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Abstract: High spatial resolution carbon dioxide (CO2) flux inversion systems are needed to support
the global stocktake required by the Paris Agreement and to complement the bottom-up emission
inventories. Based on the work of Zhang, a regional CO2 flux inversion system capable of assimi-
lating the column-averaged dry air mole fractions of CO2 (XCO2) retrieved from Orbiting Carbon
Observatory-2 (OCO-2) observations had been developed. To evaluate the system, under the con-
straints of the initial state and boundary conditions extracted from the CarbonTracker 2017 product
(CT2017), the annual CO2 flux over the contiguous United States in 2016 was inverted (1.08 Pg C yr−1)
and compared with the corresponding posterior CO2 fluxes extracted from OCO-2 model intercom-
parison project (OCO-2 MIP) (mean: 0.76 Pg C yr−1, standard deviation: 0.29 Pg C yr−1, 9 models
in total) and CT2017 (1.19 Pg C yr−1). The uncertainty of the inverted CO2 flux was reduced by
14.71% compared to the prior flux. The annual mean XCO2 estimated by the inversion system
was 403.67 ppm, which was 0.11 ppm smaller than the result (403.78 ppm) simulated by a parallel
experiment without assimilating the OCO-2 retrievals and closer to the result of CT2017 (403.29 ppm).
Independent CO2 flux and concentration measurements from towers, aircraft, and Total Carbon
Column Observing Network (TCCON) were used to evaluate the results. Mean bias error (MBE)
between the inverted CO2 flux and flux measurements was 0.73 g C m−2 d−1, was reduced by 22.34%
and 28.43% compared to those of the prior flux and CT2017, respectively. MBEs between the CO2

concentrations estimated by the inversion system and concentration measurements from TCCON,
towers, and aircraft were reduced by 52.78%, 96.45%, and 75%, respectively, compared to those of the
parallel experiment. The experiment proved that CO2 emission hotspots indicated by the inverted
annual CO2 flux with a relatively high spatial resolution of 50 km consisted well with the locations
of most major metropolitan/urban areas in the contiguous United States, which demonstrated the
potential of combing satellite observations with high spatial resolution CO2 flux inversion system in
supporting the global stocktake.

Keywords: regional CO2 flux inversion; OCO-2; WRF-Chem/DART; ensemble adjustment Kalman
filter; the contiguous United States

1. Introduction

Since the industrial revolution, the significant increase of carbon dioxide (CO2) in the
atmosphere caused by anthropogenic activities is believed to be one of the main driving
forces of climate change [1]. The atmospheric CO2 concentration has increased from
277 parts per million (ppm) in 1750 to above 409 ppm in 2019 [2].
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In order to mitigate climate change, the Paris Agreement [3], a legally binding inter-
national treaty on climate change, was adopted at the 21st Conference of the Parties of
the United Nations Framework Convention on Climate Change (UNFCCC) and entered
into force on November 4, 2016. The Paris Agreement [3] requires all parties to submit
their emission reduction plans in the form of nationally determined contributions (NDC)
and requires regular global stocktake processes to verify whether all parties have fulfilled
their commitments.

Currently, the statistical bottom-up methodology developed by the Inter-governmental
Panel on Climate Change (IPCC) is used to prepare the emission inventory reports required
by UNFCCC [4]. This methodology uses statistical activity data and source-specific emis-
sion factors to quantify the anthropogenic CO2 emission of a country or a region. However,
due to large uncertainties in the emission factors and in the statistical activity data, as well
as biases caused by unaccounted sources, the bottom-up emission inventories can have
significant uncertainties, especially for countries with underdeveloped statistical infras-
tructure. Therefore, with the progress in observations and inverse models, the Subsidiary
Body for Scientific and Technological Advice (SBSTA) of UNFCCC [5,6] along with the
IPCC Task Force [4] acknowledged the complementary capability offered by the top-down
observation approach, which links emissions with atmospheric concentration observations
by atmospheric transport and chemistry models, i.e., the inverse models.

Before satellite-based observations of atmospheric CO2 concentrations were widely
available, the research of top-down approach mainly focused on inversing CO2 flux from
ground-based observations [7–12]. Compared with ground-based observations, satellite
observations have the advantage of providing much better spatiotemporal coverage. With
the development of technology, in the past 10 years or so, several CO2 monitoring satellites—
including the Greenhouse gases Observing SATellite (GOSAT) [13], GOSAT-2 [14], the
Orbiting Carbon Observatory 2 (OCO-2) [15], OCO-3 [16,17], and TanSat [18], had been
launched. Several others, such as MicroCarb [19,20], geoCARB [21,22], and a CO2M
constellation [23,24]—are currently under development.

Promoted by the CO2 monitoring satellites, recent studies used the column-averaged
dry air mole fractions of CO2 (XCO2) products retrieved from satellite observations to in-
verse CO2 flux [25–30]. Among them, Deng et al. [31] used the four-dimensional variational
(4D-Var) approach coupled with GEOS-Chem model to demonstrate the significant impact
of GOSAT observations on the flux inversion, Crowell et al. [32] utilized different atmo-
spheric transport models, data assimilation methods and prior fluxes to inverse the global
CO2 fluxes from OCO-2 observations and evaluate their uncertainties, Chevallier, et al. [33]
and Wang et al. [34] assimilated observations from GOSAT and OCO-2 respectively to con-
duct global CO2 flux inversion. Although these global-scale inversion studies can deepen
the understanding of the global carbon cycle mechanism that affects climate change, due to
their coarse spatiotemporal resolution, their results are not enough to support the global
stocktake required by the Paris Agreement.

