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Abstract: The underlying topography is an important part of the three-dimensional structure of
forests, and is used for a variety of applications, such as hydrology and water resource management,
civil engineering projects, and forest resource surveying. Due to the three-dimensional imaging
ability and strong penetration, the tomographic synthetic aperture radar (TomoSAR) with a long
wavelength has been shown to be a useful tool to estimate the underlying topography. At present,
most of the current methods use the local means method to estimate the sample covariance matrix, in
which the vertical backscattering power is estimated. However, these methods cannot easily obtain
high-precision underlying topography, and often lose some detailed information. In this paper, to
solve this problem, a non-local means method is introduced to estimate the optimal covariance matrix
by combining weighted neighborhood pixels. To validate the feasibility and effectiveness of this
proposed method, a BioSAR 2008 campaign L-band dataset acquired from the northern forests of
Sweden was used to inverse the underlying topography. The results show that the accuracy of the
underlying topography retrieved by the proposed method is improved by more than 30% when
compared with the traditional method.

Keywords: underlying topography; tomographic synthetic aperture radar (TomoSAR); covariance
matrix (CM); local means (LM); nonlocal means (NLM)

1. Introduction

The underlying topography, as an important parameter of forest resource surveying,
not only affects the spatial distribution of forest resources, but is also closely related to the
stability of forest ecosystems [1,2]. The traditional aerial survey or optical remote sensing
approaches can only obtain the height information of the forest canopy, and they cannot
obtain the real underlying topography of forests [3–5]. Tomographic synthetic aperture
radar (TomoSAR) [6–9], and especially the long-wavelength SAR systems, can penetrate
the forest canopy to the ground and record the backscattering information from the forest
vertical structure [10], which provides us with the possibility of underlying topographic
mapping [11,12]. TomoSAR is an extension of the traditional two-dimensional (2D) imaging
to three-dimensional (3D) imaging by collecting several images at different heights [13].
In other words, TomoSAR can be used to obtain the scattering echo along the elevation
by the computed tomography for each resolution cell [14]. Therefore, it has been used for
underlying topography inversion by effectively separating different scatterers along the
vertical direction in the same resolution cell [15–18].

Over forest areas, there are a lot of distributed scatterers, and their vertical backscat-
tering power is contained in the amplitude and phase information of the covariance matrix
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(CM). Accordingly, the tomographic 3D imaging of forests is processed using the CM [19,20].
For example, the frequently used tomographic methods such as beamforming [6], adaptive
beamforming (Capon) [8], and the multiple signal classification (MUSIC) [9] algorithm all
obtain tomograms on the basis of CMs [21,22]. Therefore, the estimation accuracy of the
CM directly determines the performance of tomographic focusing. In fact, it is impossible
to acquire a true CM, due to the lack of observations. To address this difficulty, the true
CM is generally replaced by a sample covariance matrix (SCM). At present, the SCM is
usually estimated by the local means (LM) method [23–25], which statistically averages all
the pixels in a sliding window. This method is simple and easy to implement. However,
it can only obtain a correct estimation when all the pixel statistics within the window
are consistent. If there are some differences, the estimation of the CM will be inaccurate,
which easily leads to the mixing and superposition of different scattering mechanisms.
Furthermore, the resolution of the tomographic spectrum will be coarse, resulting in a loss
of detailed information and a reduction in the underlying topography estimation accuracy.
For example, a slope can become flat ground after being processed by the LM method.

