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Abstract: The recent COVID-19 pandemic affected various aspects of life. Several studies established
the consequences of pandemic lockdown on air quality using satellite remote sensing. However, such
studies have limitations, including low spatial resolution or incomplete spatial coverage. Therefore,
in this paper, we propose a machine learning-based scheme to solve the pre-mentioned limitations
by training an optimized space-time extra trees model for each year of the study period. The results
have shown that our trained models reach a prediction accuracy up to 95% when predicting the
missing values in the MODIS MCD19A2 Aerosol Optical Depth (AOD) product. The outcome of the
mentioned scheme was a geo-harmonized atmospheric dataset for aerosol optical depth at 550 nm
with 1 km spatial resolution and full coverage over Europe. As an application, we used the proposed
machine learning based prediction approach in AOD levels analysis. We compared the mean AOD
levels between the lockdown period from March to June in 2020 and the mean AOD values of the
same period for the past 5 years. We found that AOD levels dropped over most European countries
in 2020 but increased in several eastern and western countries. The Netherlands had the most
significant average decrease in AOD levels (19%), while Spain had the highest average increase (10%).
Moreover, we analyzed the relationship between the relative percentage difference of AOD and four
meteorological variables. We found a positive correlation between AOD and relative humidity and a
negative correlation between AOD and wind speed. The value of the proposed prediction scheme is
further emphasized by taking into consideration that the reconstructed dataset can be used for future
air quality studies concerning Europe.

Keywords: aerosol optical depth; CAMS; COVID-19; machine learning; MODIS

1. Introduction

The Severe Acute Respiratory Syndrome-COronaVIrus Diseases 2019 (SARS-COVID-
19) pandemic made humanity reconsider how to adapt their daily activities. By late June
2020, the EU average infection rate was around 160 per million inhabitants [1]. In general,
most European countries started applying restrictions in March 2020. These restrictions
included lockdown, contain, various kinds of curfew, mandatory face masks, etc. By
18 March 2020, more than 250 million people in Europe were in lockdown [2].

Despite the unfortunate losses in human lives and the economy, there could be a bright
side to this pandemic when it comes to air quality. Some studies showed that air quality
has improved under the applied restrictions. For example, only two weeks of lockdown
reduced urban air pollution in Spain, with essential differences among pollutants. The most
considerable reduction was in black carbon and Nitrogen Dioxide (NO2) by 45–51% [3].

According to data released in 2019–2020 by the National Aeronautics and Space
Administration (NASA) and the European Space Agency (ESA), NO2 was reduced up to
30% in some regions that were highly affected by COVID-19 lockdowns such as Wuhan in
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China, Italy, Spain, and the USA [4]. Similar results were found in Poland when comparing
air quality observations for the year 2020 in five major cities with the same time periods
as in the previous two years. In addition, AOD concentrations were reduced in April and
May of 2020 by nearly 23% and 18% as compared to 2018–2019 [5].

During the lockdown in China, there was a significant drop in NO2 (−37%), SO2
(−64%), and AOD (−8%) for the year 2020, when compared with the 11 year mean average
(2009–2019) [6]. Another study of the eastern part of China, where AOD levels are usually
high (AOD > 0.7), showed that the emission of pollutants in the first three months of
2020 has decreased when compared to the same period of the previous year [7]. In India,
the AOD level was greatly decreased (~45%) during the COVID-19 lockdown periods
compared to the mean AOD level in the previous 20 years [8]. Similarly, significant
reductions in black carbon concentration (~8.4%) and AOD (10.8%) were observed in
southern India during the first lockdown period (25 March–14 April 2020) when compared
to the pre-lockdown period (1–24 March 2020) over the selected measuring location [9].

In this study, we focused on AOD, which is defined as a measure of the columnar
atmospheric aerosol content. High AOD concentrations have a negative impact on all
living things by affecting the respiratory system and reducing naked eye visibility. AOD is
measured either from ground-based stations or retrieved by satellites measurements. AOD
satellite-based products provide a vast spatial coverage compared to the limited number of
ground stations [10].