To complement the bottom-up emission inventories, regional flux inversion systems
with high spatiotemporal resolution are needed. Villalobos et al. [35] used the Community
Multiscale Air Quality (CMAQ) transport-dispersion model coupled with 4D-Var to study
the impact of OCO-2 observations on CO2 flux inversions and on their uncertainty reduc-
tion over Australia through a series of Observing System Simulation Experiments (OSSEs).
Zheng et al. [36] and Peng et al. [37] developed regional CO2 flux inversion systems based
on WRF and CMAQ modeling system coupled with 4D-Var and ensemble Kalman filter
approach, and then evaluated the system performances in the continental United States
and East Asia through OSSEs, respectively. However, real XCO2 retrievals from OCO-2
were not yet utilized in these studies.

In this study, based on the work of Zhang et al. [38], a regional CO2 flux inversion
system had been developed from WRF-Chem model [39] coupled with Data Assimilation
Research Testbed (DART) [40] using the ensemble adjustment Kalman filter (EAKF) [41,42]
assimilation method to invert regional CO2 flux from OCO-2 XCO2 retrievals. The contigu-
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ous United States was selected as the study area because there were relatively abundant
ground-based observations available for evaluation. The study period was the entire
year of 2016. Different types of CO2 concentration observations, CO2 flux measurements,
as well as the products from the OCO-2 model intercomparison project (MIP) [32] and
CT2017 [10], were used to evaluate the performance of the inversion system over the
contiguous United States.

2. Materials and Methods
2.1. CO2 Transport Model

WRF-Chem model version 3.9.1 [39] was used as the CO2 transport model. As shown
in Figure 1, the model domain, having 103 (west–east) × 82 (south–north) grid points with
a spatial resolution of 50 km, covered the contiguous United States. In the vertical direction,
the atmosphere was decomposed into 45 terrain-following levels from the surface to the
upper boundary at 50 hPa. The physical and chemical options of the model, listed in Table 1,
were the same as those used in Zhang, et al. [38]. The chemical option “chem_opt = 16”
means that CO2 is treated as a passive tracer with no feedback on meteorological variables
and is not part of any chemical reactions.

Figure 1. The WRF-Chem domain and locations of ground-based and aircraft observations for evaluation. (a) TCCON,
(b) towers, (c) aircraft with in-situ measurements, (d) aircraft with Programmable Flask Package (PFP) measurements,
(e) Eddy covariance measurement stations from AmeriFlux network, (f) Eddy covariance measurement stations from
ONEFlux (Open Network-Enabled Flux processing pipeline).

The Final (FNL) Operational Global Analysis data [43] with 1◦ × 1◦ spatial resolution
and 6-h interval from National Centers for Environmental Prediction (NCEP), were used as
the meteorological initial and boundary conditions of the model. The initial and boundary
conditions of CO2 concentrations were interpolated from the CO2 mole fraction product
of the NOAA’s CarbonTracker, version 2017 (CT2017) [10]. Prior CO2 fluxes used by
CarbonTracker in CT2017, including anthropogenic emissions, fire emissions, biogenic
fluxes, and ocean fluxes were used as the prior fluxes input to the model.
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Table 1. WRF-Chem configurations.

Model Options Configurations

Domain center 34.939 ◦N, −96.275 ◦W
Grid resolution 50 km

nx, ny, nz 103, 82, 45
Time step 240 s

Microphysics process WSM 5-class simple ice scheme
Cumulus parameterization Kain-Fritsch scheme

Longwave atmospheric radiation RRTM scheme
Shortwave atmospheric radiation Dudhia scheme
Planetary boundary layer scheme MYNN 2.5 level TKE

Surface layer scheme MYNN
Land surface scheme Unified Noah Land surface model

Chemical option chem_opt = 16 (CO2 only)

2.2. OCO-2 XCO2 Retrievals

OCO-2 is an atmospheric CO2 observing satellite launched by the National Aeronau-
tics and Space Administration (NASA) in 2014 [44,45]. OCO-2 is routinely making around
1 million observations each day, and more than 10% of these observations are sufficiently
cloud-free to allow for the retrieval of XCO2 via an inversion algorithm [46]. The XCO2
retrieved from OCO-2 observations have a median difference of less than 0.5 ppm and root
mean square differences typically below 1.5 ppm compared with Total Carbon Column
Observing Network (TCCON) [47].

The Version 9r of Level 2 Lite products of the OCO-2 XCO2 retrievals [48,49] were
used in this study. In order to be consistent with the OCO-2 MIP [32], in the lite prod-
ucts, only the retrievals from nadir observation mode with good quantity based on the
“xco2_quality_flag” were selected. Rather than assimilating each XCO2 retrieval falling
inside a model grid cell separately, a representative mean XCO2 retrieval and its associated
uncertainty of a model grid cell were calculated and assimilated according to the strategy
of Crowell et al. [32].

The OCO-2 XCO2 retrievals over the contiguous United States in each month of 2016
were processed by this strategy and the results are shown in Figure 2.