To overcome the above problems, the non-local means (NLM) method was applied
to perform three-dimensional focusing, which has been already studied in [26,27]. NLM
takes advantage of the neighborhood pixels in a sliding window, that is also the search
window, around the center pixel. It also calculates the similarity between the center pixel
and the neighborhood pixels to obtain the weight. Based on the weight, the optimal
CM is calculated. Compared to the LM method, the NLM method can preserve the true
scattering characteristics in each resolution cell after averaging. Based on the estimated
CM, the reconstructed tomograms can retain the details well, especially over undulating
terrain. However, reference [26] only considered radiometric similarity between two
pixels but ignored the spatial similarity, which probably resulted in homogeneous area
misinterpretation or excessive smoothness. Moreover, it is necessary to manually select a
homogeneous area prior to filtering. The methodology in [27] can solve the above problem
by adaptively considering both the radiometric similarity and the spatial similarity between
two pixels. This method is based on the complex Gaussian distribution to calculate the
similarity distance. However, over forest areas, the scattering process is complex. In
particular, the pure volume scattering hypothesis no longer applies under the observation
of SAR sensors with long wavelength such as L band and P band. Besides the volume
scattering, there are ground scattering and double-bounce scattering. This means that it
is not suitable to use complex Gaussian distribution to express statistical characteristics.
In addition, it is still not yet fully clear how NLM performs in underlying topography
estimation. In view of this, this paper proposes an improved NLM in TomoSAR to estimate
the underlying topography. This method adopted the affine invariant distance to replace
the distance used in [27], since it is invariant to any affine transformation of the matrices.
This distance does not assume a particular statistical distribution. Thus, the proposed
NLM method is suitable for the application of forests and can improve the accuracy of
underlying topography estimation.

The rest of this work is formed as follows. Section 2 first presents the tomographic
SAR model, and briefly describes the principles of the NLM method. Three classical
tomographic estimators based on the NLM method are then described. Section 3 gives
a description of the research area and the experimental dataset, and then presents and
analyzes the experimental results. A further discussion about the tomograms in other
channels and forest height estimation is shown in Section 4. Finally, the conclusions of this
paper are drawn in Section 5.

2. Non-Local Means (NLM) Tomographic Synthetic Aperture Radar
(TomoSAR) Method
2.1. SAR Tomography Model

TomoSAR is a 3D extension of the traditional 2D SAR imaging [28]. The technique
makes multiple observations of the same target at different heights in the normal direction
(i.e., cross-range c) of the traditional azimuth x-range r plane. It can achieve 3D imaging of
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target objects by obtaining another synthetic aperture in the height dimension (as shown
in Figure 1).

Remote Sens. 2020, 17, x FOR PEER REVIEW 3 of 18 
 

 

2. Non-Local Means (NLM) Tomographic Synthetic Aperture Radar (TomoSAR) 
Method 
2.1. SAR Tomography Model 

TomoSAR is a 3D extension of the traditional 2D SAR imaging [28]. The technique 
makes multiple observations of the same target at different heights in the normal direc-
tion (i.e., cross-range ܿ) of the traditional azimuth ݔ-range ݎ plane. It can achieve 3D 
imaging of target objects by obtaining another synthetic aperture in the height dimension 
(as shown in Figure 1). 

Through multiple SAR observations at different times with slightly different inci-
dence angles over the same place, ܰ SAR images can be acquired. Some preprocessing 
steps which contain co-registration, deramping, and phase calibration with respect to a 
common master image must be done [29]. For an arbitrary pixel (ݔ, -the focused com ,(ݎ
plex value ݑ(ݔ, ,ݔ)ݑ :for the nth acquisition is expressed as [6,30] (ݎ (ݎ =  ,ݔ)ߚ ,ݎ ݊				,ݖ݀(ݖ௭݆݇)exp(ݖ = 1,⋯ ,ܰ (1) 

where ݔ)ߚ, ,ݎ -is the com ݆ ,ݖ is the complex reflectivity along the vertical direction (ݖ
plex unit, and ݇௭ = -is known as the vertical number. ܾୄ is the per (ߠ)݊݅ݏݎߣ/ୄܾߨ4
pendicular baseline between the master image and this ݊th image, ߣ represents the 
wavelength, ݎ is the slant distance between the master image and the target, and ߠ is 
the incidence angle of the radar. 

