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Abstract: Plant diversity (PD) plays an important role in maintaining the healthy function of an
ecosystem through affecting the productivity, stability, and nutrient utilization of a terrestrial ecosys-
tem. Remote sensing is a vital way to monitor the status and changes of PD. Most of the existing
methods rely on a field botany survey to construct a statistical relationship between PD and remote
sensing observations. However, a field botany survey is too costly to be applied widely. In this
study, we constructed a new remote sensing index of PD (RSPD), combining the spectral variation
hypothesis and productivity hypothesis. Concretely, the RSPD integrated the multi-band spectral
reflectance and several spectral greenness, moisture, and red-edge vegetation indices with the princi-
ples of Shannon information entropy and Euclidean distance. The RSPD was evaluated by comparing
the classical coefficient of variation (CV) method and the Shannon and Simpson diversity indices
based on vegetation classification results. Two cases were selected, where Case I was in Beijing
and Case II was located in part of Huai’an, China. Sentinel-2 data in three years of 2016, 2018,
and 2020 and higher-resolution Pléiades-1 data in 2018 were also utilized. The results demonstrate
that: (1) the RSPD is basically consistent with the CV in spatiotemporal variation; (2) the RSPD
outperforms the CV as compared with Shannon and Simpson diversity indices that are based on
vegetation classification results with Sentinel-2 and Pléiades-1 data; (3) the RSPD outperforms the CV
as compared with visual interpretations with Google Earth image. The suggested index can reflect
the richness and evenness of plant species, which is inherent in its calculation formula. Moreover, it
has a great potential for large-scale regional and long-term series monitoring.

Keywords: remote sensing; plant diversity; spectral heterogeneity; productivity hypothesis; Shannon
information entropy

1. Introduction

Plant biodiversity chiefly refers to the species richness and abundance of plants in a
measurement area. Plant biodiversity plays a critical role in maintaining healthy ecosystem
function because of its influences on ecosystem productivity, community and ecosystem
stability, invasibility, and nutrient use and retention [1,2]. Currently, biodiversity has
become an important social and scientific issue with widespread international concern.
For example, about 196 nations have ratified the Convention on Biological Diversity, an
international legal instrument for the conservation of biological diversity. However, with
rapid urbanization and population growth, some human activities destroyed the natural
environment, caused the loss of species and habitats, and brought serious threats to the
protection of biodiversity [3]. Therefore, biodiversity has become an issue of widespread
international concern. In order to effectively protect biodiversity, it is necessary to monitor
its status and changes in a timely, spatial continuous, and dynamic manner.
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Field surveying of plant biodiversity is almost infeasible for every study area at the
landscape scale, regional scale or even the global scale [4,5]. Since the 1990s, remote sensing
technology has been widely utilized for plant biodiversity, because of the inherent tech-
nical characteristics of wide coverage, and consistent and repeatable measurement in an
efficient and cost-effective way [2,6-8]. Wang and Gamon [2] reviewed the remote sensing
of terrestrial plant biodiversity and classified the studies into four categories: (1) map-
ping distributions of species or functional types, (2) estimating biodiversity through plant
functional traits, (3) estimating biodiversity through habitat mapping, and (4) estimating
biodiversity through spectral diversity. The first way is a direct method that requires fine
spectral and spatial resolutions for direct species mapping. However, most satellite data are
too coarse to map the distributions of species directly. Plant functional traits can be defined
as quantifiable morpho-physio-chemical-phenological traits of individual organisms that
present a response to the variation of environment and its effects on growth, reproduction,
organism survival, and ecosystem processes [9]. Typical functional traits include leaf area,
leaf nitrogen concentration, leaf dry matter content, plant maximum height, canopy shape
index, and phenology (peak fruiting), etc. [10]. Although remote sensing has been applied
to detect plant functional traits, there are still many challenges in detection, such as the
adverse effect of soil reflectance, seasonal change, and high variability of plant traits [2].
Habitat mapping methods are generally based on a hypothesis that habitat heterogeneity
positively correlates with biodiversity [11-13]. In this way, remote sensing often provides
environmental indicators related to climate and habitat structure, geology and topog-
raphy, such as temperature [14], fractional vegetation coverage, or spectral vegetation
indices [15-18], net primary productivity [19], and land cover types [20]. However, habitat
mapping is highly scale-dependent and is affected by the characteristics of the species
involved. Moreover, this approach usually ignores within-habitat variability and the distri-
bution of rare species or species that are not specific to particular habitats [2]. The spectral
diversity approach is based on the spectral variation hypothesis (SVH), which posits that
the spatial heterogeneity of spectral information positively correlates with environmental
heterogeneity, a proxy of species biodiversity [21,22]. It has been summarized that the
SVH links ecological resource theory to fundamental physical principles to provide a rapid
and accurate approach to measure biodiversity via optical patterns [2,23]. Moreover, this
spectral diversity approach has been validated in various regions [22,24-28].

