unsupervised methods. Unsupervised
methods do not require ground-truth DTMs in training, instead, unsupervised methods
can take serendipitous HiRISE images are inputs, and train the network to learn the
disparity that can be used to back-project one view into the other. By minimising the
differences between the back-projected image with the other view, the generator network
can be trained to produce disparity maps, which can then be triangulated to DTMs with
associated camera models. The advantage of this is we do not need pre-computed or
published “ground-truth” DTMs and there are plenty of serendipitous HiRISE images
available. Thus, higher spatial resolution (pixel-level or sub-pixel level) of the predicted
DTM can be achieved. However, the disadvantage is we will then need to involve different
camera models for each different test datasets, which would be more complex and difficult
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to obtain, in comparison to simply using a coarse global reference (like HRSC or MOLA) as
used in MADNet, and thus lose the flexibility and speed in processing.

Profile

0.01 0.02 0.03 0.04 005

HRSC

CaSSIS -92m 660m

Figure 14. CaSSIS panchromatic band image (MY34_005367_181_1), 8 m/pixel MADNet CaSSIS DTM, the corresponding
50 m/pixel HRSC DTM (h1059_0000_da4), and the measured profile line (location is shown on the CaSSIS image) demon-
strating an “over-smoothing” issue for capturing fine-scale features on steep slopes. All DTMs are colour hillshaded. To
look into details—please refer to the full-resolution figures provided in Supplementary Materials.

5. Conclusions

In this paper, we introduced a novel deep learning-based single-image DTM estima-
tion method, called MADNet, using multi-scale adversarial U-Nets. Details of the MADNet
network architecture, loss functions, and training process are given, and testing is achieved
using TGO CaSSIS images. We outlined the pre-processing and post-processing steps for
the fully automated MADNet DTM processing system. Results are demonstrated over
the Oxia Planum area, together with two science case studies over a landslide site and
a layer-plateau site. Intercomparisons and assessments are performed against CTX and
HiRISE DTMs. The resultant CaSSIS DTMs have shown good co-alignment with both
HiRISE and CTX DTMs, no artefacts are found over the whole area, and have shown effec-
tive resolutions that are very close to the HiRISE DTMs. With the proposed MADNet DTM
processing system, producing a high-quality and high-resolution full-strip CaSSIS DTM
only takes a few minutes and only needs a single input image. Similar high performance is
also illustrated using single-image HiRISE, CTX, and HRSC data. Issues and potential im-
provements for the future are discussed at the end of the previous section. In the near-term
future, we plan to produce large-area 3D mapping products with MADNet, using CTX and
CaSSIS images, to cover the whole areas of Oxia Planum and Valles Marineris. In particular,
we plan to use MADNet to initially refine the HRSC DTM mosaics to a higher-resolution
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(e.g., 12.5 m/pixel-25 m/pixel) using MOLA as the reference, then produce the cascaded
CTX and CaSSIS MADNet DTM mosaics using the HRSC MADNet DTM mosaic as the
reference. In this way, photogrammetric artefacts/errors of the existing HRSC and CTX
DTM mosaics can be avoided to be passed (during 3D co-alignment) onto the final CaSSIS
DTM mosaic.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13152877/s1. All figures in full-resolution. The CaSSIS DTM mosaic product.
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