As the coherent noise in forest areas is strong, a multi-look approach is generally 
needed to suppress it. If we assume that the number of looks is ܮ, then the tomographic 
SAR model can be rewritten as: 

 

Figure 1. Geometry and spectral estimation of the tomographic synthetic aperture radar 
(TomoSAR) configuration. ࢍ(݈) = (݈)ࢼ(ࢠ)  ݈   ,(݈)ࢋ = 1,⋯ ,  (2) ܮ

where ࢍ(݈) represents the vector composed of the ܰ measurements; ࢼ(݈) denotes the 
unknown vector with ܦ complex reflectivity elements; ࢋ(݈) is a ܰ ൈ 1 noise vector; and (ࢠ)  indicates a ܰ ൈ ܦ  steering matrix with (ࢠ) = ሾܽ(ݖଵ), ⋯,(ଶݖ)ܽ , ሿ(ݖ)ܽ , where ݖௗ(݀ = 1,⋯ ,  .represents the discrete height position (ܦ

Figure 1. Geometry and spectral estimation of the tomographic synthetic aperture radar
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Through multiple SAR observations at different times with slightly different incidence
angles over the same place, N SAR images can be acquired. Some preprocessing steps
which contain co-registration, deramping, and phase calibration with respect to a common
master image must be done [29]. For an arbitrary pixel (x, r), the focused complex value
un(x, r) for the nth acquisition is expressed as [6,30]:

un(x, r) =
∫

β(x, r, z) exp(jkzz)dz, n = 1, · · · , N (1)

where β(x, r, z) is the complex reflectivity along the vertical direction z, j is the complex
unit, and kz = 4πb⊥n/λrsin(θ) is known as the vertical number. b⊥n is the perpendicular
baseline between the master image and this nth image, λ represents the wavelength, r is
the slant distance between the master image and the target, and θ is the incidence angle of
the radar.

As the coherent noise in forest areas is strong, a multi-look approach is generally
needed to suppress it. If we assume that the number of looks is L, then the tomographic
SAR model can be rewritten as:

g(l) = A(z)β(l) + e(l), l = 1, · · · , L (2)

where g(l) represents the vector composed of the N measurements; β(l) denotes the un-
known vector with D complex reflectivity elements; e(l) is a N × 1 noise vector; and
A(z) indicates a N × D steering matrix with A(z) = [a(z1), a(z2), · · · , a(zD)], where
zd(d = 1, · · · , D) represents the discrete height position.

For the distributed scatterers, SAR tomography is interested in the reflectivity power
along the vertical direction, which can be given by:

P(x, r, z) = E
(
|β(x, r, z)|2

)
(3)

where E(·) denotes the statistical expectation operator.
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Equation (3) can be actually regarded as a problem of spectral estimation. To date, a lot
of spectral estimation approaches have been proposed to implement tomographic focusing,
which can be categorized into three groups: (1) non-parametric spectral estimation [6,13,14];
(2) parametric spectral estimation [9,15]; and (3) compressive sensing [16,19,31]. Among
these methods, the most widely used classical spectral estimation methods are Beamform-
ing, Capon, and MUSIC.

2.1.1. Beamforming

Beamforming was the earliest algorithm used to solve the overlay problem [32,33].
The basic idea is that this “finite impulse response filter” allows signals of a specific spatial
frequency to pass without distortion, and attenuates the signals of other frequencies. The
power of the reflectivity estimated by beamforming is written as [6,34]:

P̂BF =
a(zd)

HRa(zd)

N2 (4)

where the SCM R is defined by:

R =
1
L

L

∑
l=1

g(l)g(l)H (5)

where (·)H denotes the Hermitian operator.

2.1.2. Adaptive Beamforming (Capon)

Some of the shortcomings of beamforming have been solved by the Capon approach,
including the low height resolution, irregular sampling, and serious sidelobes. Its basic
principle is similar to that of beamforming, but it does not assume that the received signal
is the spatial white noise distribution whose variance is the unit matrix I, which is replaced
by R. The reflectivity power estimated by Capon can be expressed as [8,35]:

P̂CP =
1

a(zd)
HR−1a(zd)

(6)

2.1.3. Multiple Signal Classification (MUSIC)

The MUSIC algorithm decomposes R into signal and noise by eigen decomposition.
The reflectivity power can be given by [9,33]:

P̂MUSIC =
1

a(zd)
HUUHa(zd)

(7)

where U represents the eigenvector of the signal.

