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Abstract: Semantic segmentation of remote sensing imagery is a fundamental task in intelligent
interpretation. Since deep convolutional neural networks (DCNNs) performed considerable insight
in learning implicit representations from data, numerous works in recent years have transferred the
DCNN-based model to remote sensing data analysis. However, the wide-range observation areas,
complex and diverse objects and illumination and imaging angle influence the pixels easily confused,
leading to undesirable results. Therefore, a remote sensing imagery semantic segmentation neural
network, named HCANet, is proposed to generate representative and discriminative representations
for dense predictions. HCANet hybridizes cross-level contextual and attentive representations to em-
phasize the distinguishability of learned features. First of all, a cross-level contextual representation
module (CCRM) is devised to exploit and harness the superpixel contextual information. Moreover,
a hybrid representation enhancement module (HREM) is designed to fuse cross-level contextual
and self-attentive representations flexibly. Furthermore, the decoder incorporates DUpsampling
operation to boost the efficiency losslessly. The extensive experiments are implemented on the
Vaihingen and Potsdam benchmarks. In addition, the results indicate that HCANet achieves excellent
performance on overall accuracy and mean intersection over union. In addition, the ablation study
further verifies the superiority of CCRM.

Keywords: semantic segmentation; remote sensing imagery; cross-level contextual information;
representation enhancement

1. Introduction

Remote sensing imagery (RSI) semantic segmentation has been a fundamental task
in interpreting and parsing the observation areas and objects [1]. It strives to assign pixel-
level categorical labels for the image. In recent years, there has been a growing interest
in performing semantic segmentation for multi-source remote sensing data since it is of
great significance in spreading to various applications, such as urban planning [2,3], water
resource management [4,5], precision agriculture [6,7], road extraction [8,9] and so forth.

Conventional methods combined hand-engineered features with machine learning
models, such as random forests (RF) [10], support vector machine (SVM) [11], Markov
random fields (MRFs) [12] and conditional random fields (CRFs) [13]. Unfortunately, these
methods are conditioned on prior knowledge and expertise.

Afterward, DCNNs (deep convolutional neural networks) achieved satisfying per-
formance by learning feature representations and classifier parameters simultaneously,
which is deemed to learn more targeted features than conventional methods. Then, FCN
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(fully convolutional network) [14] has been devised to boost the accuracy by replacing
the fully connected layer with the convolutional layer in standard CNN. To mitigate the
transformation loss caused by FCN, an encoder-decoder architecture, termed as SegNet,
was presented [15]. The core contribution of SegNet lies in mapping low-resolution features
to input resolution for pixel-wise prediction. In the decoder stage, the max-pooling indices
of the corresponding encoder, which partially retain discerning spatial information, are
incorporated to perform non-linear upsampling. As a result, the boundary delineation is
boosted without additional parameters. In addition, the satisfactory results both in accuracy
and efficiency are demonstrated on several datasets. Specifically, encoder-decoder-based
networks have been the dominant solutions in the semantic segmentation task of both
natural and remote sensing imagery.

Unlike natural images, which are often more straightforward, current high-resolution
remote sensing imagery (HRRSI) covers a wide range of Earth’s surface and involves
many objects. These objects presented in the same scene exhibit are varying in shape,
color, scale, texture and spectrum. Moreover, their features are easily affected by weather,
illumination, occlusion and imaging conditions [16]. Therefore, the high intra-class vari-
ance and low inter-class variance are widely distributed in HRRSI. However, the baseline
encoder-decoder network is inherently limited by local receptive fields and short-range
context information due to the fixed geometry structure. Consequently, the primary chal-
lenge is to produce refined representations, making the geo-objects more distinguishable
and separable.

Striven to strengthen the learned representations with contextual information, nu-
merous variants of encoder-decoder networks were investigated. Ronneberger et al. [17]
proposed U-Net, which utilizes multiple skip connections to aggregation context in en-
coder and decoder. In addition, the results reveal slight improvement. Alternatively,
Chen et al. [18] initially exploited Atrous Spatial Pyramid Pooling (ASPP) to capture multi-
scale context. Furthermore, recently published DeepLab V3+ [19] were enhanced versions
embed a functional decoder module to optimize the feature maps. Inspired by DeepLab
V3+, Li et al. [20] combined atrous convolution with deep neural forest, leading to an utterly
differentiable decision forest, which could generate and leverage superpixel’s contextual
information. In addition, the experiments demonstrate the desired results on the ISPRS 2D
Potsdam dataset.

Although enlarging receptive fields has made remarkable achievements, the expand-
ing of receptive fields caused edge distortions. More specifically, lacking contextual in-
formation leads to uncertainty in predictions and missing spatial details provides ob-
scure boundaries.