Techniques used for measuring the spectral diversity or heterogeneity have been
reviewed in [2,21]. For ease of understanding, we distinguished two basic parts in mea-
suring spectral diversity. The first one is called the representations of ‘spectra’, which
can be original spectral reflectance bands, spectral indices through combining the spec-
tral reflectance bands [29] (e.g., NDVI), one principal component transformed from the
spectral reflectance [30], or classification results based on the spectral reflectance [31] (e.g.,
supervised or unsupervised classification), etc. Another part is the expression of ‘diversity’,
which can be calculated as the mean, range, standard deviation [25], and first- and second-
order texture measurements of spectral bands [32]. For example, in one study, spectral
heterogeneity was characterized by the mean and standard deviation of all pixels within
the sample plot range of each band or index [33]. These statistical metrics are generally
combined with field botanical surveys through varied regression techniques including par-
tial least squares regression (PLSR) [34,35], Random Forest [36], and the regression kriging
procedure [32], etc. Subsequently, the trained relationship is applied in remote sensing
images to predict and map the plant biodiversity over the whole study area. For example,
there was a study recently that utilized Sentinel-2 to infer plant functional diversity [35].
The PLSR was used in this study and the variables used for predicting diversity metrics
included band-wise mean and band-wise mean absolute deviation of surface reflectance. In
another study that was also based on Sentinel-2, the variables used for predicting diversity
included spectral bands, NDVI, and principal component. The regression method included
Random Forest, K-Nearest Neighbors, Kernel Ridge Regression, etc. [36]. However, it is
very expensive to conduct field botanical surveying in order to obtain enough samples for
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training regression methods. In most cases, the field botanical surveys are very rare. For the
area without field botanical surveys, it is very valuable to create a comprehensive indicator
of spectral diversity which can be represented as a measure of the plant biodiversity. The
coefficient of variation (CV) is such a typical indicator which has been applied to airborne
imaging spectrometry for mapping plant biodiversity in grassland [37].

Although the CV has been used in evaluating and monitoring plant diversity, it has
several significant limitations: (1) firstly, it is expressed as CV = Y_' ; (0;/u;)/n where i
indicates the spectral band varied from 1 to n, 0; and y; are the standard deviation and mean
value of spectral reflectance at the i-th band within a sliding window. According to the
expression, the CV measures the average dispersion in the spectral reflectance of each band.
It cannot be used when the denominator y; is zero. Moreover, the CV can approach infinity
when the y; is close to zero and the CV value is susceptible to small changes in the y;.
(2) Additionally, there is no fixed range for the CV which can be less than 1 for low variance
distribution and higher than 1 for high variance distribution. (3) Besides, only spectral
reflectance is considered in the calculation of the CV. Varied spectral vegetation indices are
excluded in spite of their ability to highlight the features of vegetation. Considering the
benefits and drawbacks of the CV method, a new remote sensing index of plant diversity
(RSPD for short) is suggested in this study. The RSPD is expected to keep the advantages of
the CV that they do not depend on a botanical survey and circumvent the above-mentioned
disadvantages. Specific calculation details of this new method and its evaluation and
application analysis are depicted in the following sections.

2. Methods
2.1. Calculating the RSPD

Figure 1 shows the conceptual graph of the method for calculating the suggested
RSPD. Firstly, the RSPD is expected to be implemented in a local area which can be a plot or
study area. Supposing there is a sliding window on the image and the center of the sliding
window is vegetated pixel, all vegetated pixels in the sliding window are taken as input
for the method and one value of RSPD will be obtained from the method as output. The
output value is then assigned to the center pixel of the sliding window, which is considered
a measure of plant diversity within the sliding window area.

Figure 1. Conceptual graph of the method to calculate RSPD.

In addition, the suggested RSPD is expected to operate on a composition of varied
reflectance bands and spectral vegetation indices (SVIs). The reflectance has a fixed data
range between 0 and 1, while the data range of SVI may vary with the specific calculation
technique. In this study, a technique such as the normalized difference vegetation index
(NDVI) is suggested to calculate the SVI because it has a fixed range from —1 to +1 and the
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NDVTI has been successfully used in reflecting plant biomass and productivity. The SVI can
be expressed as:

Svy = P — P 1)

Pp1 + Pp2

where pp and py, are reflectance at the bands of b1 and b2, respectively. The SVI has a
theoretical range between — 1 and 1. In order to keep with the data range of reflectance, the
SVI can be normalized by the equation (SVI + 1)/2. Resultantly, varied reflectance bands
and normalized SVI data were combined into a multi-band image file. For this file, each
vegetated pixel can be represented with a multi-dimensional vector:

Xi = [0i1,0i2,0i3," "+, Vinl, )

where X; is the i-th vegetated pixel; v is the value at each band with a fixed data range of
[0,1]; n is the total number of the bands.

Assuming X is the central vegetated pixel in a sliding window, the similarity between
the other vegetated pixels and the X can be expressed as:

®)

where D; is a measure of similarity among varied vegetated pixels. This similarity has
a theoretical maximum of /7 and a theoretical minimum of 0 because of the data range
of v varied from 0 to 1. It is noteworthy here that we employ the D; to determine if X,
and X; belong to the same plant species. According to spectral variation hypothesis and
productivity hypothesis, the smaller D; means the greater probability of belonging to the
same plant species and vice versa. In order to determine the thresholds for distinguishing
different species, we divide the D; uniformly from theoretical minimum to theoretical
maximum into Q segments. The vegetation pixels with similarity falling into the same
segment is considered as belonging to the same plant species. Additionally, those falling
into different segments were considered to be different plant species. Resultantly, the
following equation can be used to calculate the relative abundance of each segment:

pqzc<(q_l)QXDm‘X§D<qxgmax>/w, 4)

where p; is the relative abundance of the g-th segment, that is, the proportion of each
segment in the window to the total number of pixels in the window; Q is the number
of segments (100 in this study); Dmax = Vn; % is the length of each segment; C is a
function returning the number of vegetated pixels whose similarity D follows the condition
that (‘7_1)# <D< M% ; and W is the total number of vegetated pixels in the sliding
window. Finally, the following equation was used to calculate the remote sensing index of
plant diversity for this sliding window referring to the Shannon entropy:

_ZL;Q:1 pgx In(py)
In(Q) '

where In( ) is the natural logarithm. The value of RSPD has a fixed range between 0 and 1,
where the greater value indicates the greater plant diversity and vice versa.