2.2. The NLM Algorithm

According to the analysis in the previous section, beamforming, Capon, and MUSIC
all estimate the backscattering power spectrum from the CM. In order to obtain a CM that
is closest to the real values, we utilize the NLM method to optimize the estimation. NLM
first uses a search window (e.g., 11 × 11) with the target pixel as the center, and then uses a
matching window (e.g., 3× 3) to calculate the SCM of the center pixel and its neighborhood
pixels. After this, the similarity weight, which is composed of the spatial and radiometric
similarity between each neighborhood pixel and the center pixel, is calculated by traversing
the entire search window. Finally, the weighted SCM of all the neighborhood pixels is used
to describe the CM of the center pixel. The NLM method not only makes maximum use of
the neighborhood information to ensure the authenticity of the estimation for the center
pixel, but it also eliminates the interference information, such as noise or heterogeneous
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information in the neighborhood, by means of the weighting. This improves the estimation
accuracy of the center pixel.

The value of the center pixel in the estimation window W can be estimated using the
NLM method, which is given by [36]:

F̂(x0) =
∑xi∈W wx0,xi Cxi

∑xi∈W wx0,xi

(8)

where x0 indicates the target pixel (the central pixel in the estimation window), index xi de-
notes the neighborhood pixel, and Cxi represents the observation value of the neighborhood
pixel. The weights are expressed as:

wx0,xi = fs(x0, xi) fr(x0, xi) (9)

where the spatial similarity fs(x0, xi) is defined by [27]:

fs(x0, xi) = δγs(||x0 − xi||) (10)

and radiometric similarity fr(x0, xi) is defined by:

fr(x0, xi) = δγr

[
1

P2 ∑
p∈P

d2(Cxi+p, Cx0+p
)]1/2

(11)

where P is a 2D vector about positions of pixels with reference to the matching window
center, and P2 is the total pixel number in the matching window [27]. Both the spatial and
radiometric similarity kernels can be estimated from [27]:

δγ(x) = exp
[
−
(

γ−1x
)2
]

(12)

where γ is the user-defined scaling factor; γs is the spatial extent of the filter, and can
refer to the window size used in other filters such as the Lee filter [37]; and γr controls the
amount of filtering based on the radiometric similarity between these two pixels. They
are usually designated as γs = 3 and γs = 0.9 [36]. The function d(Cx0 , Cxi ) is the distance
between two Hermitian matrices. This distance is defined as the affine invariant (AI)
distance, because it keeps the same under any affine transformation of the matrices, and
can be expressed as [27,38]:

dAI

(
Cxi , Cxj

)
=
∣∣∣∣∣∣log

(
C−1/2

xj
Cxi C

−1/2
xj

)∣∣∣∣∣∣
F

(13)

where log is a logarithm function and ‖·‖F is the Frobenius norm.
Using this method for the CM is similar to “filtering”, i.e., assigning different weights

to filter out the pixels with low similarity around the target pixel and selecting the pixels
with high similarity to jointly estimate the optimal CM value of the target pixel.

2.3. The Traditional Spectral Estimation Methods Based on NLM

The three classical spectral estimation methods (beamforming, Capon, and MUSIC)
are all calculated by using the SCM obtained by the LM method. In the proposed approach,
NLM is applied to the CM estimation of the tomographic SAR model to improve its
estimation accuracy and the inversion accuracy of the underlying topography. The steps
are as follows:

(1) Solve the SCM R of all the pixels in the area of interest.
(2) Specify the size of the search window W and matching window P.
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(3) Calculate the spatial similarity fs(x0, xi) and radiometric similarity fr(x0, xi) of the
matching window between the central pixel x0 and neighboring pixel xi. (A pixel
(m, n) in the research region is located at x0 within its search window W).

(4) Calculate the weight of the neighborhood pixel xi based on the spatial and
radiometric similarity.

(5) Calculate the optimal weighted CM of the center pixel by the using of the SCM of all
the neighborhood pixels (except for the center pixel) in the search window and their
corresponding weights.

(6) Substitute the estimated CM into the spectrum estimation formula to estimate the
pixel’s spectrum.

(7) Traverse the whole study area, and repeat steps (3) to (6) to obtain the spectra over
the whole area.

In addition, the details of the classical spectral estimators based on NLM are provided
in Table 1.