Due to the correlation between AOD and particulate matter (PM), AOD satellite
products are commonly used to retrieve surface PM [11–13]. This justifies the increasing
interest in AOD satellite products. Many sensors retrieve AOD at different spatial and
temporal resolutions [14], such as the Total Ozone Mapping Spectrometer (TOMS) [15],
the Ozone Monitoring Instrument (OMI) [16], the Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) [17], the Geostationary Operational Environmental Satellite (GOES) [18], the
Advanced Himawari Imager (AHI) [19], the Multi-angle Imaging SpectroRadiometer
(MISR) [20], and the widely used Moderate Resolution Imaging Spectroradiometer (MODIS)
which we used in our study.

MODIS instrumentations have been carried on both the Terra and Aqua satellites in
sun-synchronous polar orbits, since 1999 and 2002, respectively. They can record the earth’s
surface reflectance and emittance with a 2330 km swath every one to two days [21]. MODIS
measures 36 spectral bands between 0.4 and 14.4 µm wavelengths at many different spatial
resolutions that provide a great opportunity to study the aerosol thickness and parameters
characterizing aerosol size from space with good accuracy and on a worldwide scale.

MODIS provides various AOD products based on different aerosol retrieval algo-
rithms. The most common algorithms are the Dark Target (DT) [22,23], the Deep Blue
(DB) [24,25], and the Multi-Angle Implementation of Atmospheric Correction for MODIS
(MAIAC) [26] which is the algorithm used to generate the MODIS MCD19A2 product with
1 km spatial resolution.

However, AOD satellite-based products have a great number of gaps due to cloud
cover and snow reflectance. An analysis of the spatial and temporal distribution of clouds
retrieved by MODIS over 12 years of continuous observations from the Terra satellite and
over 9 years from the Aqua satellite showed that clouds cover ~67% of the earth’s surface
worldwide and ~55% over land [27]. To solve this issue, it has become common to use
machine learning and deep learning algorithms in developing models that fill the gaps
in satellite-based products either by removing the clouds [28], applying spatiotemporal
interpolation [29], or merging different sources of data to predict gaps-free images [30].
Therefore, in this study, we propose a machine learning-based scheme to fill the gaps in
MODIS MAIAC AOD retrievals and to generate daily, full coverage, high-resolution AOD
maps over Europe. Such maps will minimize time series analysis bias and uncertainty
while investigating the influence of COVID-19 lockdown on AOD levels.
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2. Material and Data
2.1. Study Area and Period

The study area is shown in Figure 1. It includes the “Continental EU,” hence EEA
(European Economic Area), and the United Kingdom, Switzerland, Serbia, Bosnia and
Herzegovina, Montenegro, Kosovo, North Macedonia, and Albania [31]. In this paper, we
refer to the area of study as “Europe” located inside this coordinates box 26◦ W, 72◦ N, 42◦

E, and 36◦ S. The total study area covers 13,391,504 of 1 km grid cells; 5,450,009 of the total
cell number are located over land. The study period covers the months of March–June
from the years 2015–2020.
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Figure 1. The study area with AERONET stations shown as black dots.

2.2. Data

In this section, we summarize different data used throughout our study.

2.2.1. MODIS Data

MCD19A2 daily product from MODIS collection 6 was released and made publicly
available on 30 May 2018. It was generated from both the Aqua and Terra satellites and
delivered in Hierarchical Data Format [26]. MCD19A2 has a 1 km spatial resolution and
uses the MAIAC algorithm that utilizes time series (TMS) analyses, a set of image-based and
pixel processing to enhance the precision of cloud recognition, AOD, and other atmospheric
rectification [32,33]. Daily MODIS MCD19A2 data were downloaded, and two science
datasets (SDS) were extracted; AOD green band (at 550 nm) and AOD quality assurance
layer (AOD_QA), which was used to retrieve only pixels with the best quality. We created
daily mosaics that cover the study area.

2.2.2. Copernicus Atmosphere Monitoring Service (CAMS) Data

In this study, modeled AOD at 550 nm data with 80 km spatial resolution produced
by the European center for medium-range weather forecasts Atmospheric Composition
Reanalysis 4 (EAC4) was used to fill the gaps in the MODIS MCD19A2 product. Reanalysis
merges model data with worldwide observations into a compatible dataset generated by an
atmospheric model that uses the laws of physics and chemistry. EAC4 estimates modeled
AOD every 3 h using the 4D-Var assimilation method [34].