RSPD = (5)

2.2. Evaluating the RSPD
The RSPD was evaluated by comparing with the typical CV method, which can be

expressed as:
A std(pp)
cV — Ya-1 (Zean(m)) ) ©)
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where p, is spectral reflectance at the band of A, A is the total number of spectral bands,
std() is the function to obtain standard deviation, and mean() is the function to obtain
average value.

Additionally, we also used a non-supervised classification method to identify as many
different plant species as possible. Common unsupervised classification methods include
the K-means clustering analysis method and ISODATA. We mainly used the K-means
clustering analysis method and set the number of classes to 30 and the maximum iteration
to 20. The classification results indicate the plant type of each vegetated pixel. Therefore,
we can obtain the richness and abundances of plant species from the classification result.
Consequently, the Shannon diversity index (ShDI) and Simpson diversity index (S5iDI) were
calculated from the classification results using the same method of the sliding window as
the RSPD, and the window size was 3 X 3:

ShDI = —Y 01 pyx In(py)
SiDl=1-YM  p? ’

m=1

@)

where Py, is the ratio of pixel numbers with vegetation type m to the total vegetated pixel
numbers within the sliding window.

Using ShDI and SiDlI as reference, two quantitative indicators were selected to evaluate
the performance of the RSPD. One of them was the Pearson correlation coefficient, which
ranges from —1 to 1. The larger the correlation coefficient is, the better the RSPD perfor-
mance is. Another indicator was image texture difference (ITD), which is defined following
the equation provided in Sun et al. (2015) [38]. The ITD is dimensionless, where smaller
values correspond to an increasingly similar spatially distributed RSPD and ShDI/SiDL

L . | )2
m=""Y" — ) )

where Tl-I, j and Tg are the normalized texture measures of the RSPD and ShDI/SiDI images,
respectively, where i varies from 1 to n indicating pixel location, and j varies from 1 to m
representing various image texture measures. Eight texture measures were computed in
this study, including mean, variance, homogeneity, contrast, dissimilarity, entropy, second
moment, and correlation.

3. Study Materials and Cases
3.1. Study Cases

Two cases were selected in this study; where Case I was located in the megacity,
Beijing and Case II was located in part of Huai’an, China. Figure 2 illustrates the spatial
distribution of the two study areas. Case I was the area around the Beijing Olympic Forest
Park, which covers an area of about 680 hectares, with more than 550,000 trees and shrubs,
280 plant varieties, and a green coverage ratio of about 95.61%. Case II was located in the
northeast of the Qingjiangpu District of Huai’an City. The forest coverage rate of Huai’an
City is 18.2%. There are 90,700 hectares of forest land and 380,000 hectares of farmland-
forest networks in the city, and the forest network rate is 95.9%. Among them, the forest
resources are mainly artificial forest and natural forest, and the tree species resources are
relatively rich. There are 79 families of woody plants, 410 species of 179 genera, including
328 species of trees, 65 species of shrubs and 17 species of vines in Huai’an. Vegetation
in the study area is mainly distributed in the southeast, mainly in farmland and forest
network, and in the northwest, mainly in buildings.
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Case I study area for Sentinel-2 data

116°26'00"E 116°24"

Case II study area for Sentinel-2 data

33°36'00"N /

CJCase I
0 235 470 Km Casell
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Figure 2. Spatial distribution of the study areas where (a) Case I is located in the megacity, Beijing and
(b) Case Il is located in part of Huai’an, China. The background image is false color composite with
Sentinel-2 (RGB: band 8, 4, 3) where vegetation is red, water is dark blue, and cities are blue—gray.

3.2. Sentinel-2 Data

The remote sensing data from Copernicus Sentinel-2 mission were used in this study.
Specifically, the optical data from MultiSpectral Instrument (MSI), the main instrument of
the Sentinel-2 mission, was employed. Images include data on 28 August 2016, 5 September
2018, and 19 September 2020 in Case I, and data on 26 July 2016, 9 September 2018, and 3
September 2020 in Case II.

There are thirteen spectral bands provided by the MSI within the wavelength region
from visible to short-wave infrared band. Moreover, there are three spatial resolutions for
different spectral bands: 10 m, 20 m, and 60 m. Table 1 shows the parameters of each band
of Sentinel-2 data. The bands with spatial resolutions of 60 m were excluded in this study
because of their coarse resolution. The collected products are at the level of Level-1C which
is top-of-atmosphere reflectance in cartographic geometry. Therefore, we first used Sen2cor
to implement radiation calibration and atmospheric correction on Level-1C products to
generate bottom-of-atmosphere reflectance data (i.e., Level-2A). Secondly, in order to unify
the spatial resolution, we re-sampled the spectral bands to a 10 m resolution using the
Sentinel series data processing software Sentinel Application Platform (SNAP), provided
by ESA. The SNAP is the common architecture of all Sentinel Toolboxes and SMOS Toolbox,
which can process Sentinel series data, Landsat series data, SPOT series data and SAR data
such as geometric correction, radiometric calibration, filtering, clipping, mosaic, etc. Based
on the Level-2A data, we computed the fractional vegetation coverage (FVC) with the tools
in SNAP software. In order to implement the RSPD method, non-vegetated pixels should
be masked. We identified the vegetated pixels by the conditions that it is a vegetation type
classified by the Sen2Cor’s built-in scene classification algorithm [35] and its FVC is greater
than 50%.
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Table 1. Spectral bands for the Sentinel-2 sensors (S2A&S2B).