Table 1. Details of the classical spectral estimators based on NLM.

Initialization R = 1
L

L
∑

l=1
g(l)g(l)H

Traverse
repeat

fs(x0, xi) = δγs (||x0 − xi||)

fr(x0, xi) = δγr

[
1

P2 ∑
p∈P

d2(Rxi+p, Rx0+p
)]1/2

wx0,xi = fs(x0, xi) fr(x0, xi)

R̂(x0) =
∑xi∈W wx0,xi Rxi

∑xi∈W wx0,xi

P̂BF =
a(zd)

HR̂a(zd)
N2 P̂CP = 1

a(zd)
HR̂−1a(zd)

P̂MUSIC = 1
a(zd)

HUUHa(zd)

Until (finish)

The principle of optimal CM estimation based on NLM is shown in Figure 2. The
central pixel x0 is the weighted average of all the neighborhood pixels xi in the search
window W. Neighbors with a high similarity are given larger weights wx0,x1

i
and wx0,x2

i
,

while the neighborhood pixels with large differences are given smaller weights wx0,x3
i
.
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3. Experiments and Results

For the purpose of investigating the feasibility and validity of the proposed method,
TomoSAR was applied to a real airborne SAR dataset to obtain the underlying topography,
and a comparison was made with LiDAR measurements.
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3.1. Study Area and Dataset

This paper selected a boreal forest in Krycklan, located in the north of Sweden, as the
study area, which is made up of coniferous trees such as Scots pine and Norway spruce,
and a few birch trees. The average annual temperature is about 1 ◦C and the average
annual precipitation is around 600 mm. Moreover, the terrain topography is hilly, varying
from 190 m to 290 m. The average tree height is about 18 m and the maximum tree height
is around 30 m [39,40].

In order to address some important specific requirements of the European Space
Agency (ESA) BIOMASS Earth resources exploration program, a stack of six L-band SAR
images in fully polarimetric mode was obtained over the study area by the German
Aerospace Centre (DLR) during the ESA BioSAR 2008 campaign on 15 October 2008. The
BioSAR 2008 project was carried out as a cooperation between the ESA, the DLR, the
Swedish Defense Research Agency (FOI), the Swedish University of Agricultural Sciences
(SLU), the Biosphere Remote Sensing Research and Education Centre (CESBIO), and the
Polytechnic of Milan in Italy. They undertook the preprocessing steps for this dataset,
including co-registration, flat-earth phase removal and phase error calibration [40]. Six
uniform perpendicular baselines were distributed along the vertical direction. The interval
between two adjacent baselines was about 6 m. The incidence angle varied from 25◦ at the
near range to 55◦ at the far range [40]. The vertical resolution varied in the range of 6 m
to 25 m. Parameters of the E-SAR airborne system and the information of perpendicular
baselines are presented in Tables 2 and 3, respectively [40].

Table 2. The parameters of the E-SAR airborne system [40].

Items Parameters

Wavelength 0.23 m (L-band)
Polarimetric channel HH + HV + VV

Incidence angle 25–55◦

Center slant range 3900 m
Range resolution 2.12 m

Azimuth resolution 1.20 m

Table 3. The baseline information for the InSAR pairs [40].

Identifier Acquisition Date Baseline (m)

08biosar0201 × 1

15 October 2008

0
08biosar0203 × 1 −6
08biosar0205 × 1 −12
08biosar0207 × 1 −18
08biosar0209 × 1 −24
08biosar0211 × 1 −30

Moreover, in order to validate the results of TomoSAR, a laser radar S/N425 TopEye
system onboard a helicopter platform was used to generate a point cloud dataset over this
study area on 5 August and 6 August 2008. From these point cloud data, the digital terrain
model (DTM) was obtained.

3.2. Experimental Results and Analysis
3.2.1. Comparison of the Tomograms

A profile along range (the red dotted line, as seen in Figure 3) was selected as an ex-
ample for tomogram analyzing. This profile was fixed at the 300th azimuth resolution cell.

