Ten-Year Monitoring of the Grandes Jorasses Glaciers Kinematics. Limits, Potentialities, and Possible Applications of Different Monitoring Systems
Abstract
:1. Introduction
2. Area of Interest: The Grandes Jorasses Glacial Complex
3. Implementation: Survey Methods
3.1. Robotic Total Station
3.2. GNSS
3.3. Time-Lapse Imagery
3.4. Terrestrial Radar Interferometry
3.5. Data Integration
4. Results
4.1. Robotic Total Station and GNSS
4.2. Time-Lapse Camera
4.3. Terrestrial Radar Interferometry
4.4. Data Integration
4.5. Uncertainty Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Alonso-González, E.; Monserrat, O.; Del Río, L.M.; Otero, J.; Lapazaran, J.; Luzi, G.; Dematteis, N.; Serreta, A.; Rico, I.; et al. Ground-based remote-sensing techniques for diagnosis of the current state and recent evolution of the Monte Perdido Glacier, Spanish Pyrenees. J. Glaciol. 2019, 65, 85–100. [Google Scholar] [CrossRef] [Green Version]
- Deline, P.; Gruber, S.; Delaloye, R.; Fischer, L.; Geertsema, M.; Giardino, M.; Hasler, A.; Kirkbride, M.; Krautblatter, M.; Magnin, F.; et al. Ice Loss and Slope Stability in High-Mountain Regions. In Snow and Ice-Related Hazards, Risks, and Disasters; Academic Press: Cambridge, MA, USA, 2014; pp. 521–561. ISBN 9780123964731. [Google Scholar]
- Kääb, A.; Huggel, C.; Fischer, L.; Guex, S.; Paul, F.; Roer, I.; Salzmann, N.; Schlaefli, S.; Schmutz, K.; Schneider, D.; et al. Remote sensing of glacier- and permafrost-related hazards in high mountains: An overview. Nat. Hazards Earth Syst. Sci. 2005, 5, 527–554. [Google Scholar] [CrossRef]
- Shugar, D.H.; Jacquemart, M.; Shean, D.; Bhushan, S.; Upadhyay, K.; Sattar, A.; Schwanghart, W.; McBride, S.; de Vries, M.V.W.; Mergili, M.; et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 2021, 373, 300–306. [Google Scholar]
- Watson, C.S.; Quincey, D. Glacier Movement. In Geomorphological Techniques; British Society for Geomorphology: London, UK, 2015. [Google Scholar]
- Luzi, G.; Pieraccini, M.; Mecatti, D.; Noferini, L.; Macaluso, G.; Tamburini, A.; Atzeni, C. Monitoring of an alpine glacier by means of ground-based SAR interferometry. IEEE Geosci. Remote Sens. Lett. 2007, 4, 495–499. [Google Scholar] [CrossRef]
- Hewitt, K.; Wake, C.P.; Young, G.J.; David, C. Hydrological investigations at Biafo Glacier, Karakoram range, Himalaya: An important source of water for the Indus River. Ann. Glaciol. 1989, 13, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Stocker-Waldhuber, M.; Fischer, A.; Helfricht, K.; Kuhn, M. Long-term records of glacier surface velocities in the Ötztal Alps (Austria). Earth Syst. Sci. Data 2019, 11, 705–715. [Google Scholar] [CrossRef] [Green Version]
- Huss, M.; Bauder, A.; Werder, M.; Funk, M.; Hock, R. Glacier-dammed lake outburst events of Gornersee, Switzerland. J. Glaciol. 2007, 53, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, S.; Bauder, A.; Weiss, P.; Funk, M. Reversal of ice motion during the outburst of a glacier-dammed lake on Gornergletscher, Switzerland. J. Glaciol. 2007, 53, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Diolaiuti, G.; Kirkbride, M.P.; Smiraglia, C.; Benn, D.I.; D’Agata, C.; Nicholson, L. Calving processes and lake evolution at Miage glacier, Mont Blanc, Italian Alps. Ann. Glaciol. 2005, 40, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Dunse, T.; Schuler, T.V.; Hagen, J.O.; Reijmer, C.H. Seasonal speed-up of two outlet glaciers of Austfonna, Svalbard, inferred from continuous GPS measurements. Cryosphere 2012, 6, 453–466. [Google Scholar] [CrossRef] [Green Version]
