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Abstract: The principles of the transform stage of the extract, transform and load (ETL) process can be
applied to index the data in functional structures for the decision-making inherent in an urban remote
sensing application. This work proposes a method that can be utilised as an organisation stage by
reducing the data dimension with Gabor texture features extracted from grey-scale representations of
the Hue, Saturation and Value (HSV) colour space and the Normalised Difference Vegetation Index
(NDVI). Additionally, the texture features are reduced using the Linear Discriminant Analysis (LDA)
method. Afterwards, an Artificial Neural Network (ANN) is employed to classify the data and build
a tick data matrix indexed by the belonging class of the observations, which could be retrieved for
further analysis according to the class selected to explore. The proposed method is compared in
terms of classification rates, reduction efficiency and training time against the utilisation of other
grey-scale representations and classifiers. This method compresses up to 87% of the original features
and achieves similar classification results to non-reduced features but at a higher training time.

Keywords: feature extraction; urban hyperspectral images; dimension reduction; gabor features;
artificial neural network

1. Introduction

Hyperspectral images can register the energy recorded through the electromagnetic
spectrum in a single data structure, allowing the representation of the captured objects
in signals that provide information beyond the human eye’s perception. These images
can be used for different applications, for example soil evaluation for crop health and
protection [1], maritime traffic surveillance [2], detection of minerals presence [3] and
urban characterisation [4]. Moreover, the acquisition of this kind of image has presented
time and cost reduction in recent years due to the improvement in portable technologies
and transmission platforms [5,6]. Therefore, these advances have led to the processing
of a significant volume of data growing at an accelerated speed, which originates data
processing challenges [7].

The problem of processing a considerable amount of data for remote sensing applica-
tions, such as urban planning, ecological footprint characterisation and crop monitoring [8],
has been drawing attention from projects in governmental, academic and commercial
fields [9]. The main objective of data mining is to find the implicit value in the acquired
data to improve the decision-making process. Remote sensing can be used to develop
information products aimed to assist in the decision-making workflow [10]. Then, it ben-
efits from the analysis of the hidden correlation in the large volume of data, resulting in
functional knowledge [11].

The fast data acquisition generates a high data volume that requires to be processed
in a reasonable amount of time, and the volume affects the stages of data storage and
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processing, challenging the velocity. Furthermore, the data acquirement can be performed
from different sources generating a variety of formats. Therefore, a remote sensing data
processing application needs to face these hallmarks through all its stages. A scheme of
a data processing pipeline incorporating the stages and phases of different studies, such
as Emani et al. [12], Jagadish [13], Li et al. [14], and the extract, transform and load (ETL)
process for data integration [15], is presented in Figure 1.
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Figure 1. Scheme of a data processing pipeline gathering concepts from [12–15].

The acquisition is performed by filtering the valuable data to the application [16]
from raster data obtained by different sensors [17]. Next, the organisation stage consists
of supplying a structure to the data, balancing the performance, quality and cost [18].
Then, the analysis provides relationships between data. Finally, the decision stage uses this
information as a basis for valuable decision-making [11].

The transform step prepares the data for semantic modelling. This stage optimises the
decision-making process by performing indexing operations maintaining the storage of
pattern sets in secondary memory [19] because the permanent storage of a considerable
amount of data in a local device is not feasible [20], but the retrieved time should be appro-
priate [21]. The pattern representation requires feature extraction and selection algorithms
to gather similar data, and machine learning can be employed to assign labels [21,22].
Afterwards, the patterns can be stored in a tick data matrix, whose columns represent the
features and the rows correspond to the observations [23]. The rows match with a specific
label, building a basis for the data indexing.

Consequently, further steps in the data analysis can retrieve information related to
the selected pattern executing a query for its corresponding label. Additionally, dimension
reduction methods can be involved to enhance the data retrieval and information process-
ing [24–26]. Therefore, the data consolidation in the transform stage assists the analysis of
the data by improving their features, maintaining a lower dimension and organising the
content according to a thematic categorisation.

The consolidation can be performed utilising thematic organisation allowing content-
based retrieval, which hastens the running queries for the analysis stage but requires the
patterns’ identification. For example, in the work of Zheng et al. [27], the endmember
signatures are employed for image cataloguing using pixel purity index and spectral angle
distance to identify the pixels in hyperspectral images with a spectral library. Then, the
abundance estimation of endmembers is stored as metadata, and the indices of the spectra
become the category of the spectral library for band-level retrieval. However, the method
maintains the spectrum for each pixel without reduction.

Another approach used for data consolidation is proposed in Seng and Ang [28],
where a variant of linear discriminant analysis (LDA) is employed for dimension reduction
in a distributed computing scheme considering a scenario with a network of sensors.
Afterwards, the features are evaluated by the nearest neighbour classifier to assess the
quality of the attributes stored. The data employed for experimentation consisted of
datasets for face recognition. The proposed variant achieved recognition rates near to
85% that compete with LDA without variation. Nonetheless, the authors suggested that
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other feature extraction and classification methods could benefit the classification rates of
characteristics reduced by LDA.