It is concluded that the context of one position typically refers to a set of positions,
e.g., the surrounding pixels. The previous study focuses on the spatial scale of contexts.
For instance, DANet (dual attention network for scene segmentation) [21], CFNet (Co-
occurrent features in semantic segmentation) [22] and OCNet (object context network for
scene parsing) [23] consider the relations between a position and its contextual positions.
Incorporated with the produced attention map, the refined representations introducing
the contextual positions’ representations with higher or lower weights in accordance with
the similarity. Inspired by the self-attention mechanism, SCAttNet (semantic segmentation
network with spatial and channel attention mechanism for high-resolution remote sensing
images) [24] was proposed to learn the attention map to aggregate contextual information
for every point adaptively in RSI. Similarly, LANet (local attention embedding to improve
the semantic segmentation of remote sensing images) [25] designed a patch attention
module to enrich the local context information in addition to the global ones, leading to a
competitive performance with fewer computations.

Primarily, the attention mechanisms have successfully verified the capability to capture
position-wise dependencies of RSI. In addition, injecting these dependencies into the learnt
representations is essential to strengthening the distinguishability of geo-object details to
some extent. More importantly, while lots of research has been carried out on extracting
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and leveraging contextual information, there is still very little scientific understanding
of modeling the correlations of the representations that come from different levels. We
suppose that this is the main reason that makes the results far from optimal. A superpixel
denotes an area generated by grouping pixels in remote sensing data, providing a more
natural representation of image data than pixels. Therefore, in addition to independent
pixel-level and superpixel-level representations, the cross-level correlations are beneficial
for optimizing these two-level features, increasing the probability of correctly classifying
the pixels.

Motivated by that the class label assigned to one pixel is the category of the superpixel
that the pixel belongs to, we augment the representation of one pixel by exploiting the
representation of the superpixel region of the corresponding class. Here, the HCANet (hy-
bridizing cross-level contextual and attentive representations neural network) is proposed
for remote sensing imagery semantic segmentation. In addition, the main contributions are
as follows:

(1) A cross-level contextual representation module (CCRM) is devised to exploit
and harness the superpixel contextual information. After learning superpixels under the
supervision of ground truth, the superpixel regions are generated and represented by aggre-
gating the pixels lying in the corresponding regions. Moreover, the cross-level contextual
representation is produced by quantifying and formulating the correlations between pixel
and superpixels. At last, the correlations are injected to augment the representativeness
and distinguishability of features.

(2) A hybrid representation enhancement module (HREM) is designed to fuse cross-
level contextual and self-attentive representations flexibly. As discussed above, the self-
attention modules can facilitate pixel-wise representations effectively. Thus, a sub-branch
that introduces non-local block to refine encoded feature maps is implemented. Afterward,
this module adopts a concatenation operation followed by a 1 × 1 convolution layer to
realize the injection of both two optimized representations before expansion.

(3) Integrating the above-designed modules, HCANet is constructed based on the
encoder-decoder architecture for densely predicting the pixel-level labels. Furthermore,
to losslessly boost decoder’s efficiency, we implement DUpsampling (Data-dependent
upsampling) [26] to recover feature maps with a one-step up-sampling instead of multiple
times of up-sampling.

(4) The extensive experiments are implemented on ISPRS 2D Semantic Labeling
Challenging for Vaihingen [27] and Potsdam [28]. In addition, the performance is evaluated
by numerical indices and visualization inspections. In addition, the necessary ablation
studies are conducted to verify the proposed method further.

This article is organized as follows. Section 2 briefly introduces the related works
on the topic of remote sensing imagery semantic segmentation and attention mechanism.
Section 3 presents the network architecture and embedding modules. Section 4 designs
the experiments and discusses the results. Finally, Section 5 draws the conclusions and
presents the future directions.

2. Related Works
2.1. Semantic Segmentation of RSI

Semantic segmentation of RSI profits from the advancements of deep learning meth-
ods [29,30]. For example, Mou et al. [31] devised two network modules to discover rela-
tionships between any two positions of RS imagery. ScasNet (self-cascaded convolutional
neural network) [32] utilized a self-cascade network to improve the labeling coherence
with sequential global-to-local contexts aggregation. SDNF (superpixel-enhanced deep
neural forest) [20] fused DCNNs with decision forests to form a training network with
specific architecture. Marmanis et al. [33] captured the edges’ detail for fine-tuning the
semantic boundaries of objects. Likely, Edge-FCN [34] fuses prior edge knowledge and
learnt representations, guiding the network to obtain better segmentation performance.
Additionally, a remarkable neural network named ResUNet-a provided a framework for
the task of semantic segmentation of monotemporal very high-resolution aerial images.
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Based on U-Net, ResUNet-a innovatively integrates residual connections, optimized Dice
loss function to realize accurate inference.

It is essential to refine the representations with sufficient contextual information,
including edge, surrounding pixels, homogeneous positions. However, the methods
mentioned above inject these clues in handcrafted fashion and not learnable.