2.3. Observation Operator

The CO2 concentrations forecasted by WRF-Chem in the model space were converted
into XCO2 values in the OCO-2 observation space by an observation operator adopted
from Connor et al. [50]. The observation operator H was defined as

XCOm
2 = XCOb

2 + ∑
j

hjaCO2,j

(
xm − xb

)
j

(1)

where XCOb
2, h, aCO2 , and xb are the prior XCO2 value, the pressure weighting function, the

column averaging kernel, and the prior CO2 concentration profile used by OCO-2 XCO2
retrieval processes, respectively. All these parameters are provided in the OCO-2 Level 2
Lite products and require pretreatments similar to the representative mean XCO2 retrievals.
xm is the vertical profile of CO2 concentrations interpolated from WRF-Chem forecasts
to the pressure levels of the OCO-2 XCO2 retrieval. XCOm

2 is the converted result of the
WRF-Chem forecasts by the observation operator H.
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Figure 2. Representative mean XCO2 retrievals of OCO-2 in each month of 2016 over the contiguous
United States.

2.4. Regional CO2 Flux Inversion System

Zhang et al. [38] had implemented the assimilation of the OCO-2 XCO2 retrievals by ex-
tending DART [40] to improve the estimation of regional CO2 concentrations. DART [40] is a
widely used open-source software framework for ensemble data assimilation research [51–54].

On the basis of Zhang’s assimilation system [38], a regional flux inversion system had
been further developed in this study by augmenting the state vector to include the CO2
fluxes [55,56]. The state vector x was defined as

x = [CC, CF]T (2)

where CC represent the CO2 concentration states in the model space, which was advanced
by WRF-Chem and CF represent the CO2 fluxes input into WRF-Chem. CF was the
non-observable part of the state vector and could not be forwarded by WRF-Chem model.

The initial value of CC for the k-th ensemble member, defined as CCinit
k , was generated

in the same way as that of Zhang, et al. [38] by imposing zero-mean Gaussian distributions
to the average CO2 concentrations interpolated from CT2017 [10]. The standard deviations
of these Gaussian distributions were assumed to be 1.5% of the average CO2 concentrations.

The update process of CC was the same as that of Zhang et al. [38]. Let CC f
k,i and

CCa
k,i represent the forecast of CC advanced by WRF-Chem starting from CCinit

k and the
analysis result of CC for the k-th ensemble member at time i (i ≥ 1), respectively. The
CC f

k,i was converted into the observation space by the observation operator H defined
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by Equation (3), i.e., y f
k,i = H

(
CC f

k,i

)
. Then the analysis result ya

k,i of the k-th ensemble
member at time i was calculated by

ya
k,i =


√√√√ σ̃XCO2

2

σ̃XCO2

2
+ σ

f
i

2

[y f
k,i − y f

i

]
+

[
y f

i

σ
f
i

2
+

X̃CO2

σ̃XCO2

2

][
1

σ
f
i

2
+

1

σ̃XCO2

2

]−1

(3)

where y f
i and σ

f
i were the forecast mean and the spread of all ensemble members in the

observation space at time i (i ≥ 1), respectively. X̃CO2 and σ̃XCO2 were the representative
mean XCO2 retrieval and its associated uncertainty of a model grid cell calculated from the
OCO-2 retrievals according to the strategy of Crowell et al. [32].

The analysis result of CC f
k,i was updated as

CCa
k,i = CC f

k,i + α
σ
(

CC f
i , y f

i

)
σ

f
i

2

(
ya

k,i − y f
k,i

)
(4)

where α was a covariance localization coefficient to compensate the sampling error caused
by the limited ensemble size [57], σ

(
CC f

i , y f
i

)
is the covariance of the forecasts of CC

and their corresponding conversion results in the observation space across all ensemble
members at time i (i ≥ 1).

The initial value of CF for the k-th ensemble member at time i (i ≥ 1), defined as
CFinit

k,i−1, was generated by imposing zero-mean Gaussian distributions to the average CO2
fluxes interpolated from the prior CO2 fluxes used by CT2017 [10]. The standard deviations
of these flux Gaussian distributions were assumed to be 50% of the average CO2 fluxes
similar to Chevallier et al. [30].

Let CFprior
k,i−1 and CFpost

k,i−1 represent the prior and posterior CO2 fluxes of the model grids

for the k-th ensemble member at time (i ≥ 1), respectively. Let λ
prior
k,i−1 and λ

post
k,i−1 represent

the prior and posterior scaling factors between the pairs of CFprior
k,i−1, CFinit

k,i−1 and CFpost
k,i−1,

CFprior
k,i−1, respectively. The CFprior

k,i−1 was calculated as

CFprior
k,i−1 = λ

prior
k,i−1 × CFinit

k,i−1 , i ≥ 1 (5)

where the prior scaling factor λ
prior
k,i−1 was evolved forward with time i by

λ
prior
k,i−1 =

{
1 , i = 1

λ
post
k,i−2 , i ≥ 2

(6)

The posterior CO2 flux and scaling factor were updated by

CFpost
k,i−1 = CFprior

k,i−1 + α
σ
(

CFprior
i−1 , y f

i

)
σ

f
i

2

(
ya

k,i − y f
k,i

)
, i ≥ 1 (7)

λ
post
k,i−1 = CFpost

k,i−1/CFprior
k,i−1, i ≥ 1 (8)

where α and σ
(

CFprior
i−1 , y f

i

)
have the similar definitions as those of in the Equation (4).

2.5. Experiment Design

Two experiments were conducted to evaluate the performance of the flux inversion
system. The first one, named “DA_FLUX”, used the flux inversion system to optimize both
the atmospheric CO2 concentrations and CO2 fluxes during the assimilation process. The
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second experiment, named “SIM”, only used WRF-Chem to simulate the atmospheric CO2
concentrations and did not assimilate any OCO-2 XCO2 retrievals.