Reddy et al. [29] analysed the impact of the features’ reduction on the performance
of pattern recognition. Their objective resided in the organisation of raw data in low-
complexity features to reduce the burden of machine learning algorithms during further
stages of the data processing pipeline. The study involved principal component analysis
(PCA) and LDA for dimension reduction methods and decision tree, naïve Bayes, random
forest and support vector machine (SVM) for classification evaluation of cardiotocography
data sets. The results presented higher accuracy rates when the SVM was employed despite
the reduction method. Moreover, they showed competitive results between LDA and PCA,
being PCA’s accuracy slightly better than LDA, where the last one was computed to issue
only one attribute. Therefore, the reduction’s efficiency should be analysed to evaluate the
balance in the classification rate and the number of features employed.

This work aims to propose a method to index the pixels of a feature representation of
hyperspectral images to assist a thematic organisation in the transform stage of the ETL
process by categorising the pixels in different classes usually found in urban scenes. Thus,
the data is transformed to maintain the classification separability of the patterns, and a
classification algorithm is proposed to perform the labelling needed for indexing the data
with suitable classification rates.

Therefore, the main contributions of this study are as follows. Firstly, a dimension
reduction of data in hyperspectral images for the indexing process is proposed by ex-
tracting texture features from grey-scale representations. Secondly, the performance of
various colour spaces and indices is analysed when texture features are extracted using
a Gabor filter bank. Thirdly, a projection-based reduction method on the attributes is
contrasted against the non-reduced characteristics in terms of classification and reduction
efficiency. Finally, two artificial neural network (ANN) architectures are compared with
the SVM classifier for indexing purposes using classification rates such as overall accuracy,
κ coefficient and training time.

The rest of the manuscript is organised in the following sections: Section 2 describes
the proposed algorithm and the experimental setup to test its performance. Then, Section 3
illustrates the performance evaluation. Afterwards, a discussion of the evaluation is
presented in Section 4. Finally, the conclusions of the study are stated in Section 5.

2. Materials and Methods

The proposed method, which is illustrated in Figure 2, firstly consists of the separation
of the hyperspectral image’s bands to compute the standard Red, Green and Blue (sRGB)
and Hue, Saturation and Value (HSV) colour spaces, as well as the Near-Infrared (NIR)
channel and Normalised Difference Vegetation Index (NDVI) values. Secondly, the grey-
scale representation of the HSV and NDVI images are utilised for feature extraction using
a Gabor filter bank. Once the Gabor features are obtained, they are reduced through LDA
and given to an ANN for classification. Finally, the classifier assigns a label to each one of
the pixels, and they are saved in a tick data matrix with their reduced features, achieving
the organisation stage of the data processing pipeline.

The transformations, Gabor features extraction, reduction process and architecture of
the classifier are detailed in the following subsections. Furthermore, the test images and
the experiments to validate the method are described.

2.1. Separation of Visible and Near-Infrared Spectrum Bands

The data structure commonly used to represent a hyperspectral image consists of a
data cube composed of various matrices, where each element of a matrix records a band
of the electromagnetic spectrum. These images have a high spectral resolution describing
even more than a hundred bands, and each pixel represents a spectral signal. Therefore,
the whole image can be denoted as in Equation (1):
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X =
{

xi ∈ RB, i = 1, 2, . . . , P
}

, (1)

being X an image with P number of pixels, and each pixel x contains B number of bands.
The spectrum of the pixel can be divided into visible and near-infrared sections as

illustrated in Figure 3, where x̌i, ∀ i = 1, . . . , Ň, are the available values of the bands
measured on the visible spectrum, which can be from 380 to 780 nanometres; and x̃i, ∀
i = 1, . . . , Ñ, correspond to the available values of the near-infrared bands that can be
measured up to 1200 nanometres.
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Figure 2. Proposed method’s workflow.
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Figure 3. Band separation into visible and near-infrared spectrum.

2.2. Colour Space Transformation Methods

Once the visible and near-infrared bands are separated, each section can be trans-
formed into different colour spaces or indices. This subsection describes the process to
compute CIE XYZ, sRGB, HSV, NIR channel and NDVI values.

The bands in the visible spectrum have to be transformed into tri-stimulus to be
compatible with other spaces. The transformation is achieved employing the matching
functions W, X , Y and Z , which are defined in a standard from the International Commis-
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sion on Illumination (CIE) [30]. These functions and the normalisation constant K allow
the mapping of the visible spectrum x̌ in the CIE XYZ colour space using the equations
in [31].

