Use of TanDEM-X and SRTM-C Data for Detection of Deforestation Caused by Bark Beetle in Central European Mountains
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Areas and Reference Data
2.1.1. Bohemian Forest
2.1.2. Erzgebirge
2.1.3. Giant Mountains
2.1.4. Land Cover Data
2.2. Global DEMs (TanDEM-X, Copernicus DEM, SRTM, NASADEM)
2.3. Horizontal and Vertical Datum Conversion
2.4. Accuracy Assessment
2.5. Detection of Deforestation and Validation of Results
3. Results
3.1. Comparison of SRTM and TDX90 with LiDAR-Based DSM
3.2. Associations of Difference between TDX90 and SRTM with Terrain Characteristics
3.3. Detection of Deforestation in the Bohemian Forest
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koppes, M.; King, L. Beyond x, y, z (t). Navigating New Landscapes of Science in the Science of Landscapes. J. Geophys. Res. Earth Surf. 2020, 125, e2020JF005588. [Google Scholar] [CrossRef]
- Toth, C.; Jóźków, G. Remote Sensing Platforms and Sensors: A Survey. ISPRS J. Photogramm. Remote Sens. 2016, 115, 22–36. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Bojarski, A.; Bachmann, M.; Böer, J.; Kraus, T.; Wecklich, C.; Steinbrecher, U.; Ramon, N.T.; Schmidt, K.; Klenk, P.; Grigorov, C. TanDEM-X Long-Term System Performance after 10 Years of Operation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2522–2534. [Google Scholar] [CrossRef]
- Hojo, A.; Takagi, K.; Avtar, R.; Tadono, T.; Nakamura, F. Synthesis of L-Band SAR and Forest Heights Derived from TanDEM-X DEM and 3 Digital Terrain Models for Biomass Mapping. Remote Sens. 2020, 12, 349. [Google Scholar] [CrossRef] [Green Version]
- Sesnie, S.E.; Gessler, P.E.; Finegan, B.; Thessler, S. Integrating Landsat TM and SRTM-DEM Derived Variables with Decision Trees for Habitat Classification and Change Detection in Complex Neotropical Environments. Remote Sens. Environ. 2008, 112, 2145–2159. [Google Scholar] [CrossRef]
- Kosicki, J.Z. Should Topographic Metrics Be Considered When Predicting Species Density of Birds on a Large Geographical Scale? A Case of Random Forest Approach. Ecol. Model. 2017, 349, 76–85. [Google Scholar] [CrossRef]
- Fanta, V.; Zouhar, J.; Beneš, J.; Bumerl, J.; Sklenicka, P. How Old Are the Towns and Villages in Central Europe? Archaeological Data Reveal the Size of Bias in Dating Obtained from Traditional Historical Sources. J. Archaeol. Sci. 2020, 113, 105044. [Google Scholar] [CrossRef]
- Hawker, L.; Neal, J.; Bates, P. Accuracy Assessment of the TanDEM-X 90 Digital Elevation Model for Selected Floodplain Sites. Remote Sens. Environ. 2019, 232, 111319. [Google Scholar] [CrossRef]
- Farooq, M.; Shafique, M.; Khattak, M.S. Flood Hazard Assessment and Mapping of River Swat Using HEC-RAS 2D Model and High-Resolution 12-m TanDEM-X DEM (WorldDEM). Nat. Hazards 2019, 97, 477–492. [Google Scholar] [CrossRef]
- Lei, Y.; Treuhaft, R.; Gonçalves, F. Automated Estimation of Forest Height and Underlying Topography over a Brazilian Tropical Forest with Single-Baseline Single-Polarization TanDEM-X SAR Interferometry. Remote Sens. Environ. 2021, 252, 112132. [Google Scholar] [CrossRef]
- Walker, W.S.; Kellndorfer, J.M.; Pierce, L.E. Quality Assessment of SRTM C- and X-Band Interferometric Data: Implications for the Retrieval of Vegetation Canopy Height. Remote Sens. Environ. 2007, 106, 428–448. [Google Scholar] [CrossRef]
- Kugler, F.; Schulze, D.; Hajnsek, I.; Pretzsch, H.; Papathanassiou, K.P. TanDEM-X Pol-InSAR Performance for Forest Height Estimation. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6404–6422. [Google Scholar] [CrossRef]