2.2.3. Digital Elevation Model

The elevation of the grid cells was added as a land predictor in our study. The Japan
Aerospace Exploration Agency (JAXA) provides a worldwide digital surface model for
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scientific research and other geospatial services. It provides a horizontal resolution (~30 m)
by the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), which was
carried on the Advanced Land Observing Satellite “ALOS” [35]. Data was accessed in
March 2021 from (https://www.eorc.jaxa.jp/ALOS/).

2.2.4. Ground-Based AOD Data

NASA’s Aerosols Robotic Network (AERONET) is considered one of the most reliable
aerosol networks [36]. AERONET measures direct solar and sky radiance in various
channels every 15 min at the local point to compute columnar AOD at intervals from 350 to
1020 nm with low expected uncertainties ranging between 0.01 to 0.02 under cloud-free
conditions [37]. There are several categories of AERONET data: level 1.0 (unscreened),
level 1.5 (cloud screened), and level 2.0 (cloud screened and quality assured).

In this study, AERONET level 2.0 quality assurance observations were used from
57 stations over Europe, as shown in Figure 1. Since AERONET stations do not measure
AOD at 550 nm, available measurements at the nearest two wavelengths to 550 nm (440 or
500 nm as λ1 and 675 nm as λ2) for each station were interpolated to 550 nm using the
Ångström’s turbidity equation represented in Equation (1) [21,38].

τa(λ) = βλ−α (1)

where τa(λ) is the AOD at λ wavelength in micrometers, β is the Angstrom’s turbidity
coefficient, and α is the band index represented in Equation (2).

α = − ln(τa(λ1)/τa(λ2))

ln(λ1/λ2)
(2)

AOD values at two different wavelengths λ1, λ2 are related by Equation (3).

τa(λ1) = τa(λ2) ∗
(

λ1

λ2

)−α

(3)

2.2.5. European Centre for Medium-Range Weather Forecasts reanalysis (ECMWF)

ERA-5 is the fifth generation of ECMWF reanalysis for the global climate and weather.
Hourly data between 10 a.m. and 2 p.m. of U and V wind components, total precipitation,
and 2 m surface temperature for the months of March–June of the years 2015–2020 with
0.1◦ spatial resolution were extracted from the ERA-5 land hourly data. Relative humidity
data between 10 a.m. and 2 p.m. at 0.25◦ spatial resolution was extracted from the ERA-5
monthly averaged data.

All used data shown in Table 1 were reprojected to the European Terrestrial Reference
System 1989 (EPSG:3035), using a 1 km grid cell with bilinear interpolation method for
CAMSAOD and ECMWF data and the cubic convolution for the ALOS elevation model. All
values of MODISAOD, CAMSAOD, and elevations were assigned to the closest grid cell.

Table 1. Summary of data used in this study.

Product Spatial Resolution Temporal Resolution Layer

MODIS
MCD19A2 1 km Daily AOD-055

Quality Assurance (QA)
CAMS 80 km 3 h Total aerosol optical depth at 550 nm

ALOS DSM 30 m - Elevations
AERONET - ~15 min Level 2.0

ECMWF
ERA-5 0.1◦ Hourly

Wind U and V components
Total precipitation

2 m surface temperature
ECMWF
ERA-5 0.25◦ Monthly Relative humidity

https://www.eorc.jaxa.jp/ALOS/
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3. Methodology

In this study, we created a Geo-Harmonized Atmospheric Dataset for Aerosol opti-
cal depth (GHADA) that covers the study area. Three stages were applied to generate
GHADA: first, we merged the Terra and Aqua datasets of the MODIS MCD19A2 prod-
uct by applying a simple average for all pixels that passed the quality assurance criteria
(QACloudMask = Clear and QAAdjacencyMask = Clear) of this product. Second, we created a
machine learning model for every year of the study period to predict AOD values over the
study area. MCD19A2 high-quality retrievals were used as the dependent variable, and
since the Terra satellite is passing locally around 10:30 a.m. and the Aqua satellite passes
around 1:30 p.m., we used the modeled AOD from CAMS at the closest three times per
day to the satellites passing (9 a.m., 12 p.m., and 3 p.m.). In addition, the spatiotemporal
information for the grid cells was used as independent variables. Finally, we filled MODIS
MCD19A2 gaps with the predicted AOD by merging the outputs from stages one and two.
We validated the daily maps of GHADA with ground-based observation, and then we
utilized this dataset to analyze how the COVID-19 lockdown has affected AOD levels over
Europe during the period of March–June 2020 by comparing AOD levels for this period
with the average AOD levels in the last five years (2015–2019) for the same months.