The CIE XYZ space has a transformation function to the sRGB space using a linear
transformation defined by CIE and the equations given in [32]. Furthermore, the sRGB
values can be weighted using the Equation (2) to compute a grey-scale value GRGB in order
to extract texture features in later stages:

GRGB =
[

76.2195 149.6850 29.0700
]
×

 RsRGB
GsRGB
BsRGB

. (2)

The HSV colour space is robust to illumination changes since it separates and decor-
relates the characteristics of the colours affected by brightness variations [33]. In this
work, the HSV values have been computed from the sRGB channels normalised to the
interval [0, 1] by means of [34]. Therefore, their grey-scale value GHSV is calculated with
Equation (3):

GHSV =
[

19435.9725 38169.6750 7412.8500
]
×

 HHSV
SHSV
VHSV

. (3)

For the other segment of the pixel, the NIR channel is calculated with the energy of
the near-infrared bands using Equation (4):

NIR =
Ñ

∑
i=1

x̃2
i . (4)

Nonetheless, the NIR representation needs to be in the interval [0, 255] to be compatible
with the colour spaces described before. Consequently, its grey-scale value GNIR is obtained
weighting the NIR value by Equation (5):

GNIR =
255
m̃

NIR, (5)

where m̃ is the maximum value in the whole near-infrared image.
The components of colour spaces can be employed to compute different indices that

reflect the conditions of the materials. One of these indices is the Normalised Difference
Vegetation Index (NDVI), which distinguishes between the presence of healthy or gathered
vegetation areas and scattered or unhealthy ones [35]. This index is widely used for
different applications, for example, the distinction between urban and farmland areas [36],
generation of damage assessment maps after natural disasters [37] and evaluation of
vegetation cover and soil characterisation [38]. Moreover, it has achieved a greater overall
accuracy rate classifying certain crops when it is merged with other characteristics such as
texture features and the digital value of the pixel [39].

The NDVI representation requires the previously computed GNIR and RsRGB values
to measure the vegetation’s reflection [40]. However, this index is in the range [−1, 1].
Therefore, the NDVI is multiplied by 127.5 in agreement with the other grey-scale values
utilised in the method as in Equation (6):

GNDVI = 127.5
[

GNIR − RsRGB
GNIR + RsRGB

+ 1
]

. (6)

2.3. Gabor Features Extraction and Reduction with LDA

The data reduction can be performed by translating the original data into another
space with a lower dimension. The transformation is usually applied using projection-
based methods that can be categorised in supervised, such as LDA, and unsupervised,
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like PCA [41]. Both methods have been tested to decrement the number of spectral bands
in multispectral images for land cover classification, where LDA has surpassed PCA in
classification accuracy using an ANN [42]. Besides, the LDA approach can also be used for
texture characteristics. For example, a variation inspired in LDA has been used to reduce
the dimension of Gabor features extracted from gait images for human authentication
purposes [43]. Consequently, LDA and Gabor features were employed for this work.

The grey-scaled images are filtered with a Gabor filter bank, resulting in a vector
of features. Each feature corresponds to the pixel’s value in the image processed using
a certain Gabor filter. The Gabor filter consists of a sinusoid with a Gaussian envelope,
whose function in the frequency domain is given by Equation (7):

H(u, v) = Ae
−0.5 (u̇−F)2

σ2
u

+ v̇2

σ2
v ;

u̇ = u cos(θ)− v sin(θ),

v̇ = u sin(θ) + v sin(θ),

(7)

where A = 2πσxσy, being σX and σY parameters of the Gaussian envelope. Moreover,
σu = 1

2πσx
, σv = 1

2πσy
and F = 1

ωι
, considering ωι as the wavelength of the sinusoid.

The filter bank is constituted by variations in the parameters of Equation (7) to detect
borders or textures in an image utilising different orientations and scales [44]. For this
work, the wavelength configuration proposed by Jain and Farrokhnia [45] is employed as
in Equation (8):

ωι =
4√
2
2ι, ι = 0, 1, . . . , η − 1,

η =

⌊
log2

[√
2

4

√
(height)2 + (width)2

]⌋
− 1,

(8)

where the height and width of the image are considered, and η is the number of wave-
lengths. Moreover, the orientations used for θ are 0◦, 45◦, 90◦ and 135◦, being Θ = 4.
Consequently, the filter bank contains N̆ filters:

N̆ = Θη. (9)

Suppose two grey-scale representations of the image are employed. In that case, both
are processed with the Gabor filter bank, and the ensued features’ vectors are merged
in a single vector g one beside the other, giving the double of characteristics of a single
representation (2N̆, using Equation (9)). Since the Gabor features are numerous depending
on the image’s size, a reduction with LDA is proposed.

The LDA method changes the coordinates of the input features to minimise the
dispersion of the same class’ observations while the distance between samples of different
classes is maximised [26]. This optimisation problem is solved satisfying the constraint in
Equation (10):

ΦLDA = arg maxΦ

[
|ΦT MbetweenΦ̂|
|ΦT MwithinΦ|

]
,

ΦLDA = [φ1, φ2, . . . φK−1],
(10)

where φ is an eigenvector corresponding to the eigenvalue λ complying λk > λk+1, and K
is the total number of classes.

LDA is a supervised method. Therefore, the matrices Mbetween and Mwithin use mean
vectors µk computed from the training observations g of each class k as in Equation (11):

Mbetween = P̈−1 ∑K
k=1 P̂k(µk − µ)(µk − µ)T ,

Mwithin = P̈−1 ∑K
k=1 ∑P̂k

p=1

(
g(p)

k − µk

)(
g(p)

k − µk

)T
,

(11)
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where µ is the global mean of the training observations, and P̈ = ∑K
k=1 P̂k, being P̂k the total

number of training observations belonging to class k.
The data reduction is performed using the ΦLDA matrix defined in Equation (10)

as follows:

M = S ×ΦLDA, S ∈ R(P×N̆), ΦLDA ∈ R(N̆×K−1), (12)

where S is a matrix with the extracted features of all the observations of the image stacked
in rows, andM is also an observations’ matrix but with reduced features. Therefore, 2N̆ is
employed instead of N̆ in Equation (12) when two grey-scale representations are used for
the features’ vector.