- Schlund, M.; Magdon, P.; Eaton, B.; Aumann, C.; Erasmi, S. Canopy Height Estimation with TanDEM-X in Temperate and Boreal Forests. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101904. [Google Scholar] [CrossRef]
- Leonardo, E.M.C.; Watt, M.S.; Pearse, G.D.; Dash, J.P.; Persson, H.J. Comparison of TanDEM-X InSAR Data and High-Density ALS for the Prediction of Forest Inventory Attributes in Plantation Forests with Steep Terrain. Remote Sens. Environ. 2020, 246, 111833. [Google Scholar] [CrossRef]
- Ullah, S.; Dees, M.; Datta, P.; Adler, P.; Saeed, T.; Khan, M.S.; Koch, B. Comparing the Potential of Stereo Aerial Photographs, Stereo Very High-Resolution Satellite Images, and TanDEM-X for Estimating Forest Height. Int. J. Remote Sens. 2020, 41, 6976–6992. [Google Scholar] [CrossRef]
- Rodríguez-Veiga, P.; Quegan, S.; Carreiras, J.; Persson, H.J.; Fransson, J.E.S.; Hoscilo, A.; Ziółkowski, D.; Stereńczak, K.; Lohberger, S.; Stängel, M.; et al. Forest Biomass Retrieval Approaches from Earth Observation in Different Biomes. Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 53–68. [Google Scholar] [CrossRef]
- Nilsson, M.; Nordkvist, K.; Jonzén, J.; Lindgren, N.; Axensten, P.; Wallerman, J.; Egberth, M.; Larsson, S.; Nilsson, L.; Eriksson, J.; et al. A Nationwide Forest Attribute Map of Sweden Predicted Using Airborne Laser Scanning Data and Field Data from the National Forest Inventory. Remote Sens. Environ. 2017, 194, 447–454. [Google Scholar] [CrossRef]
- Yu, X.; Hyyppä, J.; Kaartinen, H.; Maltamo, M. Automatic Detection of Harvested Trees and Determination of Forest Growth Using Airborne Laser Scanning. Remote Sens. Environ. 2004, 90, 451–462. [Google Scholar] [CrossRef]
- Englhart, S.; Jubanski, J.; Siegert, F. Quantifying Dynamics in Tropical Peat Swamp Forest Biomass with Multi-Temporal LiDAR Datasets. Remote Sens. 2013, 5, 2368–2388. [Google Scholar] [CrossRef] [Green Version]
- Solberg, S.; Næsset, E.; Gobakken, T.; Bollandsås, O.-M. Forest Biomass Change Estimated from Height Change in Interferometric SAR Height Models. Carbon Balance Manag. 2014, 9, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi, Y.; St-Onge, B.; Leblon, B.; Prieur, J.-F.; Simard, M. Mapping Boreal Forest Biomass from a SRTM and TanDEM-X Based on Canopy Height Model and Landsat Spectral Indices. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 202–213. [Google Scholar] [CrossRef]
- Vaglio Laurin, G.; Francini, S.; Luti, T.; Chirici, G.; Pirotti, F.; Papale, D. Satellite Open Data to Monitor Forest Damage Caused by Extreme Climate-Induced Events: A Case Study of the Vaia Storm in Northern Italy. For. Int. J. For. Res. 2021, 94, 407–416. [Google Scholar] [CrossRef]
- Treuhaft, R.; Lei, Y.; Gonçalves, F.; Keller, M.; Santos, J.; Neumann, M.; Almeida, A. Tropical-Forest Structure and Biomass Dynamics from TanDEM-X Radar Interferometry. Forests 2017, 8, 277. [Google Scholar] [CrossRef] [Green Version]
- Askne, J.I.; Persson, H.J.; Ulander, L.M. Biomass Growth from Multi-Temporal TanDEM-X Interferometric Synthetic Aperture Radar Observations of a Boreal Forest Site. Remote Sens. 2018, 10, 603. [Google Scholar] [CrossRef] [Green Version]
- Solberg, S.; May, J.; Bogren, W.; Breidenbach, J.; Torp, T.; Gizachew, B. Interferometric SAR DEMs for Forest Change in Uganda 2000–2012. Remote Sens. 2018, 10, 228. [Google Scholar] [CrossRef] [Green Version]
- Kulakowski, D.; Bebi, P. Range of Variability of Unmanaged Subalpine Forests. Forum Wissen 2004, 8, 47–54. [Google Scholar]