4. Space-Time Models

In this section, we propose a novel approach based on the Extremely Randomized
Trees (ET) to predict the missing AOD values in the MODIS MCD19A2 product. First,
we illustrate the principles of the ETs and discuss their suitability for the AOD prediction
problem. Second, we describe in detail the proposed ET training and parameters setting
for AOD prediction.

4.1. Extra Trees Algorithm

ET is a tree-based ensemble learning method used in our study to deal with the
supervised regression and create prediction models for AOD. The idea behind ET is to
strongly randomize the selection of both attributes and cut points while splitting a tree
node. Unlike the widely used random forest algorithm that chooses the optimum split, ET
chooses it randomly, which further reduces bias and variance. When needed, the latter
algorithm creates independent randomized trees of learning sample output values [38].

The number of attributes that are randomly selected at each node (K) and the minimum
sample size for splitting a node (nmin) are the two main parameters in the ET splitting
process. This procedure is applied several times with the whole learning dataset to create
an ensemble model that aggregates the predictions of the decision trees to obtain the final
estimation by majority vote in classification problems and arithmetic average in regression
problems. In addition to accuracy, ET has high computational efficiency [39], which is
required when dealing with big data problems.

4.2. Improved Spatiotemporal Information

To determine the spatial and temporal correlation between MAIACAOD and CAMSAOD,
we included the following independent variables. For space, we used both the elevations
of the grid cells and the great circle distance (D) between each grid cell and a reference
point on a sphere identified by their latitudes and longitudes using the haversine approach
(Equations (4)–(6)). For time, we used the day of the year (DOY) to calculate the radian
time (Rt) for the grid cells on different days in a year to improve model handling of the
seasonal cycle, Equation (7) [40].

θ = ƒ(λi,t, ϕi,t) = haversin(ϕ1 −ϕ2) + cos(ϕ1) ∗ cos(ϕ2) ∗ haversin(λ1 − λ2) (4)

haversin(θ) = sin2(
θ

2
) =

1− cos(θ)
2

(5)

Di,t = r ∗ archaversin(θ) = 2 ∗ r ∗ arcsin
(√
θ
)

(6)
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Rti,t = cos
(

2π ∗ DOYi, t
T

)
(7)

where θ is the central angle between two points in space,ϕ1 andϕ2 denote the geographical
latitudes in radians of two points in space, λ1 and λ2 denote the geographical longitudes
in radians of two points in space, r denotes the earth’s radius in km, DOY represents the
day of the year, T represents the total number of days in the year, for every grid cell (i) on
day (t).

For each year between 2015–2020, the model was built using Equation (8).

AODi,t = ƒ(CAMS-9i,t, CAMS-12i,t, CAMS-15i,t, Di,t, Hi,t, Rti,t) (8)

where for each grid cell (i) on day (t): AODi,t is the target AOD value, CAMS-x represents
the AOD value extracted from CAMS at hour x, Di,t represents the great circle distance,
Hi,t represents the elevation, Rti,t represents the temporal information identified by the
radian time.

5. Results

In this section, we present the results of the space-time ET models when predicting
the MAIAC AOD values. Then we utilize these models to generate AOD maps over the
study area. The validation process is also stated below. Finally, these maps were used to
analyze the effects of COVID-19 lockdowns on AOD levels, as discussed in Section 5.4.

5.1. Models

Due to the great number of MODISAOD -CAMSAOD pairs over land in the study
area (on average 380 million pairs per year), representative subsets consisting of ~10% of
the whole population (all MODISAOD -CAMSAOD pairs per year) were chosen using the
Kolmogorov–Smirnov test to be used as learning dataset for a space-time model for each
year. Then for each learning dataset, we used the k-fold cross-validation (where k = 5) to
train and validate each model. In this method, the learning dataset is divided into 5 folds,
which means 80% of the pairs in the learning dataset are used as a training set for the model,
and the remaining 20% are used for validation. This procedure was repeated five times
to test the model on each fold. Based on learning curve results, we found that increasing
the learning dataset size to 15% only increased the accuracy of the models by less than
1%, and the curve reaches a plateau beyond this percentage. Therefore, to decrease the
computational complexity, we used ~10% of the whole population as a learning dataset. In
other words, a learning dataset size of 10% is enough to reach satisfactory accuracy for each
year of the study period. The optimized models (number of trees = 30, maximum depth
of the tree = 50) were tested on the remaining ~90% (approximately 340 million pairs) of
the population.