2.5.1. The DA_FLUX Experiment

In the DA_FLUX experiment, the CO2 concentrations and CO2 fluxes over the con-
tiguous United States in 2016 were estimated by the flux inversion system through the
assimilation of OCO-2 XCO2 retrievals.

The ensemble size of the system was 20. The initial and boundary conditions of
CO2 concentrations were interpolated from CT2017 [10]. A strategy similar to Carbon-
Tracker was taken to quantify the uncertainty due to prior flux selection (https://www.
esrl.noaa.gov/gmd/ccgg/carbontracker/CT2019B_doc.php, last access: 18 June 2021), by
interpolating two sets of prior fluxes from two different combinations of terrestrial fluxes,
wildfire emissions, air–sea CO2 exchanges, and fossil fuel emissions from CT2017. The
mean posterior CO2 fluxes of two inversions, each using one set of prior fluxes, were the
final CO2 flux results of the inversion system. The final CO2 concentration results were
estimated by applying the mean posterior fluxes to the forward model WRF-Chem once
again and without assimilation.

The study period was the entire year of 2016. The period of five weeks before
1 January 2016 was used as the spin-up phase of the simulation. The simulation cycle
was 6-h at 00:00, 06:00, 12:00, and 18:00 UTC, respectively. A short assimilation window of
one day was used according to Liu et al. [58].

2.5.2. The SIM Experiment

The SIM experiment was a control experiment, using only WRF-Chem to simulate the
CO2 concentrations, and not assimilating any OCO-2 XCO2 retrievals. The prior CO2 flux
of the SIM experiment was the average of the two sets of prior fluxes used in the DA_FLUX
experiment. All other initial conditions and configurations were the same as those of the
DA_FLUX experiment.

2.6. Evaluation

The level-4 flux product version 7 (https://www.esrl.noaa.gov/gmd/ccgg/OCO2/,
last access: 18 June 2021) from the OCO-2 model intercomparison project (OCO-2 MIP)
was used to compare with the posterior CO2 flux obtained by the regional flux inversion
system. The OCO-2 MIP [32] is a collaboration organized by the OCO-2 Science Team to
study the impact of assimilating OCO-2 XCO2 retrievals into atmospheric inversion models.
Currently, there are nine models in the OCO-2 MIP version 7, they differ in the sources of
prior CO2 flux, the types of atmospheric chemical transport model, the methods of data
assimilation, and so on. The detailed information of these models is listed in Table S1.

Independent ground and aircraft observations were used to evaluate the performance
of the regional flux inversion system. The CO2 flux observations from AmeriFlux [59] and
ONEFlux [60], including 18 and 10 eddy covariance flux measurement sites respectively,
were used to evaluate the CO2 flux results of the DA_FLUX experiment. The detailed
information of these flux observation sites is listed in Tables S2 and S3, and their locations
are shown in Figure 1e,f, respectively.

The XCO2 retrievals of four TCCON [61] sites, including Park Falls [62], Lamont [63],
Edwards [64], and Caltech [65], CO2 concentration observations of 10 tower sites and
20 aircraft campaigns from the GLOBALVIEWplus project [66] with Observation Package
(ObsPack) [67] data products “obspack_co2_1_GLOBALVIEWplus_v5.0_2019-08-12” were
used to evaluate the CO2 concentration results of the two experiments. The detailed
information of these sites and campaigns is listed in Tables S4 and S5, and their locations
are shown in Figure 1a,d.

The posterior CO2 concentrations and posterior fluxes from CT2017 were also com-
pared with the independent observations to serve as references for the evaluation.

https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2019B_doc.php
https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2019B_doc.php
https://www.esrl.noaa.gov/gmd/ccgg/OCO2/
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The experimental results were evaluated by mean bias error (MBE), root-mean-square
error (RMSE), and correlation coefficient (CORR), same as the Equations (6), (8), and (9) in
Zhang’s work [38].

The uncertainty reduction between the posterior and prior CO2 fluxes is a useful
method to evaluate the impact of assimilation of OCO-2 XCO2 retrievals in constraining
CO2 flux. The uncertainty reduction achieved by the flux inversion system was evaluated
by the equation [68]

UR =

(
1 −

σpost

σprior

)
× 100% (9)

where σpost and σprior were the standard deviations of the posterior and prior CO2 fluxes, respectively

3. Results and Discussion
3.1. Reginal CO2 Flux Inversion Results

By assimilating the OCO-2 XCO2 retrievals, the regional CO2 flux inversion system
in the DA_FLUX experiment optimized the annual mean CO2 flux over the contiguous
United States in 2016 from the prior flux of 1.51 ± 0.11 Pg C yr−1 to the posterior flux of
1.08 ± 0.03 Pg C yr−1, which was more in line with the fluxes estimated by CT2017 and
the models from OCO-2 MIP. The prior and posterior monthly mean CO2 fluxes of the
DA_FLUX experiment are listed in Table 2. The results of DA_FLUX indicated that in 2016
the contiguous United States was a carbon sink during the four-month period from May to
August due to the vegetation growing season, and was a carbon source in the remaining
eight months.

Table 2. Prior and posterior monthly mean CO2 fluxes of the DA_FLUX experiment over the
contiguous United States in 2016.