2.2. Attention Mechanism

The attention mechanism is a strategy of allocating biased computational resources to
highlight the informative parts. This mechanism allows the inputs to interact with each
other “self” and determine what they should pay more attention to [35]. In other words,
this mechanism layer stacking few parallelizable matrix calculations to form attentive maps,
which provides an efficient tool to capture short and long-range dependencies. For example,
a SE (squeeze-and-excitation) block is proposed [36], generating channel-wise attention.
This block emphasizes the scene-relevant feature maps with spatial-irrelevant information.
Convolutional block attention module (CBAM) integrated spatial and channel attention
modules to contribute the representations with informative regions [37]. Moreover, the
non-local block was devised for several visual tasks. In addition, the results indicate the
superiority in accuracy and efficiency [38].

In addition to natural image processing, many attention-based works were advocated
for RSI. In [39], the channel attention block was embedded for recalibrating the channel-
wise feature maps. Cui et al. [40] exploited the attention mechanism to match the caption
nouns with objects in RSI. Then, the global attention upsampling [41] was introduced
to provide global guidance from high-level features to low-level ones. Specifically, both
positional and channel-wise relations are captured and integrated with serial and parallel
manners, producing reasonable cues for inference [42]. Moreover, SCAttNet [24] was
proposed to learn the attention map to aggregate contextual information for every point
adaptively in RS imagery. Along with the analysis of local context, LANet [25] was
proposed to bridge the gap between high- and low-level features. The representations are
refined by patch attention modules. As a result, the performance on ISPRS 2D benchmarks
reaches the SOTA (state-of-the-art) over several attention-based methods. In the same way,
CCANet (class-constraint coarse-to-fine attentional deep network for subdecimeter aerial
image semantic segmentation) [43] authorized class information constraints to obtain exact
long-range correlational context. Furthermore, the results on two RS datasets verify the fine-
grained segmentation performance. Homoplastically, a cascaded relation attention module
is designed to ascertain the relationship with channels and positions [44,45]. Sun et al. [46]
designed a boundary-aware semi-supervised semantic segmentation network, generating
satisfactory segments with limited annotated data.

Although numerous methods were studied and proposed incorporating attention
mechanisms and achieved competitive performance, the relational context is insufficient.
The previous approaches form superpixel regions unsupervisedly, contributing to uncertain
and unreliable context, weakening the classification ability.

3. The Proposed Method

In this section, the details of the proposed method are presented and discussed.
Before the analysis of overall framework, the directly-related preliminaries are intro-
duced. Then, the proposed HCANet and embedded CCRM and HREM are illustrated and
formally descripted.

As discussed in Section 1, in CCRM, we first model and formulate the correlations
between pixel and corresponding superpixels to enhance the distinguishability of learnt
representations. Then, HREM concatenates the superpixel contextual representations and
self-attentive representations, generating the final representations for decoding.

The rest of this section first presents the relevant preliminaries used in the construc-
tion of HCANet. Specifically, the details of CCRM are presented after introducing the
framework, including theoretical analysis, structure description and formalization.



Remote Sens. 2021, 13, 2986 5 of 18

3.1. Preliminaries
3.1.1. Non-Local Block

As a typical design of self-attention, the non-local block (NL) [38] calculates the spatial-
wise and channel-wise correlations simultaneously by several matrix multiplications. In
addition, this block is flexible for embedding into various frameworks. The topological
architecture is illustrated in Figure 1 and the formal description of the NL is presented
as follows.

Figure 1. Non-local block.

Let the input feature be X ∈ RH×W×C, where C, H and W indicate the channel, height
and width, respectively. Three 1 × 1 convolutions are used as transformation function to
produce three diverse embeddings. Formally,

φ = Wφ(X) (1)

θ = Wθ(X) (2)

γ = Wγ(X) (3)

where φ ∈ RH×W×Ĉ, θ ∈ RH×W×Ĉ, γ ∈ RH×W×Ĉ and Ĉ is the reshaped feature’s channel
number. Then, the feature maps are flatten to Ĉ× N, where N = H ×W. In addition, the
similar matrix can be produced by,

V = φT × θ (4)

where V ∈ RN×N . After normalization, the similar matrix is transformed to
→
V,

→
V = f (V) (5)

where f denotes normalization function. In this paper, the Softmax function is opted as f .
As to every position in γ, the output of attention layer is formed as,

O =
→
V× γT (6)
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where O ∈ RN×Ĉ. In general, the final output is given by

fNL = Y = WO

(
OT
)
+ XorY = Cat

(
WO

(
OT
)

, X
)

(7)

where WO is weights matrix by 1 × 1 convolution, Y is the refined feature maps of X and
Cat(·) denotes the concatenation process.

Non-local block helps the network capture long-range dependencies. This simple yet
efficient way is of great significance in semantic segmentation performance. However, only
pixel-wise dependencies cross spatial and channel are considered with non-local block, ignoring
the pixel-superpixel correlation, which is the vital aspect pivotal for characterizing pixels.

3.1.2. Superpixel Context

Superpixels in RSI are the grouped pixels, which can be explicitly seen as various
image regions. These regions help the network learn a more real representation than pixels.
Figure 2 shows the illustration of superpixel context. The red line indicates the pixel to be
represented. In addition, the partial superpixel region is expected to be marked in the light
cyan line. Modeling the relationships between the pixel and superpixel regions positively
impacts the distinguishability and separability of encoded representations significantly.