The results of the trained models for each year are summarized in Table 2. All models
achieved high accuracies when predicting MAIAC AOD with a correlation of determination
(R2) ranging between 92.5% to 95% and root mean squared errors from 0.016 to 0.02. These
high achieved accuracies with the relatively small errors show the efficiency of our space-
time models in predicting the missing AOD values and emphasize the appropriateness
of exploitation modeled AOD with improved spatiotemporal information in improving
satellite AOD data.
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Table 2. Results of the space-time extremely randomized models used to predict the missing AOD in
the MODIS MCD19A2 product for each year of the study period.

Year R-Squared (%) RMSE MAE

2015 95 0.017 0.011
2016 94.3 0.018 0.011
2017 93.8 0.018 0.011
2018 92.5 0.02 0.012
2019 92.9 0.019 0.012
2020 94.1 0.016 0.010

Feature importance was calculated based on the reduction in sum of squared errors
whenever a variable is chosen to split. Mean importance scores were calculated for all
selected input variables of the models (see Figure 2). CAMSAOD at 12:00 p.m. is the most
influential variable, accounting for ~33% of MODISAOD estimates. The other two modeled
AOD at 9:00 a.m. and 3:00 p.m. contributed by 18% and 24%, respectively. The radian
time and the great circle distance had almost the same influence (10–10.4%). Finally, the
elevation had the lowest influence, with ~5% on MODISAOD estimates.

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 14 
 

 

study period. The optimized models (number of trees = 30, maximum depth of the tree = 
50) were tested on the remaining ~90% (approximately 340 million pairs) of the popula-
tion. 

The results of the trained models for each year are summarized in Table 2. All models 
achieved high accuracies when predicting MAIAC AOD with a correlation of determina-
tion (R2) ranging between 92.5% to 95% and root mean squared errors from 0.016 to 0.02. 
These high achieved accuracies with the relatively small errors show the efficiency of our 
space-time models in predicting the missing AOD values and emphasize the appropriate-
ness of exploitation modeled AOD with improved spatiotemporal information in improv-
ing satellite AOD data. 

Table 2. Results of the space-time extremely randomized models used to predict the missing AOD 
in the MODIS MCD19A2 product for each year of the study period. 

Year R-Squared (%) RMSE MAE 

2015 95 0.017 0.011 

2016 94.3 0.018 0.011 

2017 93.8 0.018 0.011 

2018 92.5 0.02 0.012 

2019 92.9 0.019 0.012 

2020 94.1 0.016 0.010 

Feature importance was calculated based on the reduction in sum of squared errors 
whenever a variable is chosen to split. Mean importance scores were calculated for all 
selected input variables of the models (see Figure 2). CAMSAOD at 12:00 p.m. is the most 
influential variable, accounting for ~33% of MODISAOD estimates. The other two modeled 
AOD at 9:00 a.m. and 3:00 p.m. contributed by 18% and 24%, respectively. The radian time 
and the great circle distance had almost the same influence (10–10.4%). Finally, the eleva-
tion had the lowest influence, with ~5% on MODISAOD estimates. 

 
Figure 2. Mean importance scores (%) of independent variables to AOD estimates for the space-time 
extremely randomized models. 
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extremely randomized models.