According to Tebaldini et al. [11], the backscattering reflectivity of the HH polariza-
tion channel mainly comes from the ground, and the backscattering power of the HV
polarization channel is mainly concentrated on the canopy volume scattering. Figure 4
shows the spectrum estimation results in the HH polarization channel obtained by the
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classical spectral estimation methods (beamforming, Capon, and MUSIC) based on the LM
and NLM methods, respectively. It was found that the tomograms estimated by the three
methods based on the LM method failed to separate the ground and canopy backscattering
contributions in many places (e.g., the three red circles in Figure 4a,c,e) for which the
ground contributions were weak, mistreating the scattering phase center of the canopy as
the ground scattering phase center. However, the tomograms based on the NLM method
could basically distinguish the scattering phase centers of the ground and the canopy, such
as those marked by the three yellow circles in Figure 4b,d,f. In addition, the tomograms
estimated by the NLM method were clearer and more continuous than those estimated by
the LM method, which was mainly due to the more real and accurate CM estimated by the
NLM method. As a result of the NLM method considering more non-local neighborhood
information, the target pixel reflects its own optimal information by looking for pixels with
higher spatial and radiometric similarity. This avoids the erroneous information which can
result from a direct and sloppy adoption of the LM method, such as noise or pixels that
differ greatly from their characteristics.
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Figure 5 shows the underlying topography obtained from the tomogram estimation
results. Obviously, the spectral estimation method based on the LM method failed to
estimate the phase center of the ground in many parts, and mistook the height of the
canopy as the height of the ground, especially in the methods of beamforming and Capon.
Two important parameters in the NLM method were selected as p = 3 and w = 15, and the
optimal value of w was selected through a large number of experiments (see Figure 6). The
selection of the above two parameters depend on the study area. In general, several profiles
or plots are selected to optimize the parameters before the application for whole areas.
According to the experience in this paper, the range of p is 3–5, and the range of w is 10–25.

In order to quantitatively investigate the effectiveness of the proposed method, the
estimation accuracies of different methods were calculated by the root mean square error
(RMSE) values. According to Table 4, after the application of the NLM method, the accuracy
of the three classical spectral estimation methods of beamforming, Capon, and MUSIC was
significantly improved by 34.87%, 38.28%, and 31.61%, respectively.

Table 4. RMSE comparison of the different methods used for the profile analysis.

Item Beamforming (m) Capon (m) MUSIC (m)

LM 3.24 2.87 1.55
NLM 2.11 1.77 1.06

Improvement 34.87% 38.28% 31.61%
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Furthermore, we analyzed the computational impact on the used NLM method quan-
titatively, as shown in Table 5. For the selected range profile, the running time of the
NLM methods increased by approximately 14 times that of the LM methods for the same
computer (a desktop PC with an i7-8700 6-core processor).

Table 5. Running time of different methods.

Item Beamforming (s) Capon (s) MUSIC (s)

LM 26 25 24
NLM 369 371 374
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3.2.2. Inversion of the Underlying Topography

For verifying the universality of the proposed method, we applied the method to the
whole study area for the inversion of the underlying topography, and compared the results
with those of the LM method.

From Figure 7, it can be observed that the underlying topography estimated based
on the LM and NLM methods is close to the LiDAR DTM measurements. However, there
are many areas where the underlying terrain has been overestimated (e.g., the six black
circles in Figure 7) in the results based on the LM method. However, the results based on
the NLM method (e.g., the six white circles in Figure 7) are less likely to show this. The
main reason for this is that the LM method fails to distinguish the scattering phase center
between the ground and the canopy in some areas, which leads to the canopy height being
mistaken as the ground height. This is the same as the tomogram analysis. In addition,
the NLM method also shows a better inversion performance in places with drastic terrain
height changes, and it preserves more detailed information (e.g., the three white rectangles
in Figure 7). Therefore, the NLM method is applicable for use in areas with large terrain
fluctuation, and can achieve a high inversion accuracy. Table 6 lists the RMSEs of the two
methods for the inversion of the underlying topography, which proves quantitatively that
the NLM method improves the accuracy of the inversion of the underlying terrain by more
than 30% when compared with the LM method.
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Figure 7. Underlying topography from LiDAR and TomoSAR: (a,b) are the LiDAR DTM; (c), (e), (g) are, respectively, the
beamforming, Capon, and MUSIC results based on the LM method; and (d), (f), (h) are, respectively, the beamforming,
Capon, and MUSIC results based on the NLM method.