Month Prior Fluxes (Pg C) Posterior Fluxes (Pg C)

1 0.35 ± 0.03 0.33 ± 0.01
2 0.32 ± 0.008 0.27 ± 0.001
3 0.28 ± 0.02 0.19 ± 0.02
4 0.12 ± 0.05 0.05 ± 0.03
5 −0.05 ± 0.06 −0.1 ± 0.05
6 −0.21 ± 0.05 −0.17 ± 0.05
7 −0.20 ± 0.05 −0.07 ± 0.02
8 −0.08 ± 0.002 −0.02 ± 0.001
9 0.04 ± 0.03 0.07 ± 0.02

10 0.21 ± 0.03 0.16 ± 0.03
11 0.35 ± 0.01 0.19 ± 0.03
12 0.37 ± 0.02 0.19 ± 0.04

Annual 1.51 ± 0.11 1.08 ± 0.03

The spatial distribution of the annual mean posterior CO2 flux of DA_FLUX, shown
in Figure 3, indicates the areas with higher CO2 fluxes roughly coincided with the densely
populated urban areas—i.e., the metropolis areas of New York, New Jersey, Detroit of
Michigan, Chicago of Illinois, Atlanta of Georgia, Tampa and Orlando of Florida, Miami
of Florida, Houston of Texas, Los Angeles, and San Francisco of California all showed up
as CO2 sources of varying magnitude. It implies the majority of the CO2 emission in the
contiguous United States comes from the entire northeast, midwest, and a few hotspots in
the south and west because these are the largest metropolitan/urban areas. Figure 3 also
indicates almost the entire Great Plains and Rocky Mountain West were a weak CO2 sink
because with a few exceptions there are virtually no large cities. The spatial distributions
of the monthly mean posterior fluxes are shown in Figure S1.
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Figure 3. Spatial distribution of the annual mean posterior CO2 flux estimated by the DA_FLUX experiment over the
contiguous United States in 2016.

3.1.1. Compared with CT2017 and OCO-2 MIP Models

Figures 4 and 5 show the comparison of the annual and monthly posterior CO2
flux of the DA_FLUX experiment with the CO2 fluxes estimated by CT2017 and OCO-2
MIP models, and with the prior flux used in the experiment, respectively. The detailed
information of the OCO-2 MIP models shown in Figures 4 and 5 is listed in Table S1. The
monthly mean values of each flux in Figure 5 are listed in Table S6.

The flux of 1.19 Pg C yr−1 of CT2017 was extracted from the posterior CO2 flux of
CT2017 in 2016 according to the border of the contiguous United States. The fluxes of OCO-
2 MIP models were extracted from the “TransCom 02” region of the OCO-2 MIP level 4 flux
products, according to the area ratio of the contiguous United States and the “TransCom 02”
region. The “TransCom 02” region covers the North American temperate zone, which is
slightly larger than the contiguous United States. The mean flux and standard deviation of
all the nine models from OCO-2 MIP were 0.76 Pg C yr−1 and 0.29 Pg C yr−1, respectively.

Figure 4 shows the annual posterior CO2 flux of the DA_FLUX experiment was
0.11 Pg C yr−1 lower than that of CT2017, and was 0.05 Pg C yr−1 higher than the
highest flux from OCO-2 MIP estimated by the model of Baker_PCTM_Ldwo_LN and
Baker_PCTM_Taka_LN.
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Figure 4. Comparison of the annual posterior CO2 flux over the contiguous United States in 2016 estimated by the DA_FLUX
experiment with those estimated by CT2017 and the models from OCO-2 MIP, and with the prior CO2 flux used in the
DA_FLUX experiment.

Figure 5 shows that the monthly mean fluxes of DA_FLUX from May to July, when the
contiguous United States was a carbon sink, were significantly smaller than that of OCO-2
MIP models, i.e., less carbon uptake. This explains why the annual flux of DA_FLUX was
higher than that of OCO-2 MIP models. By analyzing the prior flux, the CO2 concentrations
simulated by WRF-Chem before assimilation and the value of representative mean XCO2
retrievals of OCO-2, it was found that the small posterior fluxes in May and June were
mainly caused by the significantly smaller prior fluxes which implied less CO2 uptake
compared with those of OCO-2 MIP models. The prior fluxes in May and June were only
24.3% and 54.8% of the mean fluxes of OCO-2 MIP models, respectively. The small posterior
flux in July was caused by the combination of the relatively high representative mean XCO2
retrievals of OCO-2 and a small prior flux. The average value of the representative mean
XCO2 retrievals in July was 401.21 ppm and was 0.35 ppm higher than the monthly mean
CO2 concentrations simulated by WRF-Chem before assimilation. The prior flux in July
was 66.5% of the mean fluxes of OCO-2 MIP models. Figure 5 also shows CT2017 and
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OCO-2 MIP models were inconsistent in terms of whether the contiguous United States
were the sink or source of CO2 in the two months of April and August. On this issue, the
results of the DA_FLUX experiment were consistent with the majority.

Based on the above annual and monthly comparison results with other models, the
CO2 flux estimated by the inversion system presented here can be considered reasonable.

Figure 5. Comparison of the monthly posterior CO2 flux over the contiguous United States in 2016 estimated by the
DA_FLUX experiment with those estimated by CT2017 and the models from OCO-2 MIP, and with the prior CO2 flux used
in the DA_FLUX experiment.

3.1.2. Uncertainty Reduction by the Inversion System

The uncertainty of the inverted annual CO2 flux in the DA_FLUX experiment was
reduced by 14.71% compared to the prior flux.