5.2. AOD Maps

We used the optimized space-time models to predict the missing values in the daily
MCD19A2 data of the study period. Then we used these predictions to fill the gaps in
this product. The outputs of the previous processes were daily AOD maps with 1 km
spatial resolution and full coverage over Europe for the period of March–June in the years
2015–2020. To analyze the COVID-19 lockdown effects on AOD levels, we calculated the
average AOD levels for the months’ March–June of the years 2015–2019 and compared
these levels with the same period of the year 2020 (see Figure 3). Moreover, we generated
daily AOD maps for the period of January 2018–June 2020 to validate GHADA through all
seasons and not solely during the chosen lockdown months.
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5.3. Validation with AERONET

With the assumption that the aerosol column is relatively uniform within a certain
time-space boundary [41], the validation of satellite-based AOD products is usually per-
formed between AOD retrievals within the spatiotemporal window and the corresponding
AERONET observations [42]. An acceptable accuracy of AOD products can be achieved
when 66% of retrievals fall within expected error envelopes (EE) [23,43]. We used for
validation the average AERONET level 2.0 quality assurance observations between 10 a.m.
and 2 p.m. from 57 stations across Europe during the period of January 2018–June 2020. We
chose two spatial diameters, 20 km and 50 km, with AERONET stations in the center for val-
idation and statistical analysis that extensively uses root-mean-square error (RMSE), mean
absolute error (MAE), expected error (EE) envelopes, and the fraction of AOD retrievals of
the total number (N) falling within EE envelope (Equations (9)–(13)).

RMSE =

√
1
N ∑(AODGHADA − AODAERONET)

2 (9)

MAE =
1
N ∑| AODGHADA − AODAERONET | (10)

Bias =
1
N ∑(AODGHADA − AODAERONET) (11)

EE = ± (0.05 + 0.15 ∗AODAERONET) (12)

AODAERONET − |EE| ≤ AODGHADA ≤ AODAERONET + |EE| (13)

The statistical analysis between daily GHADA maps and AERONET observations
has shown similar validation results for the two chosen spatial diameters with ~84% of
the samples falling within the EE, good correlations R ~ 76–77%, and relatively small
RMSE ~ 0.066–0.067, refer to Table 3.

Table 3. Validation results of GHADA with AERONET at two spatial diameters, where N is the total
number of sample points.

D (Km) N R MAE RMSE Bias EE(%)

20 10916 0.762 0.043 0.067 −0.014 83.7
50 12212 0.767 0.043 0.066 −0.014 83.7
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Figure 4 represents the density scatter plots for the validation of AOD at 550 nm from
GHADA with the AERONET stations at the two chosen spatial diameters.
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5.4. AOD Relative Percentage Difference

The variations in AOD levels were calculated for each grid cell using the Relative
Percentage Difference (RPD) Equation (14).

RPD =
AOD2020 −AOD2015–2019

AOD2015–2019
∗100 (14)

where AOD2020 is the mean AOD value in the study period of 2020 and AOD2015–2019 is the
mean AOD value for the study period covering 2015–2019. The changes are presented in
Figure 5.
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6. Discussion

In this study, a machine learning-based scheme was used to overcome the limitations in
time series analysis concerning AOD. A new dataset for AOD at 550 nm with full coverage
over Europe and with 1 km spatial resolution (GHADA) was built. We trained an extra
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trees model for each year (2015–2020) using the MODIS MCD19A2 as the target variable
and CAMS modeled AOD with improved spatiotemporal information as the independent
variables. Results showed that the trained models had high accuracies ranging between
92.5–95% when estimating the missing MAIACAOD retrievals. We compared the AOD550
from GHADA and surface observations at 57 AERONET sites over Europe, with two spatial
diameters around these AERONET stations within the period of January 2018–June 2020.
The overall comparison with ground-based measurements showed a good correlation,
with a bias as low as 0.014 and R ~ 0.76. Then we used GHADA to study the influence of
COVID-19 pandemic lockdown on AOD levels over Europe in the months March–June by
comparing it to AOD levels in the same months for the past five years (2015–2019). The
most important advantage of our study when compared to similar work is that we used
daily full-coverage AOD maps with high spatial resolution when calculating the average
AOD values before and after the lockdown. Such complete coverage reduces bias and
uncertainty in such time-series analyses. As shown above, in Figure 5, we have found that
AOD levels decreased by 10–30% over most countries of the study area in 2020, mainly the
countries located at the center of the analyzed area, while AOD levels increased over the
countries that are located on the boundaries of the study area. In the west, AOD increased
over Spain and Portugal; in the east, AOD increased over Romania, Bulgaria, Moldova,
and Kosovo; in the north, the level slightly increased over Iceland. The decrease in AOD
levels was the greatest in the Netherlands, with an average decrease of 20%, while Spain
had the highest average increase in AOD levels by 10%. It must be noted that the five
AERONET stations in Spain included in this study did not reflect the average increase in
AOD over the whole country due to their limited spatial coverage.