- Wermelinger, B. Ecology and Management of the Spruce Bark Beetle Ips Typographus—A Review of Recent Research. For. Ecol. Manag. 2004, 202, 67–82. [Google Scholar] [CrossRef]
- Klouček, T.; Komárek, J.; Surovỳ, P.; Hrach, K.; Janata, P.; Vašíček, B. The Use of UAV Mounted Sensors for Precise Detection of Bark Beetle Infestation. Remote Sens. 2019, 11, 1561. [Google Scholar] [CrossRef] [Green Version]
- Stereńczak, K.; Mielcarek, M.; Modzelewska, A.; Kraszewski, B.; Fassnacht, F.E.; Hilszczański, J. Intra-Annual Ips Typographus Outbreak Monitoring Using a Multi-Temporal GIS Analysis Based on Hyperspectral and ALS Data in the Białowieża Forests. For. Ecol. Manag. 2019, 442, 105–116. [Google Scholar] [CrossRef]
- Holzwarth, S.; Thonfeld, F.; Abdullahi, S.; Asam, S.; Da Ponte Canova, E.; Gessner, U.; Huth, J.; Kraus, T.; Leutner, B.; Kuenzer, C. Earth Observation Based Monitoring of Forests in Germany: A Review. Remote Sens. 2020, 12, 3570. [Google Scholar] [CrossRef]
- Minařík, R.; Langhammer, J.; Lendzioch, T. Automatic Tree Crown Extraction from UAS Multispectral Imagery for the Detection of Bark Beetle Disturbance in Mixed Forests. Remote Sens. 2020, 12, 4081. [Google Scholar] [CrossRef]
- Bárta, V.; Lukeš, P.; Homolová, L. Early Detection of Bark Beetle Infestation in Norway Spruce Forests of Central Europe Using Sentinel-2. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102335. [Google Scholar] [CrossRef]
- Čada, V.; Morrissey, R.C.; Michalová, Z.; Bače, R.; Janda, P.; Svoboda, M. Frequent Severe Natural Disturbances and Non-Equilibrium Landscape Dynamics Shaped the Mountain Spruce Forest in Central Europe. For. Ecol. Manag. 2016, 363, 169–178. [Google Scholar] [CrossRef]
- Lausch, A.; Fahse, L.; Heurich, M. Factors Affecting the Spatio-Temporal Dispersion of Ips Typographus (L.) in Bavarian Forest National Park: A Long-Term Quantitative Landscape-Level Analysis. For. Ecol. Manag. 2011, 261, 233–245. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest Disturbances under Climate Change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Sommerfeld, A.; Rammer, W.; Heurich, M.; Hilmers, T.; Müller, J.; Seidl, R. Do Bark Beetle Outbreaks Amplify or Dampen Future Bark Beetle Disturbances in Central Europe? J. Ecol. 2021, 109, 737–749. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzoli, P.; Martone, M.; Gonzalez, C.; Wecklich, C.; Borla Tridon, D.; Bräutigam, B.; Bachmann, M.; Schulze, D.; Fritz, T.; Huber, M.; et al. Generation and Performance Assessment of the Global TanDEM-X Digital Elevation Model. ISPRS J. Photogramm. Remote Sens. 2017, 132, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kosmann, D.; Roth, A. Accuracy Assessment of the Global TanDEM-X Digital Elevation Model with GPS Data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 171–182. [Google Scholar] [CrossRef]
- Kramm; Hoffmeister A Relief Dependent Evaluation of Digital Elevation Models on Different Scales for Northern Chile. ISPRS Int. J. Geo-Inf. 2019, 8, 430. [CrossRef] [Green Version]
- Podgórski, J.; Kinnard, C.; Pętlicki, M.; Urrutia, R. Performance Assessment of TanDEM-X DEM for Mountain Glacier Elevation Change Detection. Remote Sens. 2019, 11, 187. [Google Scholar] [CrossRef] [Green Version]
- Pasquetti, F.; Bini, M.; Ciampalini, A. Accuracy of the TanDEM-X Digital Elevation Model for Coastal Geomorphological Studies in Patagonia (South Argentina). Remote Sens. 2019, 11, 1767. [Google Scholar] [CrossRef] [Green Version]
- del Rosario Gonzalez-Moradas, M.; Viveen, W. Evaluation of ASTER GDEM2, SRTMv3. 0, ALOS AW3D30 and TanDEM-X DEMs for the Peruvian Andes against Highly Accurate GNSS Ground Control Points and Geomorphological-Hydrological Metrics. Remote Sens. Environ. 2020, 237, 111509. [Google Scholar] [CrossRef]