2.4. ANN Classifier Architecture

Once the data features have been obtained and reduced, a labelling process is needed
to index the data. Therefore, a classifier such as SVM or ANN is implemented. In some
cases, the SVM has obtained higher classification rates against ANN, especially in binary
decisions such as the identification of corn presence [46]. On the other hand, another
study has concluded that a Multilayer Perceptron (MLP) ANN can achieve an adequate
classification accuracy surpassing the SVM for surface water mapping [47]. However, the
ANN architectures can be computationally expensive depending on its structure [48].

The ANN architecture selected for the proposed method is the fully connected MLP.
The employed structures have been denoted in this work as Neural Network Multilayer
Perceptron followed by the number of neurons in their hidden layers (NNMLP-X_X). This
architecture has the following definitions.

The MLP network has N layers with a certain quantity of neurons. Then, the set of
the neurons that composes the network can be denoted as:

C = {cd ∈ Z, d = 1, . . . , N}, (13)

being cd the number of units in layer d. A bias unit is implemented in each hidden layer.
Nevertheless, it has not been included in Equation (13).

Since it is a fully-connected network, the weights associated to the neurons can be
described as a matrix γ for each layer, building the following set:

Γ =
{

γ(i) ∈ R(cd+1)×cd+1 , i = 1, . . . , N − 1
}

. (14)

Each layer requires an input matrix to perform the weighting and activation operations,
which in the hidden layers corresponds to the output matrix of the previous layer. The input
matrices for each layer are denoted as $ an their set is given in the subsequent equation:

Π =
{

$(i) ∈ RP×(cd+1), i = 1, . . . , N
}

. (15)

Inside each layer, the weighting is performed using Equations (14) and (15) as follows:

v(i) = $(i) × γ(i). (16)

The weighted values in v(i) are utilised in the sigmoid activation function given in
Equation (17) [49]:

∆(i) =
[
1 + ev(i)

]−1
, (17)

where ∆(i) is used as the input matrix for the layer i + 1. The output layer, which is class
ordered, only performs a maximum operation to activate the neuron with the highest value.
Afterwards, the result is translated to a digit that represents the class. This label is merged
with theMmatrix to conform the tick data matrix.

The back-propagation algorithm was employed for training the networks. The cost
function used in this work is denoted in Equation (18):
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E(γ) = −P̈−1 ∑P̈
p=1 ∑K

k=1

[
α
(p)
k log(∆) +

(
1− α

(p)
k

)
log(1− ∆)

]
+ ε,

ε = 0.25P̈−1
[

∑N−1
i=1 ∑

ci+1
r=1 ∑ci

j=1

(
γ
(i)
r,j

)2
]

,
(18)

when αk is a training binary vector activated in their corresponding class position, and P̈ is
the total number of training observations.

The selected structures to perform the labelling are constituted by an input layer with
the number of features as the number of neurons, two hidden layers and an output layer
with a quantity equal to the number of classes. These structures are NNMLP-11_22 and
NNMLP-F_2F. The first hidden layer of NNMLP-11_22 contains 11 neurons, and its second
has 22, while NNMLP-F_2F has the number of input features in the first hidden layer and
double of the features’ quantity in the second one.

2.5. Experimental Setup

The proposed method utilises the grey-scale representation of the image in HSV from
Equation (3) and NDVI from Equation (6) to extract the Gabor features. Therefore, the
grey-scale representations were changed for comparison with the following denotations:
RGB for GRGB from Equation (2), NIR for GNIR from Equation (5) and NDVI for using only
the grey-scaled NDVI image. Moreover, the combinations of RGB-NIR, RGB-NDVI and
HSV-NIR features are also tested. The proposed method is identified as HSV-NDVI with
NNMLP-11_22.

In order to verify the performance of the classifier, NNMLP-11_22 and NNMLP-F_2F
are compared with the SVM. Then, the method using LDA as the reduction method and
SVM as the classifier is denoted as LDA-SVM.

Since the proposed method reduces the features’ dimension, a variant without reduc-
tion classified with the SVM was also tested and compared. This variant is labelled as SVM
in the results.

The experiments were executed using a processor Quad-Core Intel Core i7 2.7 GHz
and 16 GB 2133 MHz RAM.

2.5.1. Test Images

The hyperspectral images employed for testing correspond to the urban landscapes
of the data sets collected by the Computer Intelligence Group (GIC) from the Basque
University (UPV/EHU) available in [50]. A point worth mentioning is that the images
have been employed as they are presented in this repository. However, the Pavia Center
image was divided into Pavia Left and Pavia Right to test different classes and image sizes.
The images’ properties are given in Table 1, and their reference maps for classification are
displayed in Figure 4.