Figure 2. Illustration of superpixels.

For example, we abstractly deem the red box as one pixel lying in a black car object
in Figure 2. Baseline networks, such as SegNet, U-Net and DeepLab V3+, extract the
features from a regular local area with a size of 3 × 3, 5 × 5 or others (determined by
configurations). If the pixel is located in the red car area, the learnt representations are very
different. This intra-class inconsistency always leads to misclassification. If we can find a
way to represent the similarity between the annotated pixel and the two cars with different
colors, the intra-class inconsistency would alleviate automatically by the network.

Resort to the previous studies on similarity matrix analysis, it is achievable to capture
the superpixel context and model the pixel-superpixel correlations in a learnable way
using an attentive fashion. Hence, motivated by this target, the CCRM is investigated
and formulated.
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3.1.3. DUpsampling

As illustrated in Figure 3, the pipeline of DUpsampling is presented [26]. The specific
pixel in the feature map with a lower resolution is analogously inferred to a 2 × 2 region
by a ratio of 2 in DUpsampling.

Figure 3. Pipeline of DUpsampling.

Let FD ∈ RH̃×W̃×C̃ denotes the features to be up-sampled and G indicates the ground
truth. As a prerequisite, G can be compressed without loss. Commonly, G is encoded as
G ∈ {0, 1}H×W×C, which is a one-hot encoding fashion. The ratio between FD and G is
represented as,

H̃
H

=
W̃
W

=
1

16
or

1
32

(8)

In the decoder stage, FD ∈ RH̃×W̃×C̃ is going to be up-sampled to the same spatial size
with G. Then, the loss calculation is formed as,

L(FD, G) = Loss(softmax(B(FD)),G) (9)

where B(·) is the bilinear up-sampling used in former architecture, such as SegNet, FCN,
U-Net and so forth. With the incorporation of DUpsampling, the loss function is formed as,

L(FD, G) = Loss(softmax(D(FD)),G) (10)

where D(·) represents the DUpsampling.
It is supposed that the ground truth label G is not i.i.d. Therefore, G could be com-

pressed without information loss. To determine the transformation matrix W, Tian et al. [26]
proposed a learnable way. Firstly, G is compressed to a specific target spatial resolution
G̃ ∈ RH̃×W̃×C̃, which keeps the same size with FD. In addition, the criteria of W is mini-
mizing the loss between L(FD, G̃) and L(FD, G). Since the spatial correlation of the label is
learned, the recovered full size of predictions are more reliable.

As indicated in [26], DUpsampling significantly reduces the computation time and
memory footprint of the semantic segmentation method by a factor of 3 or so. In addition,
DUpsampling also allows a better feature aggregation to be exploited in the decoder by
enlarging the design space of feature aggregation. In addition, Li et al. [47] have proved
the efficiency and efficacy for RSI semantic segmentation task with DUpsampling.

3.2. The Framework of HCANet

As previously discussed, contextual information is of great importance in feature opti-
mization. The atrous convolution-based networks, such as DeepLab V3+ and ResUNet-a,
cost too much time and space to enrich the contextual information by enlarging the local
receptive fields. However, the local information is still limited and insufficient. Alterna-
tively, NLNet [38], CBAM [37], DANet [21], OCNet [23] and SCAttNet [24] employs an
attention mechanism to capture long-range dependencies at position-wise. Unfortunately,
only focusing on pixel-wise dependencies is not enough to learn the implicit correlations,
in which the intra-class inconsistency and inter-class similarity always deteriorate the
segmentation performance.
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Attempt to optimize the learnt representations by extracting and leveraging richer
contextual information, the HCANet is devised. The overall framework is presented
in Figure 4. In general, HCANet is based on encoder-decoder architecture. In addition,
two modules are designed to enhance the representations. One is CCRM that exploits
superpixel context and captures the correlations between pixel and corresponding super-
pixel. Then, injecting these correlations to pixel-level representations to produce superpixel
enhanced representations. Specifically, we first model and formulate the cross-level corre-
lations between pixels and superpixels in RSI. The other is HREM that concatenates the
self-attentive and superpixel enhanced representations to generate refined representations
for decoding. Furthermore, to alleviate the loss of upsampling in the decoder stage, DUp-
sampling is incorporated. Finally, the Softmax classifier is employed to predict the pixels
densely. The rest of this section will explain CCRM, HREM and DUpsampling in detail.

Figure 4. Overall framework of HCANet.

3.3. Cross-Level Contextual Representation Module
3.3.1. Superpixel Region Generation and Representation

First, of all, the superpixel regions is generated by coarse segmentations, which derives
from the intermediate feature maps from backbone. During training, the ground-truth seg-
mentation is investigated to improve the coarse regions by cross-entropy loss supervisiedly.