As an attempt to justify the findings in areas of increased AOD, we investigated the
relationship between the RPD in AOD for the months March–June of the year 2020 and the
previous five years and the RPD for four meteorological variables (relative humidity, wind
speed, surface temperature, and total precipitation) calculated for the times of MODIS
satellites overpassing (10 a.m. to 2 p.m.). We found a close trend between relative humidity
and AOD. Spain, Portugal, northern Norway, eastern Belarus, and southern Bulgaria had
higher RPD in both AOD and relative humidity. Spain and Portugal had the highest
increase of 10–23% in relative humidity. In agreement, areas of decreased humidity had
lower RPD of AOD; however, such correlation is to a lower extent than the effect of
increased humidity. An exception to this finding is Romania, where RPD in humidity was
decreased however AOD was increased. Regarding wind speed, RPD decreased by ~18%
in Spain and Portugal, where AOD had a significant increase. Also, the northern part of
Italy and the western part of Austria had a clear inverse trend between AOD and wind
speed. The average relative humidity over Spain was 65% during the lockdown period
of the year 2020. High relative humidity combined with a low average wind speed of
less than ~3 m/s play an important role in increasing AOD. Our findings are consistent
with [44], where they associated higher humidity and lower wind speed with higher AOD.
We found no direct relationship between RPD of neither surface temperature nor total
precipitation and RPD of AOD, all of which strengthens the argument that lowering AOD
is a consequence of the lockdown. Although we proved that AOD levels increased over
Spain, other pollutants such as NO2 were decreased, which is attributed to the difference
in the source of these pollutants as discussed elsewhere [44]. Figure 6 shows the RPD of
relative humidity and RPD of wind speed between the lockdown months of the year 2020
and the same period of the previous five years.
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Nevertheless, it must be noted that the average AOD levels over Europe are rela-
tively low (AOD < 0.3) compared to other more polluted regions, where more prominent
differences in AOD levels can be observed, for example, as published in [8] where AOD
levels over India were investigated. In addition, the extent of restrictions imposed and the
adherence to them may contribute to the significance of the change in AOD levels.

7. Conclusions

The advancement of machine learning algorithms provides solutions for AOD satellite-
based data drawbacks such as low spatial resolution and gaps caused by persistent clouds,
cloud contamination, and high surface reflectance and opens new horizons for studies that
can influence decision making. A machine learning-based scheme was used to enhance
time series analysis of AOD over the study period. Space-time extremely randomized
trees models were built to fill the gaps in the MCD19A2 product of the moderate imaging
spectroradiometer (MODIS). The output was a geo-harmonized atmospheric dataset for
aerosol optical depth (GHADA) with complete coverage of 1 km spatial resolution over
Europe. To the best of our knowledge, GHADA is the first dataset with this coverage and
resolution for Europe, and we are the first to analyze how COVID-19 affected AOD levels
over Europe with gaps-free AOD maps at high spatial resolution.

We compared AOD levels during the chosen lockdown period to the mean AOD
values during the same period in the previous five years. We found a general decrease
trend in the countries located at the center of the study area, with the Netherlands scoring
the highest average decrease. In contrast, AOD levels increased in the eastern and western
European countries as it is distinctly visible in Kosovo and Spain, respectively. We found a
correlation between high humidity and low wind speed with AOD increase, which justifies
such an increase in countries like Spain and Portugal. We excluded surface temperature
and total precipitation as contributing factors to the detected changes in AOD levels, which
in return makes COVID-19 lockdown the major cause for the decrease in AOD levels.

Once GHADA is made publicly accessible, it can be used to investigate air quality
over Europe with 1 km spatial resolution and improve time series analysis, overcoming the
gaps encountered during such studies. The lockdown that happened due to the pandemic
generally lowered AOD levels; however, such lockdown is not the ultimate solution to
control AOD levels. Cleaner sources of energy and road transport are needed to maintain
lower levels of AOD and good air quality. Based on our obtained results, we recommend
utilizing machine learning to solve time series analysis limitations and to conduct various
applications concerning air quality.
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