2.5.2. Training Setup

The classifiers and LDA were trained using three schemes for comparison. A different
percentage of observations were randomly selected from each data set in each scenario:
30%, 40% and 50%. Later, the observations are employed to compute the LDA matrix and
to train the classifiers. This process is performed ten times to calculate average results.

Table 1. Properties of the test hyperspectral images.

Image Bands Size Labelled Pixels Classes

Pavia University 103 610 × 340 42,776 9
Pavia Right 102 1096 × 492 103,539 9
Pavia Left 102 1096 × 223 44,613 8
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Figure 4. Reference maps for classification: (a) Pavia University, (b) Pavia Left, and (c) Pavia Right.

2.5.3. Quality Measures

The measures used to evaluate the performance of the algorithms are the Overall
Accuracy (OA) and the κ coefficient given in [47]. In addition, the strength of agreement of
the κ coefficient is evaluated using the categories stated in [51].

The data processing pipeline requires a balance in accuracy, run-time and resources
usage. Therefore, another measure employed is the Reduction Efficiency Coefficient
(REC) [52]. This coefficient measures the reduction performance according to classification
OA and the number of features reduced, achieving values near 1 when there is a good
classification combined with a high reduction of features:

REC = OA

(
1− F̂F

)
, (19)

where F̂ is the number of features employed after the reduction, and F is the original
number of features. Since the objective of the proposed method is the reduction and
organisation of the hyperspectral information, F is set as the original number of bands,
and the number of features given to the classifier is used as F̂ .

3. Results

The results obtained from the experiments described above are reported in this section.
Firstly, a visual comparison between the colour spaces and indices employed is presented.
Then, the results related to the overall accuracy of the classification, such as standard
deviation, κ coefficient and REC, are given. Finally, the training and evaluation time
is displayed.

3.1. Colour and Indices Comparison

The classification accuracy comparison is related to the change of the selected grey-
scale images for Gabor features extractions. Then, the grey-scale representations of the
testing images and their colour images have been contrasted in Figures 5–7.

It can be observed that in HSV images in Figures 5b, 6b and 7b, the pixels representing
an object in the images are coloured with similar tones, and the difference between the
adjacent objects is highlighted. Therefore, their textures suffer changes when they are
transformed to the grey-scaled representation, such as in Figures 5e, 6e and 7e. Besides,
the NIR representations in Figures 5c, 6c and 7c present richer textures for vegetation than
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the grey-scaled RGB ones (Figures 5d, 6d and 7d. Nonetheless, Figures 5f, 6f and 7f highly
feature live vegetation areas since the NDVI index possesses this property.

3.2. Variation in the Number of Training Samples

The LDA method, as well as the selected classifiers, are supervised algorithms. There-
fore, they need a certain amount of information to be trained. However, they usually
have to work with a limited amount of available labelled data, experiencing unexpected
behaviours when the volume of the training set is changed.

The proposed method’s performance is validated by computing the overall accuracy
values resulted from the testing sets given by the three training scenarios. The overall
accuracy’s standard deviation indicates a behaviour pattern. If the classification accuracy
significantly changes when the number of training features is modified, the standard
deviation increases. On the contrary, if the accuracy remains stable, the standard deviation
is low. These results are displayed in Figure 8.

(a) RGB (b) HSV (c) NIR

(d) Grey-scaled RGB (e) Grey-scaled HSV (f) Grey-scaled NDVI

Figure 5. Pavia University’s representations.
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(a) RGB (b) HSV (c) NIR

(d) Grey-scaled RGB (e) Grey-scaled HSV (f) Grey-scaled NDVI

Figure 6. Pavia Right’s representations.

All the evaluated methods presented a standard deviation lower than 0.005, being
the range of accuracy in the interval from zero up to one. The last means that the results
fluctuate lower than 0.5% with the change in training observations. The highest deviation
is presented in Pavia University’s image using the method NIR with LDA-SVM reaching a
value of 0.0043, followed by RGB-NDVI with both ANN classifiers: NNMLP-11_22 ensuing
0.0038, and NNMLP-F_2F resulting in 0.0036. The lowest value is presented in the image
Pavia Left using HSV-NDVI with LDA-SVM, being 0.0001. Finally, the proposed method
(HSV-NDVI with NNMLP-11_22) achieved standard deviations lower than 0.002 for the
test images, implying a fluctuation of around 0.2% in the classification accuracy rates.
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(a) RGB (b) HSV (c) NIR (d) Grey-scaled
RGB

(e) Grey-scaled
HSV

(f) Grey-scaled
NDVI

Figure 7. Pavia Left’s representations.
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Figure 8. Standard deviation of the overall accuracy obtained from the training scenarios.

3.3. Classification Overall Accuracy and κ Coefficient

The classification accuracy’s standard deviation does not exceed 0.005; hence the
testing sets of the 40% training scenario were selected for the comparison of the overall
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accuracy and κ coefficient. Figure 9 contains the overall accuracy results for the methods
used in the evaluation, while Figure 10 shows the resulted κ coefficients.