Let an input image denoted as F, the superpixel regions [SP1, SP2, . . . , SPk] refer to the
number of category k. Then, the representation of superpixel is obtained by aggregating all
the pixels’ representions in the corresponding superpixel region, formally,

Fk = ∑
i∈F

αkiXi (11)

where Fk denotes the kth superpixel’s representation, Xi is the representation of the corre-
sponding pixel pi, αki computes the degree for pixel pi belonging to the kth superpixel. In
practical implementation, spatial softmax is applied to normalize superpixel region SPk.

In the process of experiments, the superpixel regions are produced by coarse segments.
In addition, the coarse segments are initially realized using the encoded feature maps of
the backbone without any extra computations.
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3.3.2. Cross-Level Contextual Representation

As depicted in Figure 5, the pipeline of CCRM, cross-level contextual representation,
is concretely introduced to explain the formation of superpixel enhanced representations.

Figure 5. Pipeline of CCRM.

After the computation of superpixels’ representations, we calculate the relationship
between each pixel and each superpixel region as follows,

βik =
eg(Xi ,Fk)

∑k
j=1 eg(Xi ,Fj)

(12)

where g(Xi, Fk) serves as the relation function and formed as,

g(Xi, Fk) = θ(Xi)
T ϕ(Fk) (13)

where θ(·) and ϕ(·) are transformation functions implemented by 1 × 1 convolution
followed by BN and ReLU layers.

Therefore, the superpixel contextual representation Fsp(i) of pixel pi is,

Fsp(i) = δ

(
K

∑
k=1

βikρ(Fk)

)
(14)

where δ(·) and ρ(·) are transformation functions implemented by 1 × 1 convolution
followed by BN and ReLU layers, K is the max categories. Overall, the calculation of
cross-level correlations and superpixel context are inspired by non-local fashion [38].

Finally, the CCRM produces the superpixel enhanced representations by aggregat-
ing two vital parts of context, (1) original pixel-level representations and (2) superpixel
contextual representations. Formally,

Fsr(i) = Cat(Xi, Fsp(i)) (15)

where Fsr(i) denotes the superpixel enhanced representations of pixel pi, Xi is the original
pixel-level representations, Fsp(i) refers to the superpixel contextual representation of pi
and Cat(·) denotes the concatenation process.
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3.4. Hybrid Representation Enhancement Module

The fusion of superpixel enhanced representations and self-attentive pixel-level repre-
sentations is of great significance to comprehensively leverage contextual information.

Non-local blocks, a kind of self-attention module, have been examined and evaluated
in feature optimization [38]. This block helps the network captures and retains positional
dependencies, yielding desired enhancements of representations.

With the intention of refining learnt representations, the self-attentive representations
are beneficial along with superpixel context. Thereby, another concatenation operation is
embedded, which facilitating the representations further. Formally,

Fr(i) = Cat(Fsp(i), Fn(i)) (16)

where Fr(i) denotes the refined representation of pixel pi, Fsp(i) is the superpixel contex-
tual representation of pixel pi, Fn(i) refers to the self-attentive representation by non-local
block of pixel pi and Cat(·) denotes the concatenation operation. Therefore, the out-
put representations of HREM hybridizes original pixel-level representations, superpixel
contextual representations and self-attentive representations. For the sake of understand-
ing, 1 × 1 convolution after concatenation is hidden. Finally, Fr is fed to be upsampled
and classified.

The HREM allows a simple yet effective concatenation operation to fuse the two refined
representations. One of them derives from the self-attention module with the contextual
information of position-wise dependencies. The other one comes from the CCRM by
injecting the pixel-superpixel correlations. Therefore, the comprehensive and hybrid learnt
representations could provide reasonable and distinguishable cues for dense prediction.

4. Experiments
4.1. Datasets

To evaluate the performance of the proposed method, extensive experiments are
conducted on two ISPRS benchmarks. The data properties are presented in Table 1.

Table 1. Data properties.

Datasets Vaihingen Potsdam

Bands used NIR, R, G NIR, R, G
GSD 9 cm 5 cm

Sub-patch size 256 × 256
Data augmentation Rotate 90, 180 and 270 degrees, Horizontally and vertically flip

4.1.1. ISPRS Vaihingen Dataset

The public 2D semantic labeling benchmark Vaihingen dataset is released by the
International Society for Photogrammetry and Remote Sensing [27]. It contains high-
resolution true orthophoto tiles and corresponding digital surface models as well as labeled
ground truth. Each tile consists of three spectral bands, red (R), green (G) and near infrared
(NIR). The spatial size is around 2500 × 2000 with GSD (ground sample distance) of 9 cm.
The available 16 images are partitioned randomly, in which 11 images are for training and
5 for validation and test. The labeled datasets’ ground truth is made up of 6 categories:
impervious surfaces, building, low vegetation, tree, car and clutter/background.