Table 6. Comparison of the RMSEs of the underlying topography inversion results.

Beamforming (m) Capon (m) MUSIC (m)

LM 2.85 2.56 1.61
NLM 1.83 1.67 1.12

Improvement 35.78% 34.76% 30.43%

Figure 8 shows the relationships between the LiDAR measurements and the inversion
results obtained by different methods. Moreover, we calculated the correlation coefficients
between the LiDAR measurements and the estimation results (see in Figure 8). The results
show that the estimation results of the NLM method (as shown in Figure 8d–f) were more
relevant to LiDAR measurements than those of the LM method (as shown in Figure 8a–c).
It suggests that the inversion results of the NLM method are more reliable.
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Figure 8. The 2D joint distribution between the LiDAR and TomoSAR DTM of different methods: (a) LiDAR DTM and DM
by LM beamforming; (b) LiDAR DTM and DTM by LM Capon; (c) LiDAR DTM and DTM by LM MUSIC; (d) LiDAR DTM
and DTM by NLM beamforming; (e) LiDAR DTM and DTM by NLM Capon; (f) LiDAR DTM and DTM by NLM MUSIC.

4. Discussion
4.1. Optimal Covariance Matrix Estimation

From Figure 9, it can be seen that the SCM calculated using the LM method is signifi-
cantly different from the optimal CM obtained by the NLM method. Figure 9a represents
the amplitude information of the SCM estimated by the traditional LM method. Its main
diagonal elements have almost identical values, which is the result of using the local mean
values. However, the amplitude information of the CM estimated by the NLM method (see
Figure 9b) clearly distinguishes the proportions of the different information. Furthermore,
there are also some differences between the two methods with regard to phase information
(see Figure 9c,d). Thus, the scattering phase centers of the ground and the canopy can be
detected separately. This is also the main reason why the accuracy of the NLM method
is improved compared with that of the traditional LM method. Therefore, the accurate
estimation of CM information plays an important role in underlying topography inversion.
The estimation accuracy of the NLM method is better than that of the LM method, but its
computation time of neighborhood search is higher, which may limit the application of
this method for the for the large scale or global scale monitoring. Moreover, there may
exist the potentially distortive effect of NLM approach on radiometric information, which
may be caused by the topography. In the future, our work will focus on improving the
computational efficiency of this method and removing the topography-induced radiometric
distortion as much as possible.

4.2. Tomograms in the HV and VV Channels

Tomograms of the aforementioned selected profile in the HV channel and VV channel
were also estimated. The estimated spectra obtained by the traditional methods can
basically only detect the backscattering phase center of the canopy in the high tree region
(approximately the 200th to 600th pixels), as shown in Figure 10. Furthermore, this is mainly
embodied in the beamforming and Capon methods. In contrast, although the method
presented in this paper shows a certain improvement effect in the high tree area, there
are still some areas where the backscattering phase center of the ground is not detected,
especially for beamforming. This is mainly because the backscattering reflectivity of the HV
polarization channel is mainly concentrated in the canopy. The inversion performances of
the proposed method and the traditional method in the VV polarization channel are shown
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in Figure 11. It can be found that the backscattering power level of the VV polarization
channel is between that of the HH polarization channel and that of the HV polarization
channel, which is the same as the conclusion made by Tebaldini et al. [11]. In other words,
the backscattering power from the canopy in the VV polarization channel is stronger than
that from the HH polarization channel, and the backscattering power from the ground is
stronger than that from the HV polarization channel.
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Figure 9. Comparison of the amplitude and phase of the CM for the different methods: (a), (c) are,
respectively, the amplitude and phase of the CM of the LM method; and (b), (d) are, respectively, the
amplitude and phase of the CM of the NLM method.
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Figure 10. Tomograms of the HV polarization channel at the selected profile estimated by the different
TomoSAR methods: (a), (c), and (e) are, respectively, the results of LM-based beamforming, Capon,
and MUSIC; and (b), (d), (f) are, respectively, the results of NLM-based beamforming, Capon, and
MUSIC. The solid black line is the LiDAR DTM, and the dashed white line is the estimated values.
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height estimation at the selected profile, the ground scattering phase was removed, as 
shown in Figure 12. In some areas (e.g., the three dotted circles), the traditional methods 
may cause canopy underestimation by mistaking the backscattering phase center of the 
ground for that of the canopy. However, the canopy height can be accurately estimated 
at the three corresponding solid circles in the results of the proposed method. In addi-
tion, the tomograms obtained by beamforming and Capon are similar, but the resolution 
of the latter is higher. The tomogram obtained by MUSIC is not as complete as those of 
the previous two methods. In the future, we will try to solve this problem by using the 
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Figure 11. Profile line spectrum estimation results for the VV polarization channel: the solid black line is the LiDAR DTM,
and the dashed white line is the estimated values; (a), (c), and (e) are, respectively, the estimation results of LM-based
beamforming, Capon, and MUSIC; and (b), (d), (f) are the estimation results of NLM-based beamforming, Capon, and
MUSIC, respectively.