S2A S2B .
Band Number Central Central Res(f]I:;:?rll (m)
Wavelength (nm) Bandwidth (nm) Wavelength (nm) Bandwidth (nm)

1 4439 27 442.3 45 60
2 496.6 98 492.1 98 10
3 560 45 559 46 10
4 664.5 38 665 39 10
5 703.9 19 703.8 20 20
6 740.2 18 739.1 18 20
7 7825 28 779.7 28 20
8 835.1 145 833 133 10
8a 864.8 33 864 32 20
9 945 26 943.2 27 60
10 1373.5 75 1376.9 76 60
11 1613.7 143 1610.4 141 20
12 2202.4 242 2185.7 238 20

According to the spectral bands of Sentinel-2 MSI, we calculated the following spectral
vegetation indices:
NDVI = (o5 — 0p4)/ (008 + Pb4)

NDVIgg1 = (b5 — pba)/ (Po5 + Pb4)

NDVIge2 = (0p6 — Po4)/ (066 + Pp4)

NDVIges = (047 — pba)/ (067 + 004) O
NDVIres = (080 — Pp4)/ (Po8a + Pb4)

NDII; = (ops — pp11)/ (P68 + Po11)

NDIL; = (ops — pp12)/ (P68 + Po12)

where p represents reflectance, b4~b12 represent spectral bands of Sentinel-2 MSI. Finally,
10 reflectance bands (b2, b3, b4, b5, b6, b7, b8, b8a, bl1l, b12) and the above 7 spectral
vegetation indices were combined into a file with 17 bands to calculate the suggested RSPD.
The unsupervised classification was also conducted on the 17 reflectance bands. The typical
CV method was conducted on the 10 reflectance bands according to its original meaning.

3.3. Pléiades-1 Data

Pléiades-1 high-resolution imagery was also utilized in this study. These data were
acquired on 23 September 2018, and the spatial coverage was the same with Case II, as
shown in Figure 2. These data have a rich texture structure and qualified quality without
cloud and snow. Pléiades is the first European very-high-resolution (VHR) satellite system
that provides sun synchronous imagery from an orbit height of 674 km with a swath
width of 20 km and a daily revisit capability. The sensor can reach a ground resolution of
0.5 m in panchromatic mode and 2 m in multi-spectral mode in the vertical direction. The
Pléiades consists of five channels: Panchromatic (470-830 nm), Blue (430-550 nm), Green
(500-620 nm), Red (590-710 nm), and Near-infrared (740-940 nm). Since these data have
higher spatial resolution than the Sentinel-2, they were utilized as one of the references to
evaluate the suggested RSPD.

4. Results
4.1. Spatiotemporal Comparisons between RSPD and CV

Figure 3 shows the results of the RSPD and CV in the Case I and Case II area based
on Sentinel-2 data. The first line (a), (b), and (c) are the RSPD results of Case I on August
28, 2016, September 5, 2018, and September 19, 2020, respectively. The second line (d),
(e), and (f) are the CV results of Case I on those days. The greater value of the RSPD and
CV indicates the greater plant diversity, and vice versa. It can be seen that the spatial
distributions of the RSPD and CV are basically consistent in Case I. The central and northern
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regions have higher plant diversity, which are mainly with medium and high fractional
vegetation coverage. The other areas are surrounded by built-up areas, which have lower
plant diversity. Figure 3g-1 show the distribution of the RSPD and CV in Case II on different
days. Once again, the distributions of the RSPD and CV are basically consistent with each
other. The RSPD and CV both illustrate that the northwest of Case II has lower plant
diversity, while a higher plant diversity is in the southeast of this area.
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Figure 3. Spatial distributions of the RSPD and CV where (a—c) are RSPD in Case I on 28 August 2016, 5 September 2018,
and 19 September 2020, respectively; (d—f) are CV in Case I on those days. (g—i) are RSPD in Case II on 26 July 2016, 9
September 2018, and 3 September 2020, respectively; (j-1) are CV in Case II on those days.

We conducted statistical analysis on the maximum and mean values of the RSPD
and CV, respectively. Tables 2 and 3 are the statistical information of the two study areas,
respectively. Additionally, the temporal variations of the RSPD and CV are shown in
Figure 4. Overall, the Case I study area shows a trend of an increase in plant biodiversity
from 2016 to 2020. The plant diversity in the Case II region shows a tiny upward trend
from 2016 to 2018, but a slight downward trend from 2018 to 2020. The variation trend of
the RSPD and CV are also basically the same.
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Table 2. Statistical analysis of RSPD and CV in Case .

Min Max Mean
Casel
RSPD CcvV RSPD Ccv RSPD CvV
2016 0 0.001358 0.443673 0.285537 0.215822 0.061429
2018 0 0.001528 0.477121 0.493477 0.237009 0.086106
2020 0 0.003064 0.477121 0.504260 0.253524 0.096511

Table 3. Statistical analysis of RSPD and CV in Case II.