- Einarsson, B.; Magnússon, E.; Roberts, M.J.; Pálsson, F.; Thorsteinsson, T.; Jóhannesson, T. A spectrum of jökulhlaup dynamics revealed by GPS measurements of glacier surface motion. Ann. Glaciol. 2016, 57, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Manson, R.; Coleman, R.; Morgan, P.; King, M. Ice velocities of the Lambert Glacier from static GPS observations. Earth Planets Sp. 2000, 52, 1031–1036. [Google Scholar] [CrossRef] [Green Version]
- Fallourd, R.; Trouvé, E.; Roşu, D.; Vernier, F.; Bolon, P.; Harant, O.; Gay, M.; Bombrun, L.; Vasile, G.; Nicolas, J.M.; et al. Monitoring Temperate Glacier Displacement by Multi-Temporal TerraSAR-X Images and Continuous GPS Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 372–386. [Google Scholar] [CrossRef]
- Sugiyama, S.; Gudmundsson, G.H. Short-term variations in glacier flow controlled by subglacial water pressure at Lauteraargletscher, Bernese Alps, Switzerland. J. Glaciol. 2004, 50, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Evans, A.N. Glacier surface motion computation from digital image séquences. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1064–1072. [Google Scholar] [CrossRef] [Green Version]
- Ahn, Y.; Box, J.E. Glacier velocities from time-lapse photos: Technique development and first results from the Extreme Ice Survey (EIS) in Greenland. J. Glaciol. 2010, 56, 723–734. [Google Scholar] [CrossRef] [Green Version]
- Brinkerhoff, D.; O’Neel, S. Velocity variations at Columbia Glacier captured by particle filtering of oblique time-lapse images. arXiv 2017, arXiv:1711.05366. [Google Scholar]
- Messerli, A.; Grinsted, A. Image georectification and feature tracking toolbox: ImGRAFT. Geosci. Instrum. Methods Data Syst. 2015, 4, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Schwalbe, E.; Maas, H.G. The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences. Earth Surf. Dyn. 2017, 5, 861–879. [Google Scholar] [CrossRef] [Green Version]
- Dematteis, N.; Giordan, D.; Allasia, P. Image Classification for Automated Image Cross-Correlation Applications in the Geosciences. Appl. Sci. 2019, 9, 2357. [Google Scholar] [CrossRef] [Green Version]
- Noferini, L.; Mecatti, D.; Macaluso, G.; Pieraccini, M.; Atzeni, C. Monitoring of Belvedere Glacier using a wide angle GB-SAR interferometer. J. Appl. Geophys. 2009, 68, 289–293. [Google Scholar] [CrossRef]
- Riesen, P.; Strozzi, T.; Bauder, A.; Wiesmann, A.; Funk, M. Short-term surface ice motion variations measured with a ground-based portable real aperture radar Interferometer. J. Glaciol. 2011, 57, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Allstadt, K.E.; Shean, D.E.; Campbell, A.; Fahnestock, M.; Malone, S.D. Observations of seasonal and diurnal glacier velocities at Mount Rainier, Washington, using terrestrial radar interferometry. Cryosphere 2015, 9, 2219–2235. [Google Scholar] [CrossRef] [Green Version]
- Gundersen, R.; Norland, R.; Denby, C.R. Monitoring glacier flow in Ny-Ålesund with a high temporal resolution ground-based interferometric-phased array radar. Polar Res. 2019, 38. [Google Scholar] [CrossRef]