Figures 2 and 6 show the spatial distribution of the representative mean XCO2 re-
trievals of OCO-2 and the mean uncertainty of the prior CO2 flux of each month in 2016
used in the DA_FLUX experiment, respectively. The monthly mean uncertainty of the
prior CO2 flux, the monthly mean uncertainty reduction percentage over all grid cells, and
the number of the representative mean XCO2 retrievals of OCO-2 of each month in 2016
are listed in Error! Reference source not found. Figure 7 shows the spatial distribution
of monthly mean uncertainty reduction between the posterior and the prior CO2 flux in
the DA_FLUX experiment. In Figure 7, areas with negative uncertainty reduction were
masked as zero, since such uncertainty increases simply resulted from the small number of
realizations [35].
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Figure 6. Spatial distribution of monthly mean uncertainty of the prior CO2 flux over the contiguous United States in 2016
used in the DA_FLUX experiment.

From Table 3, the uncertainty reduction had a strong positive correlation with the
uncertainty of the prior CO2 flux and the number of the representative mean XCO2 re-
trievals of OCO-2. The correlations between the uncertainty reduction and the prior flux
uncertainty, the number of the representative mean XCO2 retrievals were 0.93 and 0.72,
respectively. The largest uncertainty reductions of 36.17% and 38.42% occurred in June
and July, which coincided with the period that had the largest prior flux uncertainties of
0.31 g C m−2 d−1 and 0.32 g C m−2 d−1, respectively. June and July are the middle of the
growing season in the contiguous United States, and their mean prior flux uncertainties
over all the grid cells are driven up by vegetation photosynthesis.

Table 3. Monthly mean uncertainty of the prior CO2 flux, the monthly mean uncertainty reduction percentage over all grid
cells and the number of the representative mean XCO2 retrievals of OCO-2 of each month in 2016.

Month in 2016 Percentage of Mean Uncertainty
Reduction over All Grid Cells

Number of Representative Mean
XCO2 Retrievals of OCO-2

Mean Uncertainty of the Prior CO2
Flux over All Grid Cells (g C m−2 d−1)

1 14.82% 303 0.16
2 12.91% 458 0.16
3 12.80% 347 0.17
4 19.59% 449 0.22
5 18.30% 504 0.22
6 36.17% 695 0.31
7 38.42% 727 0.32
8 30.18% 429 0.22
9 24.42% 620 0.21

10 21.72% 575 0.17
11 10.33% 566 0.14
12 9.53% 344 0.14

Annual 14.71% 6017 0.085



Remote Sens. 2021, 13, 2996 13 of 21

Figure 7. Spatial distribution of monthly mean uncertainty reduction between the posterior and the prior CO2 flux in 2016
in the DA_FLUX experiment.

In the spatial dimension, except for September, the regions with larger uncertainty
reduction in Figure 7 roughly coincided with the locations with higher prior uncertainty in
Figure 6. In August and September, Error! Reference source not found. shows that the areas,
mainly near the southwest of the Great Lakes of North America, had similar distributions
of high prior uncertainty. This “upper midwest” region of the contiguous United States is
also referred to as the “corn belt”, it is a known mega-sink of CO2 during the agricultural
growing season [69]. Figure 7 shows this region had a larger uncertainty reduction in
August, which was in line with the expectation, while it only had a limited uncertainty
reduction in September. By comparing the distribution of OCO-2 representative XCO2
retrievals in August and September shown in Figure 2, it was found that there were no
OCO-2 XCO2 retrievals in this “upper midwest” region in September. This explains why
the region had a limited uncertainty reduction in September, and also demonstrated the
impact of OCO-2 XCO2 retrievals on the flux constraints.

3.1.3. Compared with CO2 Flux Measurements

Although the spatial representativeness of the CO2 flux tower measurements is usually
less than 1 km2, and the grid cell size in this study was 50 km, meaning that there was some
mismatch of the spatial scale, the statistical results of comparing the CO2 flux measurements
with the DA_FLUX experimental results were still meaningful.

The annual mean of the prior, posterior CO2 flux of DA_FLUX and the posterior flux
of CT2017 interpolated to the locations of flux measurement sites are listed in Table 4, and
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box-plotted on the right side of Figure 8. The overall annual mean flux measurement of
AmeriFlux [59] and ONEFlux [60] was −0.38 g C m−2 d−1. The corresponding annual
mean posterior flux of DA_FLUX was 0.35 g C m−2 d−1, which were 0.19 g C m−2 d−1 and
0.25 g C m−2 d−1 smaller than that of prior flux and CT2017, respectively, and closer to
the measurements.

Table 4. Annual mean value of the prior (PRIOR), posterior (DA_FLUX) CO2 flux of the DA_FLUX experiment, the posterior
CO2 flux of CT2017 interpolated to the locations of flux measurement sites, and annual mean CO2 flux measurements of
AmeriFlux and ONEFlux.

Dataset
Flux

Measurements
(g C m−2 d−1)

Flux

PRIOR
(g C m−2 d−1)

CT2017
(g C m−2 d−1)

DA_FLUX
(g C m−2 d−1)

AmeriFlux −0.25 0.71 0.85 0.46
ONEFlux −0.52 0.36 0.35 0.24

All −0.38 0.54 0.60 0.35

Figure 8. Monthly and annual mean of the prior (PRIOR), posterior (DA_FLUX) CO2 flux of the DA_FLUX experiment,
the posterior CO2 flux of CT2017, and the CO2 flux measurements from AmeriFlux and ONEFlux. For the boxplots on the
right, the lower and upper edges of the boxes represent the first (Q1) and third (Q3) quartiles, the lower and upper whiskers
represent the minimum and maximum values within 1.5 times the interquartile range from Q1 and Q3, respectively, solid
lines and triangles represent median and mean value.
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The line charts on the left side of Figure 8 show the monthly mean of the prior and
posterior CO2 fluxes of DA_FLUX, of the posterior CO2 flux of CT2017, and of the CO2
flux measurements. The detailed monthly mean CO2 flux values are listed in Table S7.