RGB NIR NDVI RGB-NIR RGB-NDVI HSV-NIR HSV-NDVI
0.9

0.95

1

O
A

Pavia University

SVM LDA-SVM NNMLP-11_22 NNMLP-F_2F

RGB NIR NDVI RGB-NIR RGB-NDVI HSV-NIR HSV-NDVI

0.96

0.98

1

O
A

Pavia Right

RGB NIR NDVI RGB-NIR RGB-NDVI HSV-NIR HSV-NDVI

0.98

0.99

1

O
A

Pavia Left

Figure 9. Overall accuracy resulted from the 40% training scenario.

It can be observed that the methods employing two grey-scaled representations for
feature extraction achieved better OA using the methodology without LDA (denoted as
SVM). Furthermore, the process without LDA has the best accuracy rates for all the grey-
scale representations’ combinations, being the highest HSV-NIR and HSV-NDVI. Besides,
the NNMLP-11_22 classifier resulted in better OA than NNMLP-F_2F and LDA-SVM, but
consistently lower than SVM without LDA. Nonetheless, the average difference between
SVM and NNMLP-11_22 is 0.0091, which represents a change of 0.9%.

RGB NIR NDVI RGB-NIR RGB-NDVI HSV-NIR HSV-NDVI

0.9

0.95

1
Pavia University

RGB NIR NDVI RGB-NIR RGB-NDVI HSV-NIR HSV-NDVI

0.9

0.95

1
Pavia Right

RGB NIR NDVI RGB-NIR RGB-NDVI HSV-NIR HSV-NDVI

0.9

0.95

1
Pavia Left

SVM LDA-SVM NNMLP-11_22 NNMLP-F_2F

Figure 10. κ coefficient resulted from the 40% training scenario.
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The κ coefficients are notably higher for SVM followed by NNMLP-11_22 for all the
grey-scale representations’ combinations, while LDA-SVM’s results are the worst among
all. The lowest value is 0.8863, which is derived from NIR with LDA-SVM. Nevertheless,
the κ coefficients can be grouped in categories according to the strength of agreement
between the OA and the expected accuracy ensued by chance [52]. The κ values should fall
in the categories [0.61, 0.80] and [0.81, 1.00], which correspond to Substantial and Almost
perfect, to evaluate a classification as adequate.

3.4. Reduction Efficiency

The reduction of the dimension should not significantly affect the classification accu-
racy for the organisation stage of the data processing pipeline. Therefore, REC is computed
and shown in Table 2, where only SVM and NNMLP-11_22 are contrasted because they
were the methods that achieved better OA results.

Table 2. Overall accuracy and Reduction Efficiency Coefficient in percentage.

Pavia University

SVM NNMLP-11_22

Method OA (%) Features REC (%) OA (%) Features REC (%)

RGB 98.18 24 75.30 97.19 8 89.64
NIR 98.56 24 75.59 97.55 8 89.98

NDVI 98.58 24 75.61 97.77 8 90.17
RGB-NIR 99.26 48 53.01 97.23 8 89.68

RGB-NDVI 99.32 48 53.04 97.64 8 90.06
HSV-NIR 99.33 48 53.04 97.98 8 90.37

HSV-NDVI 99.34 48 53.05 98.26 8 90.63

Pavia Right

SVM NNMLP-11_22

Method OA (%) Features REC (%) OA (%) Features REC (%)

RGB 99.40 28 72.12 98.27 8 90.57
NIR 99.26 28 72.01 98.86 8 91.11

NDVI 99.38 28 72.10 98.68 8 90.94
RGB-NIR 99.69 56 44.96 98.89 8 91.14

RGB-NDVI 99.69 56 44.96 99.04 8 91.27
HSV-NIR 99.85 56 45.03 98.80 8 91.05

HSV-NDVI 99.86 56 45.04 98.70 8 90.95

Pavia Left

SVM NNMLP-11_22

Method OA (%) Features REC (%) OA (%) Features REC (%)

RGB 99.24 28 72.00 98.81 7 92.03
NIR 99.28 28 72.03 98.90 7 92.12

NDVI 99.18 28 71.95 99.04 7 92.24
RGB-NIR 99.47 56 44.86 98.67 7 91.90

RGB-NDVI 99.45 56 44.85 98.79 7 92.01
HSV-NIR 99.59 56 44.91 98.44 7 91.68

HSV-NDVI 99.51 56 44.88 98.90 7 92.11

The method without LDA reduction had lower results for all the grey-scale representa-
tions due to the number of features employed for classification. In contrast, NNMLP-11_22,
which utilises LDA before the classification, achieved better REC. Then, using this method,
the best REC for Pavia University was produced by HSV-NDVI, HSV-NIR and NDVI. In
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Pavia Right, RGB-NDVI, RGB-NIR and NIR, left the proposed method in the fifth position.
The best results for Pavia Left were NDVI, NIR and HSV-NDVI.