Min Max Mean
Case II
RSPD Ccv RSPD Ccv RSPD Ccv
2016 0 0.002980 0.477121 0.686903 0.210889 0.083789
2018 0 0.001722 0.477121 0.481739 0.219088 0.092678
2020 0 0.004737 0.477121 0.449763 0.183124 0.078497
(a)0.6 T T T (b)O‘S T T T
0.7 .
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Figure 4. The temporal change trend of RSPD and CV, where (a) is the result of Case I study area and (b) is the result of

Case II study area.

In summary, the RSPD and CV are basically consistent with each other in depicting
the spatial and temporal variation of plant diversity.

4.2. Evaluating RSPD and CV with Classification Results by Sentinel-2 Data

Figure 5 shows the spatial distribution of ShDI and SiDI for Case I and Case II. First of
all, the distribution results are consistent with the spatial patterns and variation trend of the
RSPD. Additionally, Figure 6a,b present the correlation coefficients between the ShDI/SiDI
and RSPD/CV. The correlation coefficients between the RSPD and ShDI/SiDI are greater
than 0.9 with p-value = 0.01.

Figure 6¢,d show the ITD between the RSPD/CV and the ShDI/SiDI at various times
during 2016-2020. The horizontal axis represents the temporal variation, and the vertical
axis indicates the value of the ITD. A greater ITD corresponds to a greater RSPD/CV
—ShDI/SiDI spatially distributed difference. It can be seen from Figure 6 that the ITD value
between the RSPD and ShDI/SiDI is generally smaller, while the ITD value between the CV
and ShDI/SiDl is generally bigger. These results indicate that the diversity indicated by the
RSPD is in good agreement with the spatial distribution pattern of ShDI/SiDI. Moreover,
the RSPD results outperform the CV in all cases and study periods.
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Figure 5. Spatial distribution of ShDI and SiDI based on Sentinel-2 data where (a—c) are ShDIs in Case I on 28 August 2016,
5 September 2018, and 19 September 2020, respectively; (d—f) are SiDIs in Case I on those days; (g-i) are ShDIs in Case IT on
26 July 2016, 9 September 2018, and 3 September 2020, respectively; (j-1) are SiDIs in Case II on those days.

4.3. Evaluating RSPD and CV with Classification Results by Pléiades-1 Data

We also calculated the ShDI and SIDI using high-resolution Pléiades-1 data over the
Case II area in 2018. Figure 7 shows the spatial distribution of the ShDI and SiDI results.
It can be seen that the spatial patterns are consistent with the distribution of the RSPD

in 2018.
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Figure 6. The correlation and image texture difference (ITD) between different methods and ShDI/SiDI ((a) is the correlation
result of Case I; (b) is the correlation result of Case II; (c) is the ITD result of Case I; (d) is the ITD result of Case II).
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Furtherly, we compared the correlation coefficient and ITD between the RSPD/CV
based on Sentinel-2 data and ShDI/SiDI based on Pléiades-1 data. Since they have different
spatial resolutions, we simply disaggregated the coarse-resolution data into the high-
resolution with nearest neighbor resampling. Comparison results are shown in Figure 8.
The correlation coefficients between the RSPD/CV and ShDI/SiDI are greater than 0.6 at a
significant level of 0.05. ITDs are all less than 0.35. Once again, the RSPD outperforms the
CV, as compared with ShDI/SiDI based on Pléiades-1 data.
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Figure 8. Correlation and ITD between different methods and Pléiades -ShDI/SiD], respectively ((a) is the correlation result

and (b) is the ITD result).

In summary, the suggested RSPD is basically consistent with the classical CV method.
However, the overall performance of the RSPD is better than that of the CV, as com-
pared in spatial details and with vegetation classification results using similar and higher-
resolution images.

4.4. Evaluating RSPD with Visual Interpretation of Google Earth Image

In addition to the aforementioned evaluations of the RSPD with the CV, ShDI, and SiDI
with similar resolution and higher resolution images. Here, we present another evaluation
with visual interpretations of Google Earth image.

Firstly, we compared the RSPD and CV in 2020 with Google Earth image and in situ
pictures through selecting three targets of forest, forest-grassland mixture, and grassland
in Case I as shown in Figure 9. We used the visual interpretation method to compare
the distribution of the RSPD/CV and Google Earth images at the targets to judge the
performance of the RSPD.

As can be seen from the Google Earth images and in situ pictures, target 1 is located
in the forest, mainly distributed with a large number of shrubs, trees and herbs, with rich
species and the highest diversity. Target 2 is located in forest-grassland mixture and has
less species diversity than the forest target. Target 3 is grassland with single vegetation type
and has the lowest species diversity. Figure 9a—f demonstrate that the results of the RSPD
and CV at the three targets are consistent with the above visual interpretations, although
there are subtle differences between the RSPD and CV.

Secondly, 40 samples in 30m*30m were selected from Google Earth, which include
18 in the Beijing Olympic Forest Park and surrounding areas, and 22 in Huai’an City. The
distribution of sample sites is shown in Figure 2. According to the satellite images and
panoramas of Google Earth, the vegetation coverage and the number of species in each
plot were estimated, and the degree of plant diversity was determined and graded. The
classification results are shown in Table 4.
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Figure 9. Details of the Case I study area. (a—c) are RSPD results of forest, forest—grassland mixture

and grassland, respectively; (d—f) are the corresponding CV results; (g-i) is the corresponding Google

Earth image; (j—-1) are the corresponding in situ pictures.

Table 4. Plant diversity grade of sample sites.