4.1.2. ISPRS Potsdam Dataset

The 2D semantic labeling benchmark Potsdam dataset [28] is composed of 38 high
resolution images of size 6000 × 6000 pixels, with spatial resolution of 5 cm. Similarly,
5 categories are labeled. In addition, the 24 available images are divided into training and
validation set. Test set is same to validation set.
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4.2. Implement Details

Considering the practical data properties, the matched digital surface models are not
involved in experiments. The same sub-patch size and data augmentations are imple-
mented on raw data.

The dataset for training, validation and test are divided randomly and automatically.
Subject to the data size, the validation is also the test set. As to the Vaihingen dataset,
training set is formed with 11 images (ID: 1, 3, 5, 7, 13, 17, 21, 23, 26, 32 and 37). The
validation and test set consists of 5 images (ID: 11, 15, 28, 30 and 34). The training set of
Potsdam dataset contains 16 images (ID: 2_10, 2_12, 3_10, 3_11, 4_11, 4_12, 5_10, 5_12, 6_8,
6_9, 6_10, 6_11, 7_7, 7_9, 7_11 and 7_12). In addition, the validation and test set include
7 images (ID: 2_11, 3_12, 4_10, 5_11, 6_7, 6_12, 7_8 and 7_10). Practically, the raw images
are cropped to sub-patches with spatial size of 256 × 256 during training.

In the experiments, the settings of hyper-parameters are listed in Table 2. Essentially,
the backbone is ResNet 101, which is indicated by black dotted box in Figure 4. Commonly,
all the models are implemented on the PyTorch framework version 1.4.1 with NVIDIA
Tesla V100-32GB graphic card under Linux OS.

Table 2. Hyper-parameter settings.

Hyper-Parameters Settings

Backbone ResNet 101
Batch size 16

Learning strategy Poly decay
Initial learning rate 0.002

Loss Function Cross-entropy
Optimizer Adam
Max epoch 500

4.3. Evaluation Metrics

Two numerical metrics, OA (Overall Accuracy) and mIoU (mean inter-section over
union), are chosen to quantitatively evaluate the performance. Formally,

OA =
TP + TN

TP + FP + FN + TN
(17)

mIoU =
TP

TP + FP + FN
(18)

where TP denotes the number of true positives, FP denotes the number of true positives,
FN denotes the number of false negatives, TN denotes the number of true negatives.

4.4. Compare to State-of-the-Art Methods

In this part, several mainstream methods are compared to analyze the performance.
The comparative methods include typical encoder-decoder, attention-based and SOTA RSI
semantic segmentation networks.

4.4.1. Results on Vaihingen Test Set

As outlined in the introduction, we reasoned that complementary context is helpful
to refine learned representations, which are essential to provide sufficient cues for dense
predictions. Table 3 reports the results on the Vaihingen test set. It is evident that the results
of HCANet obtained are in exceptionally good agreement with expectation. As can be seen,
HCANet performs high consistency with ground truth. Statistically, the OA and mIoU of
HCANet, 83.83% and 75.46%, respectively, are the highest.
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Table 3. Results on Vaihingen dataset. Accuracy of each category is presented in the OA/IoU form, and the bold number
indicates the best.

Methods Impervious
Surfaces Building Low

Vegetation Tree Car Clutter OA mIoU

SegNet [15] 92.37/78.87 90.96/75.71 80.61/62.11 77.22/57.98 60.61/51.11 73.39/57.98 79.19 63.43
U-Net [17] 92.71/78.72 90.84/76.61 79.95/62.25 77.67/58.33 69.87/55.27 74.41/58.33 80.91 65.11

DeepLab V3+ [19] 93.55/80.51 89.96/77.52 81.15/66.61 78.11/63.02 70.49/58.83 77.52/63.02 81.80 69.46
CBAM [37] 93.44/82.77 90.01/78.21 82.27/65.53 77.97/62.09 71.11/66.57 75.59/62.09 81.73 69.75
DANet [21] 93.62/83.54 90.13/77.95 83.31/69.03 78.54/63.05 70.94/65.18 76.62/63.05 82.19 70.03
OCNet [23] 93.31/83.78 91.22/79.01 84.49/68.15 79.61/62.98 72.25/67.79 79.53/62.98 83.40 71.20
NLNet [38] 93.28/83.66 89.95/78.08 83.34/68.85 78.18/63.33 70.99/65.59 76.12/63.33 81.98 70.55

ResUNet-a [45] 93.50/85.81 97.12/80.02 85.21/69.58 85.83/65.51 79.92/70.06 81.91/65.51 87.25 74.42
SCAttNet [24] 89.13/83.18 92.58/79.33 84.97/69.19 82.31/62.57 75.50/67.38 82.23/62.57 84.45 71.63

HCANet 93.69/86.68 95.11/79.95 86.67/70.04 87.71/69.38 82.21/72.55 81.56/69.38 87.83 75.46