The image of Pavia University was the one with the lower REC for NNMLP-11_22.
Therefore, the classification maps of the methods using RGB-NDVI and HSV-NDVI were
contrasted in Figure 11. RGB-NDVI with LDA-SVM presented more inaccuracies in the la-
belling, although the mismatched pixels do not correspond to adjacent areas. The proposed
method HSV-NDVI with NNMLP-11_22 correctly labelled the majority of the pixels that
conform to an object of the same class: However, it has some inaccuracies for the pixels in
the edge of adjacent objects. The HSV-NDVI using SVM without LDA reduced this kind
of errors.

(a) Reference map

(b) RGB-NDVI, SVM (c) HSV-NDVI, SVM (d) RGB-NDVI, LDA-SVM

(e) HSV-NDVI, LDA-SVM (f) RGB-NDVI, NNMLP-11_22 (g) HSV-NDVI, NNMLP-11_22

Figure 11. Pavia University’s classification maps (detail).

3.5. Training and Evaluation Time

The training time of the algorithms was measured and plotted in Figure 12. It can be
observed that the training of the approaches using SVM as the classifier is less expensive
than those employing an ANN. However, it is noticed that the schemes with two grey-scale
representations generally needed more time for training both classifiers.

The average evaluation time in seconds of SVM and NNMLP-11_22, which consists
of the time needed to label all the observations once the classifier is trained, is displayed
in Table 3. The results show that the evaluation with SVM last at least 1× 102 times the
evaluation performed with NNMLP-11_22.
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Figure 12. Average training time in seconds using the 40% training scenario.

Table 3. Average evaluation time in seconds. NNMLP-11_22 is denoted as ANN.

Pavia University Pavia Right Pavia Left

Method SVM ANN SVM ANN SVM ANN

RGB 4.3461 0.0189 14.6806 0.0384 1.7884 0.0224
NIR 4.3120 0.0229 16.1220 0.0465 1.4680 0.0188

NDVI 3.8108 0.0212 15.3272 0.0427 1.4689 0.0188
RGB_NIR 5.8720 0.0225 17.6227 0.0461 2.3725 0.0182

RGB_NDVI 5.3081 0.0207 16.4316 0.0419 2.2812 0.0185
HSV_NIR 5.8800 0.0194 16.6395 0.0433 2.2403 0.0161

HSV_NDVI 5.3234 0.0196 17.4909 0.0420 2.2420 0.0175

3.6. Application on a Multispectral Dataset

The proposed method has also been tested on multispectral images to evaluate the
performance of the features’ classification. Three QuickBird images from Zurich Summer
dataset [53] were employed, and their features were computed using the method HSV-
NDVI. The images selected from the dataset present different class numbers and labels,
which are related to urban scenes. The 5% of the labelled pixels was used for training, and
the overall accuracy of the remaining pixels’ classification is given in Table 4.

Table 4. Overall accuracy and features computed for multispectral images using HSV-NDVI method.

SVM LDA-SVM NNMLP-11_22

Image Features OA (%) Features OA (%) Features OA (%)

Zh02 56 96.43 3 74.63 3 76.10
Zh03 56 97.75 6 88.77 6 95.25
Zh06 56 95.37 6 67.73 6 69.63

It can be observed that the Gabor filter feature extraction led to the computation of
56 features that were afterwards reduced up to K− 1, being K the total number of classes.
The overall accuracy descends when the SVM is employed with the reduced features.
However, the NNMLP-11_22 classifier slightly increases the accuracy.
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4. Discussion

This section analyses and explores the results reported in the previous section. The
study aims to propose a method that transforms the acquired data into features that could
be organised to reduce the burden of machine learning algorithms in further stages of the
data processing pipeline for urban scenes.

Then, experiments using reduced and non-reduced features were conducted to test the
hypothesis in Reddy et al. [29] that dimensionality reduction techniques do not significantly
impact the performance of machine learning algorithms. Reddy et al. compared PCA
against LDA for the features’ reduction registering competitive results using the SVM
classifier. Therefore, the study of Seng and Ang [28] was taken into consideration to select
the LDA method to reduce the extracted features because their experiments showed a great
advantage of using LDA over PCA in face recognition datasets. However, both works
agree on the need of testing the reduction on other features and classifiers.

Consequently, this work contrasts the base features for reduction using NDVI due to
the analysis of features’ importance for crop information extraction given in Li et al. [46].
Furthermore, the HSV colour space is also compared because its performance surpassed
RGB in crop classification as showed in Sandoval et al. [54]. Then, these indices were
evaluated for urban classes.

The first comparison is performed using the standard deviation of the overall accuracy
to evaluate the effects of the variation in the number of samples on the classification rates.
The results suggest that the compared methods minimally change their behaviour in these
conditions because all the evaluated methods had a standard deviation lower than 5× 10−3;
specifically, the method HSV-NDVI classified with NNMLP-11_22, whose fluctuation is
around 0.2%. Therefore, the compared methods permit to be implemented in applications
with different training sets’ sizes without markedly changes in their results. Nonetheless,
the features obtained from the grey-scaled RGB image generally had a higher deviation
despite the classifier, especially in Pavia University’s image using SVM. This may be due
to the characteristics of the RGB colour space.