- Liu, L.I.N.; Jiang, L.; Sun, Y.Y.; Wang, H.; Sun, Y.Y.; Xu, H. Diurnal fluctuations of glacier surface velocity observed with terrestrial radar interferometry at Laohugou No. 12 Glacier, western Qilian mountains, China. J. Glaciol. 2019, 65, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Monserrat, O.; Crosetto, M.; Luzi, G. A review of ground-based SAR interferometry for deformation measurement. ISPRS J. Photogramm. Remote Sens. 2014, 93, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Luzi, G.; Pieraccini, M.; Mecatti, D.; Noferini, L.; Guidi, G.; Moia, F.; Atzeni, C. Ground-based radar interferometry for landslides monitoring: Atmospheric and instrumental decorrelation sources on experimental data. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2454–2466. [Google Scholar] [CrossRef]
- Luzi, G.; Dematteis, N.; Zucca, F.; Monserrat, O.; Giordan, D.; López-Moreno, J.I. Terrestrial radar interferometry to monitor glaciers with complex atmospheric screen. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 6243–6246. [Google Scholar]
- Margreth, S.; Funk, M.; Tobler, D.; Dalban, P.; Meier, L.; Lauper, J. Analysis of the hazard caused by ice avalanches from the hanging glacier on the Eiger west face. Cold Reg. Sci. Technol. 2017, 144, 63–72. [Google Scholar] [CrossRef]
- Avian, M.; Bauer, C.; Schlögl, M.; Widhalm, B.; Gutjahr, K.H.; Paster, M.; Hauer, C.; Frießenbichler, M.; Neureiter, A.; Weyss, G.; et al. The status of earth observation techniques in monitoring high mountain environments at the example of Pasterze Glacier, Austria: Data, methods, accuracies, processes, and scales. Remote Sens. 2020, 12, 1251. [Google Scholar] [CrossRef] [Green Version]
- De Sanjosé, J.J.; Berenguer, F.; Atkinson, A.D.J.; De Matías, J.; Serrano, E.; Gómez-Ortiz, A.; González-García, M.; Rico, I. Geomatics techniques applied to glaciers, rock glaciers, and ice patches in Spain (1991–2012). Geogr. Ann. Ser. A Phys. Geogr. 2014, 96, 307–321. [Google Scholar] [CrossRef]
- Faillettaz, J.; Funk, M.; Vagliasindi, M. Time forecast of a break-off event from a hanging glacier. Cryosphere 2016, 10, 1191–1200. [Google Scholar] [CrossRef] [Green Version]
- Margreth, S.; Faillettaz, J.; Funk, M.; Vagliasindi, M.; Diotri, F.; Broccolato, M. Safety concept for hazards caused by ice avalanches from the Whymper hanging glacier in the Mont Blanc Massif. Cold Reg. Sci. Technol. 2011, 69, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Giordan, D.; Dematteis, N.; Allasia, P.; Motta, E. Classification and kinematics of the Planpincieux Glacier break-offs using photographic time-lapse analysis. J. Glaciol. 2020, 66, 188–202. [Google Scholar] [CrossRef] [Green Version]
- Dematteis, N.; Luzi, G.; Giordan, D.; Zucca, F.; Allasia, P. Monitoring Alpine glacier surface deformations with GB-SAR. Remote Sens. Lett. 2017, 8, 947–956. [Google Scholar] [CrossRef]
- Dematteis, N.; Giordan, D.; Zucca, F.; Luzi, G.; Allasia, P. 4D surface kinematics monitoring through terrestrial radar interferometry and image cross-correlation coupling. ISPRS J. Photogramm. Remote Sens. 2018, 142, 38–50. [Google Scholar] [CrossRef]