4.3. Forest Height Estimation

Besides the underlying topography, forest height is another significant parameter of
forest resource surveying; furthermore, it is very important to estimate the forest biomass.
In addition, the backscattering power of the canopy is mainly concentrated in the HV
polarization channel, as we mentioned above. In order to clearly show the forest height
estimation at the selected profile, the ground scattering phase was removed, as shown
in Figure 12. In some areas (e.g., the three dotted circles), the traditional methods may
cause canopy underestimation by mistaking the backscattering phase center of the ground
for that of the canopy. However, the canopy height can be accurately estimated at the
three corresponding solid circles in the results of the proposed method. In addition, the
tomograms obtained by beamforming and Capon are similar, but the resolution of the latter
is higher. The tomogram obtained by MUSIC is not as complete as those of the previous
two methods. In the future, we will try to solve this problem by using the data of multiple
polarization channels at the same time, and we will investigate in detail the performance
of the proposed method in forest height inversion.
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and MUSIC; and (b), (d), and (f) are the estimation results of NLM-based beamforming, Capon, and MUSIC.

5. Conclusions

In this paper, we utilized the idea of NLM filtering into the estimation of the CM
in tomographic estimation, to solve the problems caused by the inaccurate estimation of
the CM, such as the mixing and superposition of different scattering mechanisms, the
inaccurate tomographic spectrum, the loss of detail information, and the low estimation
accuracy of the terrain information. The three classical spectral estimation methods (i.e.,
beamforming, Capon, and MUSIC) based on the NLM method are mainly used to perform
tomographic focusing. Specifically, these three methods first calculate the SCM of all
the pixels in the target region. Secondly, for each target pixel, in its search window, the
similarity, including the spatial and radiometric similarity between each neighborhood
pixel and the target pixel, is calculated through a matching window. The similarity weight
between each neighborhood pixel and the center pixel is then calculated using the spatial
and radiometric similarity. Finally, the optimal CM of the target pixel is estimated from
the SCM of each neighborhood pixel and its corresponding weights. For the purpose
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of verifying the feasibility and effectiveness of this method, we used BioSAR 2008 data
obtained from the boreal forest of northern Sweden for the experimental verification.
Tomogram analysis and underlying topography inversion were carried out. Moreover, in
this paper, we have made a comparison between the consequences of the traditional LM
method and the results of the NLM method. The consequences show that the NLM method
performs significantly better than the LM method. The NLM method can not only better
separate the scattering phase centers between the ground and the canopy, but it also shows
a better inversion performance in the places where the topographic relief changes greatly.
Moreover, the inversion accuracy of the NLM method is improved by more than 30% when
compared with that of the LM method.

In conclusion, the NLM method considers giving different weights to the non-local
neighborhood pixels with different similarity to the target pixel, to suppress the interference
information and achieve more accurate estimation of the target pixel value. However, this
makes the calculation slower and the estimation efficiency is reduced, which is something
we need to investigate and improve upon in the future.
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