Meanwhile, the category-wise accuracy and IoU also verify the competitive perfor-
mance of HCANet. Compare to SegNet and U-Net, the OA and mIoU are dramatically
increased by about 9% and 12%. It should be noted that SegNet and U-Net are initially
devised for natural images and biomedical images, in which the distinguishability of
representations is undemanding. Moreover, DeepLab V3+ utilizes the atrous convolution
to enlarge the receptive field, which paves an innovative way to capture more contextual
information. Likewise, attempt to generate smooth objects’ boundary, ResUNet-a adopts
complicated multi-tasking inference strategy along with multiple tricks that own a large
amount parameters, resulting in a higher OA and mIoU. Specifically, the building and clut-
ter are delineated with the highest accuracy of 97% and 81%. Although satisfactory results
are yielded, DeepLab V3+ and ResUNet-a are criticized for the prohibitive computation
and GPU memory occupation. Striven to ultimately capture and leverage contextual infor-
mation, attention-based methods are developed to improve the segmentation performance.

Unfortunately, CBAM, DANet and NLNet are slightly problematic in enhancing
separability of representations that extracted from remote sensing images. This is because
the disparity between remote sensing and natural imagery. The former one covers a variety
of geomorphological details and is acquired with diverse conditions. The demandingly
geo-distinguishable of learned representations is challenging. These three models are
originally devised for natural images. Facing the remote sensing imagery, the robustness
is deficient. NLNet, an advanced self-attention framework, only reaches about 82% in
OA and 71% in mIoU. Furthermore, OCNet takes advantages of context to facilitate the
performance, which are feasible both on natural and remote sensing images. In addition,
the OA and mIoU reach more than 83% and 71%. Inspired by self-attention mechanism,
SCAttNet is proposed for the purpose of remote sensing image semantic segmentation. As
a result, the results are acceptable with a small amount of extra matrix multiplication.

Figure 6 presents the visualization comparison on random samples from Vaihingen
test set. Compared to other methods, HCANet displays progressive performance by
learning integrate and complex representations. In addition, the confusable boundary and
pixels are considerably classified. For example, HCANet can efficiently segment each car
without adhesion and delineate a complete shape. However, the other methods perform
the adhesion and incompleteness of cars.

In summary, HCANet comprehensively resorts the pixel-superpixel correlations and
pixel-wise attentive maps, revealing the way to refine learned representation. Undeniably,
the OA and mIoU are as good as can be expected by hybridizing cross-level contextual and
attentive representations of remote sensing images.
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Figure 6. Visualization results on the Vaihingen test set. (a) Original image, (b) Ground truth, (c) SegNet, (d) U-Net,
(e) DeepLab V3+, (f) CBAM, (g) DANet, (h) OCNet, (i) NLNet, (j) ResUNet-a, (k) SCAttNet, (l) HCANet.

4.4.2. Results on Potsdam Test Set

As presented in Table 4, the results on the Potsdam test set are collected. It is evi-
dent from the results that overall, there is a marked increase compared to other models.
Moreover, the performance is almost identical to the Vaihingen test set. Beneficial from the
sufficient data size for training, the OA and mIoU exhibit a minor increase with more than
1%. Nevertheless, the accuracy of impervious surfaces, building and clutter is marginally
lower than DANet, ResUNet-a and SCAttNet, respectively. It could be concluded that the
uncertainties and fluctuations are the dominant reasons. Furthermore, the gaps are narrow
and negligible. After all, the OA and mIoU overwhelmingly indicate the superiorities
of HCANet. Attention-based methods are of little significance. It is determined by the
impractical application to remote sensing image semantic segmentation, which is more
than an essential computer vision task. Then, ResUNet-a and SCAttNet incorporate the
properties of the remote sensing domain, lending support to accurately labeling pixels. It
is therefore desirable to understand the easily-confused pixels as well as possible.

Figure 7 compares the segmentation performance on random samples of test set.
Although attention-based methods, SCAttNet and ResUNet-a have a certain degree of com-
petitiveness, HCANet is of great significance due to the refined representations with high
distinguishability, separating the heterogeneous pixels readily. For example, low vegetation
and tree is relatively rough. In addition, HCANet exhibits acceptable performance.
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Table 4. Results on Potsdam dataset. Accuracy of each category is presented in the OA/IoU form, and the bold number
indicates the best.

Methods Impervious
Surfaces Building Low

Vegetation Tree Car Clutter OA mIoU

SegNet [15] 94.08/79.66 92.64/76.46 82.10/62.73 78.65/58.56 61.73/51.62 74.75/55.35 80.66 64.06
U-Net [17] 94.43/79.50 92.52/77.37 81.43/62.87 79.11/58.91 71.16/55.82 75.79/60.07 82.41 65.76

DeepLab V3+ [19] 95.28/81.31 91.62/78.29 82.65/67.27 79.56/63.65 71.79/59.42 78.95/70.97 83.31 70.15
CBAM [37] 95.17/83.59 91.68/78.99 83.79/66.18 79.41/62.71 72.43/67.23 76.99/63.96 83.24 70.44
DANet [21] 95.35/84.37 91.80/78.73 84.85/69.72 79.99/63.68 72.25/65.83 78.04/62.04 83.71 70.73
OCNet [23] 95.04/84.61 92.91/79.80 86.05/68.83 81.08/63.61 73.59/68.46 81.01/66.14 84.94 71.91
NLNet [38] 95.01/84.49 91.61/78.86 84.88/69.54 79.63/63.96 72.30/66.24 77.53/64.43 83.49 71.25