- Giordan, D.; Allasia, P.; Dematteis, N.; Dell’Anese, F.; Vagliasindi, M.; Motta, E. A low-cost optical remote sensing application for glacier deformation monitoring in an alpine environment. Sensors 2016, 16, 1750. [Google Scholar] [CrossRef] [Green Version]
- Giordan, D.; Dematteis, N.; Troilo, F.; Segor, V.; Godone, D. Close-Range Sensing of Alpine Glaciers. In Glaciers and Polar Environment; IntechOpen: London, UK, 2020; ISBN 978-1-83962-593-0. [Google Scholar]
- World Glacier Monitoring Service (WGMS). World Glacier Inventory: Status 1988; Haeberli, W., Bösch, H., Scherler, K., Østrem, G.W., Eds.; IAHS(ICSI)/UNEP/UNESCO, World Glacier Monitoring Service: Zurich, Switzerland, 1989. [Google Scholar]
- Raup, B.; Racoviteanu, A.; Khalsa, S.J.S.; Helm, C.; Armstrong, R.; Arnaud, Y. The GLIMS geospatial glacier database: A new tool for studying glacier change. Glob. Planet. Chang. 2007, 56, 101–110. [Google Scholar] [CrossRef]
- Pralong, A.; Funk, M. On the instability of avalanching glaciers. J. Glaciol. 2006, 52, 31–48. [Google Scholar] [CrossRef] [Green Version]
- Faillettaz, J.; Funk, M.; Vincent, C. Avalanching glacier instabilities: Review on processes and early warning perspectives. Rev. Geophys. 2015, 53, 203–224. [Google Scholar] [CrossRef] [Green Version]
- GlaRiskAlp. Available online: http://www.glariskalp.eu/ (accessed on 1 February 2021).
- Strozzi, T. Monitoraggio del ghiacciaio di Planpincieux in Valle d’Aosta (Italia); Istituto di Ricerca per la Protezione Idrogeologica: Gumligen, Switzerland, 2014. [Google Scholar]
- Leica TM30 Technical Data. Available online: https://w3.leica-geosystems.com/downloads123/zz/tps/tm30/brochures-datasheet/tm30_technical_data_en.pdf (accessed on 1 February 2021).
- Faillettaz, J.; Pralong, A.; Funk, M.; Deichmann, N. Evidence of log-periodic oscillations and increasing icequake activity during the breaking-off of large ice masses. J. Glaciol. 2008, 54, 725–737. [Google Scholar] [CrossRef] [Green Version]
- Lucianaz, C.; Rorato, O.; Allegretti, M.; Mamino, M.; Roggero, M.; Diotri, F. Low cost DGPS wireless network. In Proceedings of the 2011 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, Torino, Italy, 12–16 September 2011; pp. 792–795. [Google Scholar]
- Dematteis, N.; Giordan, D. Comparison of digital image correlation methods and the impact of noise in geoscience applications. Remote Sens. 2021, 13, 327. [Google Scholar] [CrossRef]
- Travelletti, J.; Delacourt, C.; Allemand, P.; Malet, J.P.; Schmittbuhl, J.; Toussaint, R.; Bastard, M. Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations. ISPRS J. Photogramm. Remote Sens. 2012, 70, 39–55. [Google Scholar] [CrossRef] [Green Version]
- Pralong, A.; Birrer, C.; Stabel, W.A.; Funk, M. On the predictability of ice avalanches. Nonlinear Process. Geophys. 2005, 12, 849–861. [Google Scholar] [CrossRef] [Green Version]
- Sevestre, H. Extreme Summer Impacts Ice Shelves and Glaciers. Available online: https://public.wmo.int/en/media/news/extreme-summer-impacts-ice-shelves-and-glaciers (accessed on 1 October 2020).
- Schweizer, J.; Margreth, S. Evaluation of Hazard Caused by Ice Avalanches from the Planpincieux Glacier, Val Ferret, Courmayeur, Italy; Update 2020; Part 1: Summer Scenarios; European Geosciences Union: Davos, Switzerland, 2020; Available online: https://meetingorganizer.copernicus.org/EGU2020/EGU2020-9717.html?pdf (accessed on 10 June 2021).