The statistical evaluation results of comparing the CO2 flux measurements from
AmeriFlux [59] and ONEFlux [60] with the prior, posterior CO2 fluxes of the DA_FLUX
experiment, and with the posterior CO2 flux of CT2017 are listed in Table 5. The RMSE
and MBE of the posterior CO2 flux in DA_FLUX against all the flux measurements from
AmeriFlux and ONEFlux were 0.79 g C m−2 d−1 and 0.73 g C m−2 d−1, respectively, which
were 0.16 g C m−2 d−1 (16.84%) and 0.21 g C m−2 d−1 (22.34%) smaller than that of the
prior flux and were 0.27 g C m−2 d−1 (25.47%) and 0.29 g C m−2 d−1 (28.43%) smaller than
that of CT2017, respectively.

Table 5. Statistical results of comparing the CO2 flux measurements from AmeriFlux and ONEFlux
with the prior (PRIOR), posterior (DA_FLUX) CO2 flux of the DA_FLUX experiment, and with the
posterior CO2 flux of CT2017.

Dataset Flux RMSE
(g C m−2 d−1)

MBE
(g C m−2 d−1) CORR

AmeriFlux
PRIOR 0.98 0.97 0.97
CT2017 1.15 1.10 0.92

DA_FLUX 0.80 0.71 0.95

ONEFlux
PRIOR 0.94 0.88 0.85
CT2017 0.94 0.86 0.75

DA_FLUX 0.83 0.76 0.83

All dataset
PRIOR 0.95 0.94 0.97
CT2017 1.06 1.02 0.92

DA_FLUX 0.79 0.73 0.94

The evaluation results indicated that the posterior CO2 fluxes of the inversion system
were significantly more consistent with the flux measurements than the prior CO2 fluxes
and the posterior CO2 flux of CT2017.

3.2. CO2 Concentrations Results

The annual mean XCO2 over the contiguous United States in 2016 estimated by the
SIM, DA_FLUX experiment, and CT2017 were 403.78 ppm, 403.67 ppm, and 403.29 ppm,
respectively, and their distributions are shown in Figure 9. The annual mean XCO2 of
DA_FLUX was 0.11 ppm smaller than that of SIM and closer to CT2017. The differences of
annual mean XCO2 between SIM and CT2017, between DA_FLUX and CT2017, between
DA_FLUX and SIM were 0.49 ppm, 0.38 ppm, −0.11 ppm, respectively. Their distributions
are shown in Figure 10. It is obvious that the result of DA_FLUX was more in line with
CT2017 than that of SIM.

Figure 9. Annual mean XCO2 distribution over the contiguous United States in 2016 from the SIM (a), DA_FLUX
(b) experiments, and CT2017 (c).
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Figure 10. Difference in the annual mean XCO2 distribution over the contiguous United States in 2016, (a) between SIM and
CT2017, (b) between DA_FLUX and CT2017, (c) between DA_FLUX and SIM.

The boxplots of the monthly mean CO2 concentrations of the SIM, DA_FLUX exper-
iment and CT2017 compared with monthly mean observations of TCCON, tower, and
aircraft are shown in Figure 11, the corresponding data of Figure 11 are listed in Table S8.
The detailed evaluation results of statistical metrics are shown in Table 6. The compar-
ison of the monthly mean CO2 concentrations of the SIM, DA_FLUX experiment, and
CT2017 with monthly mean observations of TCCON, tower, and aircraft are shown in
Figures S2–S4, respectively.

Figure 11. Boxplots of the different types of monthly mean observations, (a) for TCCON observations, (b) for tower
observations, (c) for aircraft observations, and the corresponding monthly mean XCO2 or CO2 concentrations from SIM,
DA_FLUX and CT2017. The lower and upper edges of the boxes represent the first (Q1) and third (Q3) quartiles, the lower
and upper whiskers represent the minimum and maximum values within 1.5 times the interquartile range from Q1 and Q3,
respectively, solid lines and triangles represent median and mean value.

Table 6. Evaluation results between the monthly mean CO2 concentration or XCO2 observations and the corresponding
results from SIM, DA_FLUX and CT2017, where the CORRs are statistically significant at the level of p < 0.01.

Observation Type Experiment RMSE (ppm) MBE (ppm) CORR

TCCON
SIM 0.70 0.36 0.95

DA_FLUX 0.81 0.17 0.92
CT2017 0.69 −0.11 0.94

Tower
SIM 2.83 1.41 0.92

DA_FLUX 2.63 −0.05 0.89
CT2017 2.71 0.70 0.89

Aircraft
SIM 0.95 −0.20 0.94

DA_FLUX 0.68 −0.05 0.97
CT2017 0.65 −0.10 0.97
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The RMSE between the monthly mean CO2 concentrations of DA_FLUX and the
observations of tower and aircraft were 2.63 ppm and 0.68 ppm, which were 0.20 ppm and
0.27 ppm smaller than those of SIM, respectively. The RMSE between the monthly mean
XCO2 of DA_FLUX and the TCCON observations was 0.81 ppm, which was 0.11 ppm
larger than that of SIM. The reason is, shown in Figure S2, the monthly mean XCO2
values estimated by DA_FLUX spread more widely but symmetrically around the TCCON
observations than those of SIM. The MBE between the monthly mean CO2 concentrations of
DA_FLUX and the observations of TCCON, tower, and aircraft were 0.17 ppm, −0.05 ppm,
and −0.05 ppm, which were 0.19 ppm, 1.36 ppm, and 0.15 ppm smaller than those of SIM,
respectively. Figure S3 and S4 show the comparison of the monthly mean tower and aircraft
observations with the modeled CO2 concentrations from the SIM, DA_FLUX experiment,
and CT2017, respectively.