Sample Case I Case II
Sites 2016 2018 2020 2016 2018 2020
1 9 10 10 5 // 5
2 8 4 7 4 // 4
3 8 8 9 6 // 6
4 7 8 8 5 // 5
5 // 6 4 8 8 8
6 // 4 4 8 8 8
7 6 8 8 7 8 7
8 4 7 5 9 9 10
9 6 6 7 3 5 4
10 5 // 7 4 // 3
11 7 7 9 4 // 4
12 7 9 9 5 // 5
13 4 // 6 9 9 8
14 6 // 6 4 5 3
15 4 1 3 8 7 9
16 // // 7 5 7 6
17 8 9 8 6 4 6
18 6 6 6 2 3 3
19 // // // 8 7 9
20 // // // 4 5 5
21 // // // 4 4 4
22 // // // 9 6 9
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Figure 10 show the scatter plots between the RSPD and the level of plant diversity at
sample plots in Case I and Case II. The results show that there is a significant correlation
between the RSPD and the plant diversity grade of sample sites, with the determination
coefficient ranging from 0.4 to 0.55 and 0.55 to 0.75 in Case I and Case II. The results
show that the RSDP is effective in describing the plant diversity from the perspective of
visual interpretation.
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Figure 10. The correlation between the RSPD and the plant diversity grade of sample sites where (a—c) are the results of
Case Iin 2016, 2018, and 2019, respectively; (d—f) are the results of Case II in 2016, 2018, and 2019, respectively.

In addition, three sample points were selected in Case I and Case II, respectively. By
comparing the 20162020 RSPD results with the time variation trend of the sample data, the
performance of the RSPD was also evaluated from the time trend. The time variation results
are shown in Figure 11, which indicates that the RSPD and sample data have basically the
same changing trend in time series.
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Figure 11. Time series changes of sample data and RSPD results ((a—c) are the comparison results at sample points 3, 11 and

17, respectively, in

Case I. (d—f) are the comparison results at sample points 7, 13 and 19, respectively, in Case II).Finally,

we compared the RSPD and CV with the visual interpretation samples and the results are shown in Figure 12. It can be

intuitively seen from the figure that the correlation coefficients between the RSPD and sample data are usually higher than

that of the CV.
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Figure 12. Correlation efficient between RSPD/CV and sample data from Google Earth images.

5. Discussion
5.1. The Influence of Red-Edge Bands on RSPD

The suggested RSPD in this study is expected to be applied in other satellites not
just for Sentinel-2 satellite. One striking feature of Sentinel-2 is in the multiple red-edge
bands, which are important spectrum bands to reflect the biophysical status of vegetation.
However, these electromagnetic wave bands are not deployed in many other optical
satellites. In order to evaluate the influence of red-edge bands on the performance of the
RSPD, we analyzed the difference between the RSPD models constructed with and without
considering the red-edge bands. Root mean square error (RMSE) and ITD were used to
evaluate the difference, and the results are illustrated in Figure 13. In Case I, the RMSE of
the RSPD without considering the red-edge is between 0.43 and 0.47, as compared with
the ShDI, and between 0.17 and 0.20, as compared with the SiDI. Correspondingly, the
RMSE of the RSPD with red-edge is between 0.43 and 0.46 with the ShDI and 0.17 and
0.19 with the SIDI. In Case II, without considering the red-edge, the RMSE of the RSPD is
between 0.53 and 0.66 for the ShDI and between 0.23 and 0.30 for the SiDI. In the case of
with red-edge, the RMSE of the RSPD is between 0.52 and 0.64 with the ShDI and 0.22 and
0.28 with the SiDI. The results indicate that the difference between that with and without
red-edge bands is little, although red-edge bands do help in reducing the difference.

Figure 13¢,d show the ITD between the RSPD and ShDI/SiDI with or without red-edge
bands at different times from 2016 to 2020. The horizontal axis represents the temporal
variation, and the vertical axis indicates the value of the ITD. As can be seen from Figure 13,
the ITD value between the RSPD and ShDI/SiDI in the case of red-edge is generally
small, while the ITD value between the RSPD and ShDI/SiDI in the case of no red-edge is
generally high. In addition, the effect of red-edge bands was also evaluated by Pléiades
data-derived ShDI/SiDI. The evaluation results are shown in Figure 14. The correlation
between the two RSPDs is basically equal, and the ITD of the RSPD with red-edge bands is
a little lower than that without red-edge bands.



Remote Sens. 2021, 13, 3007 16 of 22

; , : 1.0 : : ,
@ [ ] ShDI&RSPD Red Edge || ® ] ShDI&RSPD Red Edge
06- ] ShDI&RSPD No Red Edge [ 1] ShDI&RSPD No Red Edge
[ ] SiDI&RSPD Red Edge 1 0.8- [ ] SiDI&RSPD_Red Edge !
[ ] SiDI&RSPD No Red Edge [ ] SiDI&RSPD No Red Edge
w04ad [ ] 1, 06 — g
wn wn —
= b
I~ [~
4 044 g
0.2 1
. 02 N .
0.0 0.0
2016 2018 2020 2016 2018 2020
Year Year
(c)0.24 T T T (d)0.35 T T T
ShDI&RSPD_Red Edge ShDI&RSPD_Red Edge
— ShDI&RSPD_No Red Edge 0304 ShDI&RSPD_No Red Edge
<Y SiDI&RSPD_Red Edge - SiDI&RSPD_Red Edge
SiDI&RSPD_No Red Edge 0.25 SiDI&RSPD_No Red Edge
0.16
- _ ~ —] _ 0204 — 1
£ 0.121 g
| 70151 |
0.08
0.10 1
0.04 1 0.054
0.00 0.00 } .
2016 2018 2020 2016 2018 2020
Year Year

Figure 13. Influence of red-edge bands on RSPD effect ((a,c) are Case I, (b,d) are Case II).
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Figure 14. Pléiades—ShDI/SiDI was used to test the effect of red-edge bands on RSPD ((a) is the correlation result and
(b) is the ITD result).