The RGB space has a strong correlation between its channels, making its grey-scale
representation less informative than the others presented in this study because it does
not spotlight particular objects. Therefore, the training stage can be affected depending
on the amount of information provided to find the decision rules. Then, the different
grey-scale representations could be used for other applications where their attributes could
highlight objects of interest. In this case, the grey-scaled HSV representation allowed the
differentiation between adjacent objects, and the NDVI highlighted the vegetation areas.
Besides, HSV-NDVI performed a better classification while the features were not reduced.
Therefore, their reduced attributes may contain more discriminative information directly
depending on the application.

In terms of classification rates, the SVM approach without LDA reduction led to the
highest results, followed by the proposed method and the others based on it but with a
combination of grey-scaled representations. The third position corresponds to the reduced
features using the NNMLP-F_2F classifier. Finally, the LDA-SVM method ensued the
worst results. Thus, the SVM classifier was affected by the data transformation using LDA.
Although LDA-SVM’s OA is above 0.9, it is significantly disadvantaged against the SVM
with non-reduced features having a difference of up to 6%. Consequently, the hypothesis
of non-significant impact due to reduction presented by Reddy et al. [29] cannot apply
for the compared features since their work showed a difference in the overall accuracy of
0.79% for their primary dataset’s classification. However, the suggestion of using a more
robust classifier, which is presented in the study of Seng and Ang [28], is feasible.

An ANN can be employed for the classification of texture features. For example,
Li et al. [46] compared SVM against a back-propagated ANN for the classification of texture
and spectral characteristics. Their results are variant in the three datasets utilised. For
binary classification, the SVM obtained better OA than ANN in their experiments. The
lowest difference between the OA of SVM and ANN was 0.11%, while the highest consisted
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of 6.35%. Moreover, the difference in the κ coefficient was up to 32.05%. Nevertheless,
NNMLP-11_22 and NNMLP-F_2F maintained κ values above 0.9 in the three images
employed, which means that these architectures are robust for the reduced Gabor features
and can substitute the SVM, contrarily to the architecture of Li et al. [46]. Besides, NNMLP-
11_22 achieved an overall accuracy increment compared to LDA-SVM. Therefore, the
average difference between the non-reduced features’ classification with SVM and the
proposed method is lower than 1%.

The REC reported in the previous section shows that the SVM method without LDA
reduces the initial number of bands, which are considered as the original features, up to 45%,
and has the highest OA values. However, its REC is steadily diminished compared with
the proposed method because it performed a reduction up to 87.5% of the original features.
Therefore, the technique with non-reduced features can achieve higher classification rates.
Nonetheless, the reduction with LDA and classification with NNMLP-11_22 achieved
similar overall accuracy values with fewer features, which also benefits the evaluation time.
The NNMLP-11_22 took less than 1.3% of the time spent by SVM for valuation.

The ANNMLP-F_2F is an architecture adjusted to the number of input features, and
it has led to reasonable classification rates for pixel-wise attributes. Nevertheless, its
classification performance was overcome by NNMLP-11_22, which has demonstrated its
robustness with other texture features and reduction approaches [55]. However, the flexible
structure of NNMLP-F_2F allows a lower training time for reduced attributes compared
to NNMLP-11_22 because the number of characteristics employed in this study does not
exceed eight units.

The training stage of the NNMLP-11_22 is significantly more expensive than the
compared methods, especially against the SVM approach. However, the evaluation time
is dramatically lower. The training stage of the classifiers is usually performed offline.
Consequently, the training time does not affect the organisation stage as long as the classifier
configuration has been already established. Contrarily, the evaluation time is crucial to
maintain the continuous flow of input data.

The proposed scheme presents some disadvantages. The number of classes needs to
be fixed according to the elements planned for the indexation. Therefore, the data requires a
new transformation process if there are changes in the semantics of the indices. In addition,
further analysis is needed with a more extensive dataset with labelled pixels. Moreover, the
test using multispectral images indicates that the proposed method could be applied for
their labelling and consequently a thematic organisation. The proposed classifier increased
the overall accuracy in comparison with the SVM. Furthermore, a classification near 70%
was achieved in the worst case. However, the accuracy had a considerable difference
between the reduced and non-reduced characteristics in most of the cases. Thus, the
features for this case need to be refined to achieve a higher classification accuracy.

5. Conclusions

A method for the organisation stage of a data processing pipeline was proposed.
This method employs the grey-scaled HSV representation and the grey-scaled NDVI
of a hyperspectral image to extract texture features using a Gabor filter bank. Then,
the features are reduced through LDA and classified utilising an ANN architecture to
compose a tick data matrix with indices that can be retrieved for further analysis in the
hyperspectral images’ processing pipeline for urban remote sensing applications. The
proposed method was tested using different grey-scaled representations and compared
with non-reduced features using the SVM as the classifier. This approach achieved lower
classification accuracy than the method using SVM. However, it can balance the reduction
of features and classification rates according to the simulation results, which is desirable
for performing the organisation stage. Furthermore, the ANN has demonstrated a lower
evaluation time than SVM, allowing the processing of a large amount of data in a short time.
Nevertheless, the proposed method should be refined to perform real-time processing to
be fully implemented in an urban remote sensing application.
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