ResUNet-a [45] 95.22/86.66 98.92/80.82 86.79/70.27 87.42/66.16 81.40/70.76 83.43/76.29 88.86 75.16
SCAttNet [24] 90.78/84.01 94.29/80.12 86.54/69.88 83.83/63.19 76.90/68.05 83.75/68.81 86.02 72.34

HCANet 95.23/86.41 96.88/81.55 88.29/71.44 89.35/70.77 83.74/74.00 83.08/75.64 89.44 76.64

Figure 7. Visualization results on the Potsdam test set. (a) Original image, (b) Ground truth, (c) SegNet, (d) U-Net,
(e) DeepLab V3+, (f) CBAM, (g) DANet, (h) OCNet, (i) NLNet, (j) ResUNet-a, (k) SCAttNet, (l) HCANet.

Overall, HCANet captures and fuses superpixel context, pixel-superpixel relationships
and self-attentive maps, providing compelling cues for pixel-wise predictions. Hence, it
appears to be apparent from the numerical results that the excellent prediction is agreed
with the ground truth.
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4.5. Ablation Study on CCRM

As reported in Section 1, refining learned representations with contextual information
is profitable for producing sufficient cues for pixel-level predictions. Among the context,
pixel-superpixel correlation is an essential element. HCANet captures and incorporates
this kind of context in a self-attentive way. To comprehensively verify the efficiency and
superiority, the ablation study on CCRM is designed and implemented. In addition, the
non-CCRM version of HCANet is denoted as nc-HCANet.

Table 5 lists the OA/mIoU of two models tested on the three datasets. Compared
to nc-HCANet, the OA increases by about 5% for three datasets and mIoU increases by
about 4% correspondingly. The incorporation of superpixel enhanced representations lends
support to boost the performance.

Table 5. Quantitative evaluations on two datasets. Accuracy in the OA/mIoU form, and the bold
number indicates the best.

Models Vaihingen Potsdam

nc-HCANet 82.56/71.03 84.51/71.55
HCANet 87.83/75.46 89.44/76.64

In addition to test results, the training loss (cross-entropy) per epoch of two models is
collected and illustrated in Figures 8 and 9. Accordingly, the training loss is much lower
than nc-HCANet both for the Vaihingen (Figure 8) and Potsdam (Figure 9) training sets.
After 500 epoches of training, CCRM module drops the loss to 0.0349 while nc-HCANet
still has 0.185 for the Vaihingen dataset. As to Potsdam dataset, CCRM helps the network
decrease training loss from 0.1973 to 0.0271. As a result, the reduction of loss means the
inconsistency of probability distribution tends to be more acceptable.

Figure 8. Training loss of Vaihingen dataset.

Figure 9. Training loss of Vaihingen dataset.
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Apart from the accuracy comparison, the training time per epoch and inference time
for a test image with spatial size of 256 × 256 are collected to emphasize the efficiency. As
evident from Table 6, the training time per epoch is an average of 500 epochs. Therefore,
concerning the significant increase in accuracy, the slight rise in time costs is acceptable.
The inference time is generated by equally dividing the time costs for predicting the whole
test set. As to single 256 × 256 image, the inference time grows up at 0.4 ms with the
incorporation of CCRM.

Table 6. Efficiency comparisons.

Models Training Time Per Epoch (Seconds) Inference Time
(Milliseconds)

nc-HCANet 376 ± 23 28.1
HCANet 391 ± 17 28.5

In summary, the improvements are intuitive and remarkable, owing to the utilization
of more comprehensive contextual information, especially the pixel-superpixel correlation.
Meanwhile, both training time and inference time are entirely negligible.

5. Conclusions

Striven to enhance the distinguishability of learned representations by semantic seg-
mentation neural networks, HCANet is devised and implemented. First, of all, inspired by
self-attention mechanism, the cross-level contextual representation module (CCRM) is de-
signed to model the pixel-superpixel dependencies, which are injected to produce superpixel
enhanced representations. Moreover, hybrid representation enhancement module (HREM)
concatenates self-attentive representations implemented by non-local block with superpixel
enhance representations generated by CCRM. Furthermore, the DUpsampling is embedded
into decoder stage to recover feature maps to original spatial resolution losslessly.

The extensive experimental results provide a straightforward evidence that the com-
plementary and complete contextual information enables high accuracy in pixel-wise
semantic labeling. In addition, both short-range and long-range dependencies should be
emphasized. Future work will focus on cross spatial resolution feature fusion in-depth
at inexpensive time and space cost. In addition to capture the pixel-superpixel corre-
lation of encoded feature maps, the shallow encoders’ output feature maps should be
further exploited.
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