In summary, the RMSE and ITD of the RSPD with the red-edge bands are lower
than that without the red-edge bands, indicating that the red-edge bands do help in
promoting the performance of the RSPD. However, the difference is not very significant, as
demonstrated in our study. Thus, we believe that the suggested RSPD can be applied in
other optical satellites, not just for Sentinel-2 satellite.

5.2. The Influence of Segment Number on RSPD

In the calculation of RSPD, the number of segments (Q) in Equation (4) was set as 100
according to comprehensive experiment analysis. To investigate the influence of Q on the
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RSPD, we calculated the RSPD with different numbers of Q, varying between 25 and 175 in
the study areas, Case I and Case 1II, respectively. The ITD consistency analysis between the
RSPD and ShDI/SiDI was carried out to determine the appropriate Q. Figure 15 shows the
ITD results between the RSPD and ShDI/SiDI. As can be seen from the figure, when the Q
changed from 25 to 75, the ITD decreased significantly, implying that the performance of
the RSPD would be promoted with the increasement of Q. However, when the Q changed
from 100 to 175, there was very little variation in the ITD, implying that the effect of
promotion by increasing the Q is limited or convergent. Too large a value of the Q would
increase burden on the calculation of the RSPD. Consequently, it is appropriate to set Q as
100 in this study.
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0.4 B 100[ 044 _ 100
= 125 125
150 150
0.3 1 175| A 0.3 175

=
0.2 1 021 i
0.14 7 0.1 7
0.0 T T T 0.0 T T T
2016 2018 2020 2016 2018 2020
Year Year

T T T 25 (d) T T T 25

0.5 501 037 50
75 | — M 75
044 M B 100 44 _ 100
_ 125 125
150 150
0.3 1 175 A 0.3 = 175

=
0.2 1 024 ] ]
0.14 7 0.1 7
0.0 T T T 0.0 T T T
2016 2018 2020 2016 2018 2020
Year Year

Figure 15. The performance of RSPD with different number of segments Q, where (a) is the ITD between RSPD and ShDI in
Case I; (b) is the ITD between RSPD and SiDI in Case I; (c) is the ITD between RSPD and ShDI in Case II; and (d) is the ITD
between RSPD and SiDI in Case II.

5.3. Different Unsupervised Classification Methods on Evaluating RSPD

In the above-mentioned evaluation of the RSPD with classification results, we mainly
used the K-means clustering analysis method. In order to analyze the influence of different
unsupervised classification methods on evaluating the RSPD, we also adopted the ISO-
DATA unsupervised classification method, whose parameter settings are the same as the
K-means clustering analysis method. Figure 16 shows the ITD between the ShDI/SiDI
based on the ISODATA method and the RSPD/CV. It can be seen that the ITD is lower for
the comparisons between the RSPD and ShDI/SiDI, while it is higher for the comparisons
between the CV and ShDI/SiDI. This phenomenon is consistent with that by the K-means
method, as shown in Figure 6. The results demonstrate that no matter which unsupervised
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classification method is used for evaluation, the performance of the RSPD is better than

that of the CV.
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Figure 16. ITD of ShDI/SiDI obtained by the ISODATA method with RSPD/CV. ((a) is the ITD result of Case I; (b) is the
ITD result of Case II).

5.4. Applicability and Prospects of the RSPD

At present, biodiversity and ecosystem conservation have become hot issues of global

concern. Several international treaties have thus been created, such as the United Nations
Convention on Biological Diversity, the United Nations Framework Convention on Climate
Change, and the Paris Agreement. In the face of global environmental risks and challenges,
the conservation of biodiversity has become increasingly urgent. In order to deal with the
loss of biological diversity, many biologists, ecologists and other relevant researchers are
committed to studying the key issues in biological diversity as well as in plant diversity,
such as evaluating the extinction rate and understanding the mechanism of biodiversity
loss. Among them, the remote sensing of plant diversity plays a significant role in providing
large-scale, long-term, and spatial continuous monitoring data.

The main contribution of this study is constructing a new remote sensing index of

plant diversity, i.e., the RSPD. It has several advantages as compared with previous indices.

1.

The RSPD circumvents the drawbacks of the CV. First, the RSPD has a fixed range of
values between 0 and 1, which is conducive to dynamically monitoring plant diversity.
However, the CV can be less than 1 for low variance distribution, and greater than
1 for high variance distribution. In other words, there is no fixed range for the CV.
Besides, the CV value is very susceptible to small changes in the u; and it would
approach infinity when the u; is close to zero. In contrast, the RSPD can circumvent
the limitations of u; in CV.

The RSPD is designed to be implemented on a spectral measurement data set synthe-
sized by spectral reflectance and various spectral vegetation indices (e.g., vegetation
greenness index, vegetation moisture index, red-edge vegetation index). The spectral
vegetation indices can represent the productivity of plant to some extent. The multi-
band vegetation reflectance can describe the spectrum feature of plants. Thus, the
suggested RSPD combined the productivity hypothesis with the spectral variation
hypothesis to monitor the plant diversity.