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Baffelli, S.; Frey, O.; Hajnsek, I. Polarimetric analysis of natural terrain observed with a ku-band terrestrial radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 5268–5288. [Google Scholar] [CrossRef]
- Notti, D.; Cina, A.; Manzino, A.; Colombo, A.; Bendea, I.H.; Mollo, P.; Giordan, D. Low-cost GNSS solution for continuous monitoring of slope instabilities applied to Madonna del Sasso Sanctuary (NW Italy). Sensors 2020, 20, 289. [Google Scholar] [CrossRef] [Green Version]
- Lenzano, M.G.; Lannutti, E.; Toth, C.; Rivera, A.; Lenzano, L. Detecting glacier surface motion by optical flow. Photogramm. Eng. Remote Sens. 2018, 84, 33–42. [Google Scholar] [CrossRef]
Apparatus | Monitored Area | Survey Period | Operative Range | Reference |
---|---|---|---|---|
RTS | Whymper Serac | October 2010–in activity | 4800 m | [35] |
GNSS | Whymper Serac | October 2010–2012 | --- | [46] |
TLC | Montitaz Lobe | August 2013–in activity | 3800 m | [37,40] |
TLC | Whymper Serac | August 2016–in activity | 4800 m | [41] |
TRI | Montitaz Lobe | 9 August 2013 (2 h) 7 August 2014 (2 h) | 2500 m/3800 m * | [47] |
TRI | Whymper Serac | 9 August 2013 (2 h) 8 August 2014 (3 h) | 4800 m/5400 m * | [47] |
TRI | Montitaz Lobe | 2 September–14 October 2015 | 2500 m | [38] |
TRI | Montitaz Lobe | 13-19 June 2016 | 2500 m | |
TRI | Montitaz Lobe | 26 September 2019–in activity | 2500 m | |
TRI | Whymper Serac | 16 January 2020–in activity | 4800 m |
Survey System | Measurement | Measurement Uncertainty | Acquisition Frequency | Financial Cost [103 €] | Advantages | Limitations |
---|---|---|---|---|---|---|
RTS | Point 3D displacement | ~100 mm | Hour | 30–50 | Long-life | Uncertainty increasing with range Need for on-site access Weather sensitive |
GNSS | Point 3D displacement | ~20 mm | Hour | 1–10 each | Continuous survey Weather insensitive | Need for on-site access Need for on-site power supply Possible sensor loss |
TLC | Area 2D components orthogonal to LOS | ~20 mm | Day | 5–10 | Low-cost Long life Remote sensing | Low sensitivity Weather sensitive No nocturnal acquisition Non-geocoded measurement |
TRI | Area 1D component parallel to LOS | ~1 mm | Minute | 150–350 | High acquisition frequency Continuous survey Remote sensing | Expensive Complex processing Difficult logistics |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dematteis, N.; Giordan, D.; Troilo, F.; Wrzesniak, A.; Godone, D. Ten-Year Monitoring of the Grandes Jorasses Glaciers Kinematics. Limits, Potentialities, and Possible Applications of Different Monitoring Systems. Remote Sens. 2021, 13, 3005. https://doi.org/10.3390/rs13153005
Dematteis N, Giordan D, Troilo F, Wrzesniak A, Godone D. Ten-Year Monitoring of the Grandes Jorasses Glaciers Kinematics. Limits, Potentialities, and Possible Applications of Different Monitoring Systems. Remote Sensing. 2021; 13(15):3005. https://doi.org/10.3390/rs13153005
Chicago/Turabian StyleDematteis, Niccolò, Daniele Giordan, Fabrizio Troilo, Aleksandra Wrzesniak, and Danilo Godone. 2021. "Ten-Year Monitoring of the Grandes Jorasses Glaciers Kinematics. Limits, Potentialities, and Possible Applications of Different Monitoring Systems" Remote Sensing 13, no. 15: 3005. https://doi.org/10.3390/rs13153005
APA StyleDematteis, N., Giordan, D., Troilo, F., Wrzesniak, A., & Godone, D. (2021). Ten-Year Monitoring of the Grandes Jorasses Glaciers Kinematics. Limits, Potentialities, and Possible Applications of Different Monitoring Systems. Remote Sensing, 13(15), 3005. https://doi.org/10.3390/rs13153005