4. Conclusions

A regional CO2 flux inversion system had been developed from WRF-Chem model
coupled with DART using the EAKF assimilation method to invert regional CO2 flux from
OCO-2 XCO2 retrievals. The effectiveness of the inversion system was verified by the
DA_FLUX experiment over the contiguous United States in 2016. The posterior CO2 fluxes
of the DA_FLUX experiment were compared with the corresponding fluxes extracted
from OCO-2 MIP and CT2017 and was evaluated with the independent ground-based
flux measurements. The inverted annual CO2 flux over the contiguous United States in
2016 was 1.08 Pg C yr−1, which was 0.05 Pg C yr−1 higher than the largest flux from
two models in OCO-2 MIP and was 0.11 Pg C yr−1 lower than the posterior CO2 flux
of CT2017. The uncertainty of the inverted annual CO2 flux was reduced by 14.71%
compared to the prior flux, which demonstrated the impact of OCO-2 XCO2 retrievals
on the flux constraints. The evaluation with the flux measurements showed that RMSE
and MBE between the posterior CO2 flux of the DA_FLUX experiment and the ground
observations were reduced by 16.84% and 22.34% compared with that of the prior flux
and were reduced by 25.47% and 28.43% compared with that of CT2017, respectively. The
CO2 concentrations estimated by the DA_FLUX experiment were more in line with CT2017
than that of the SIM experiment which did not assimilate the OCO-2 XCO2 retrievals.
The annual mean XCO2 of the DA_FLUX experiment over the contiguous United States
in 2016 was 403.67 ppm which was 0.11 ppm smaller than that of the SIM experiment
(403.78 ppm) and closer to CT2017 (403.29 ppm). MBE between the inverted CO2 flux and
flux measurements was 0.73 g C m−2 d−1, was reduced by 22.34% and 28.43% compared
to those of the prior flux and CT2017, respectively. MBEs between the CO2 concentrations
of the DA_FLUX experiment and concentration measurements from TCCON, towers, and
aircraft were reduced by 52.78%, 96.45%, and 75%, respectively, compared to those of the
SIM experiment. These experiments and evaluations indicated that the regional CO2 flux
inversion system had a reasonable performance.

Finally, the significant drop in uncertainty reduction of the inverted CO2 flux of the
“Upper Midwest” region in September 2016 due to the lack of OCO-2 XCO2 retrievals,
and the fact that CO2 emission hotspots indicated by the inverted annual CO2 flux with a
relatively high spatial resolution of 50 km consisted well with the locations of most major
metropolitan/urban areas in the contiguous United States, demonstrated the indispensable
impact of OCO-2 XCO2 retrievals on the regional flux constraints and the potential of
combining satellite observations with high spatial resolution CO2 flux inversion system in
supporting the global stocktake.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13152996/s1, Figure S1: Spatial distributions of monthly mean posterior CO2 fluxes estimated
by the DA_FLUX experiment over the contiguous United States in 2016; Figure S2: Comparison of the
monthly mean TCCON observations and the modeled XCO2 from the SIM, DA_FLUX experiment
and CT2017. The top part shows scatter plots of the modeled XCO2 against the TCCON observations.
In the lower part, dot represents the mean bias error between the modeled XCO2 and the TCCON
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observations, bar represents the standard deviation of the bias errors; Figure S3: Comparison of the
monthly mean tower observations with the modeled CO2 concentrations from the SIM, DA_FLUX
experiment, and CT2017. The top part shows scatter plots of the modeled CO2 concentrations against
the tower observations. In the lower part, dot represents the mean bias error between the modeled
CO2 concentrations and the tower observations, bar represents the standard deviation of the bias
errors; Figure S4: The comparison of the monthly mean aircraft observations with the modeled CO2
concentrations from the SIM, DA_FLUX experiment, and CT2017. The top part shows scatter plots of
the modeled CO2 concentrations against the aircraft observations. In the lower part, dot represents
the mean bias error between the modeled CO2 concentrations and the aircraft observations, bar
represents the standard deviation of the bias errors; Table S1: The information of inversion models in
OCO-2 MIP version 7; Table S2: The information of CO2 fluxes tower sites from AmeriFlux; Table
S3: The information of CO2 fluxes tower sites from ONEFlux; Table S4: The information of ground-
based CO2 concentration observation sites; Table S5: Aircraft observations from ObsPack products
used for evaluation; Table S6: The monthly prior (PRIOR) and posterior (DA_FLUX) CO2 flux of
the DA_FLUX experiment, the monthly posterior fluxes from CT2017 and the models in OCO-2
MIP, over the contiguous United States in 2016; Table S7: Monthly mean of the prior (PRIOR) and
posterior (DA_FLUX) CO2 flux of the DA_FLUX experiment, the posterior flux of CT2017, and the
CO2 flux measurements; Table S8: Mean and median CO2 concentration values of the SIM, DA_FLUX
experimental results, and observations from TCCON, tower, and aircraft.
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