Thirdly, the final calculation form of the RSPD referred to the principle of Shannon
information entropy. It should be noted that plant diversity should be determined by
both species’ richness and evenness. The Shannon information entropy has the ability
to integrate the richness and evenness, which is inherent in its calculation formula.
The well-known Shannon Diversity index is also based on the principle of Shannon
information entropy. Resultantly, the suggested RSPD realized the comprehensive
measurement of species richness and evenness.
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Many remote sensing-based methods for mapping plant diversity rely on a field
botany survey. That is because they require a large number of field samples to train a
mathematical relationship between plant diversity and remote sensing observations.
However, conducting a field botany survey is usually costly, and thus has limited
application potential. Actually, many areas do not have the economic and technical
conditions to carry out field botanical investigation. The suggested RSPD method is a
purely remotely sensed index, which means that it can evaluate and monitor the plant
diversity independent of field survey. In other words, the RSPD facilitates large-scale
and long time series monitoring of plant diversity.

The proposed RSPD method is not only applicable for Sentinel-2 data. We distin-
guished that the multiple red-edge bands have a limited promotion effect on the
RSPD, implying that the method can also be utilized in other optical satellites such as
Landsat and SPOT. It can also be applied with hyperspectral data such as Hyperion,
Chris, and the newly launched Zhuhai-1 hyperspectral satellite.

Certainly, there are some limitations that need to be solved in the future, which are

not only for the RSPD but also for most remote sensing methods of plant diversity.

1.

Firstly, optical remote sensing usually obtains the spectral reflectance from the upper
canopy. The understory species are hard to be observed because of the shielding
effect. Furtherly, remote sensing has a spatial scale effect, which means that it chiefly
reflects the information at the observing scale. With regard to the remote sensing
of plant diversity, it can only identify the dominant species at the observing scale.
Therefore, we admit that the suggested RSPD and the classical CV methods may not
have the capacity to map the diversity of the entire plant community. This study only
demonstrates the RSPD’s capacity to map diversity of dominant species. Additionally,
due to the existence of mixed pixel, the suggested RSPD and the CV may both be
sensitive to habitat heterogeneity. In this study, we have tried our best to mask the
non-vegetated pixels. We think this limitation can be reduced with the increasing
improvement in spatial resolution of remote sensing technology.

Secondly, it has been described that while remote sensing indices are closely related
to plant diversity, they are also influenced by important factors related to climate,
ecosystem type, degree of disturbance, topography, and land cover [39,40]. Therefore,
we declare that the suggested RSPD should be implemented in a time scale of a year.
The annual RSPD should be the maximum RSPD during a year-long observation,
especially the observation during the vegetation growing season. The maximum value
composite of RSPD could reduce the effect of seasonal or meteorological variation.
On the other hand, due to the expensive cost in conducting field investigating, field
survey data were not utilized in this study. However, we believe that the RSPD would
work better if it is properly calibrated using field observations, because we have
proved that the suggested RSPD is an improvement of the existing CV through the
verification with other higher-resolution data.

The main principle of our model is to reflect plant diversity using spectral variation
and productivity hypotheses. If the spectral differences of different vegetation in the
ecosystem are very small or the spectra of the same species are significantly different
due to environmental factors (i.e., the “different objects with the same spectra” or
“same objects with different spectra”), the sensitivity of the model to plant diversity
will be reduced. In addition, the sensitivity of the model will also be affected if there
is no positive correlation between vegetation productivity and diversity due to the
influence of local special conditions. In other words, violations of the assumptions of
local conditions or ecosystem characteristics will cause our algorithm to fail. However,
compared with the method of only using one hypothesis, our model integrates two
hypotheses to reduce the limitations to a certain extent.

In spite of these limitations, the proposed RSPD provides an advanced tool to monitor

and evaluate the changes in plant diversity and the ecological restoration quality of the
ecosystem. We believe that with the development of remote sensing technology, the
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improvement of spatiotemporal resolution and spectral resolution will provide more
possibilities for the RSPD.

6. Conclusions

In this study, a new remote sensing index of plant diversity named RSPD was sug-
gested through combining the spectral variation hypothesis and productivity hypothesis.
Specifically, the RSPD combined the multi-channel spectral reflectance and several spectral
vegetation greenness, moisture, and red-edge vegetation indices with the principle of
Shannon information entropy and Euclidean distance. The suggested RSPD was evaluated
by comparing with the classical CV method, the Shannon and Simpson diversity indices
based on vegetation classification results with similar and higher resolution images, and
the visual interpretations with higher resolution Google Earth images.

The results demonstrate that: (1) the RSPD is basically consistent with the CV in
spatiotemporal variation; (2) the RSPD outperforms the CV as compared with classification
results with Sentinel-2 data and Pléiades-1 data; (3) the RSPD outperforms the CV as
compared with visual interpretations with Google Earth images. We also analyzed the
effect of red-edge bands on the RSPD. The results show that the red-edge bands can
improve the performance of the RSPD, but the promotion is limited, which implying that
the RSPD has wide application for other optical satellites in addition to the Sentinel-2.
The suggested RSPD utilized the principle of Shannon information entropy, which can
comprehensively reflect the richness and evenness of plant species, because of the inherent
calculation formula. The RSPD has great potential for large-scale and long time series
monitoring of plant diversity. The performance of the RSPD can be furtherly improved
with the advance in the spatial-temporal-spectral resolution of remote sensing technology,
as well as by combining it with field observations.
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