- Vassilaki, D.I.; Stamos, A.A. TanDEM-X DEM: Comparative Performance Review Employing LIDAR Data and DSMs. ISPRS J. Photogramm. Remote Sens. 2020, 160, 33–50. [Google Scholar] [CrossRef]
- Gdulová, K.; Marešová, J.; Moudrỳ, V. Accuracy Assessment of the Global TanDEM-X Digital Elevation Model in a Mountain Environment. Remote Sens. Environ. 2020, 241, 111724. [Google Scholar] [CrossRef]
- Uuemaa, E.; Ahi, S.; Montibeller, B.; Muru, M.; Kmoch, A. Vertical Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sens. 2020, 12, 3482. [Google Scholar] [CrossRef]
- Kumar, A.; Negi, H.S.; Kumar, K.; Shekhar, C. Accuracy Validation and Bias Assessment for Various Multi-Sensor Open-Source DEMs in Part of the Karakoram Region. Remote Sens. Lett. 2020, 11, 893–902. [Google Scholar] [CrossRef]
- Briole, P.; Bufferal, S.; Dimitrov, D.; Elias, P.; Journeau, C.; Avallone, A.; Kamberos, K.; Capderou, M.; Nercessian, A. Using Kinematic GNSS Data to Assess the Accuracy and Precision of the TanDEM-X DEM Resampled at 1-m Resolution Over the Western Corinth Gulf, Greece. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3016–3025. [Google Scholar] [CrossRef]
- Khosravipour, A.; Skidmore, A.K.; Isenburg, M. Generating Spike-Free Digital Surface Models Using LiDAR Raw Point Clouds: A New Approach for Forestry Applications. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 104–114. [Google Scholar] [CrossRef]
- Klápště, P.; Fogl, M.; Barták, V.; Gdulová, K.; Urban, R.; Moudrỳ, V. Sensitivity Analysis of Parameters and Contrasting Performance of Ground Filtering Algorithms with UAV Photogrammetry-Based and LiDAR Point Clouds. Int. J. Digit. Earth 2020, 13, 1672–1694. [Google Scholar] [CrossRef]
- Wessel, B. TanDEM-X Ground Segment DEM Products Specification Document. Report TD-GS-PS-0021. Deutsches Zentrum fur Luft- und Raumfahrt, Oberpfaffenhofen: Wessling, Germany, 2018; Volume 43. Available online: https://tandemx-science.dlr.de/pdfs/TD-GS-PS-0021_DEM-Product-Specification_v3.1.pdf (accessed on 18 February 2021).
- Shortridge, A.; Messina, J. Spatial Structure and Landscape Associations of SRTM Error. Remote Sens. Environ. 2011, 115, 1576–1587. [Google Scholar] [CrossRef]
- Copernicus DEM. 2021. Available online: https://spacedata.copernicus.eu/documents/20126/0/GEO1988-CopernicusDEM-SPE-002_ProductHandbook_I1.00.pdf (accessed on 18 June 2021).
- Crippen, R.; Buckley, S.; Belz, E.; Gurrola, E.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.; Neumann, M.; Nguyen, Q. Nasadem Global Elevation Model: Methods and Progress. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016; XLI-B4, 125–128. [Google Scholar]
- Maune, D.F. (Ed.) Digital Elevation Model Technologies and Applications: The DEM User Manual, 2nd ed.; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2007; ISBN 1-57083-082-7. [Google Scholar]
- Moudrý, V.; Urban, R.; Štroner, M.; Komárek, J.; Brouček, J.; Prošek, J. Comparison of a Commercial and Home-Assembled Fixed-Wing UAV for Terrain Mapping of a Post-Mining Site under Leaf-off Conditions. Int. J. Remote Sens. 2019, 40, 555–572. [Google Scholar] [CrossRef]
- Höhle, J.; Höhle, M. Accuracy Assessment of Digital Elevation Models by Means of Robust Statistical Methods. ISPRS J. Photogramm. Remote Sens. 2009, 64, 398–406. [Google Scholar] [CrossRef] [Green Version]
- Solberg, S.; Astrup, R.; Weydahl, D. Detection of Forest Clear-Cuts with Shuttle Radar Topography Mission (SRTM) and Tandem-X InSAR Data. Remote Sens. 2013, 5, 5449–5462. [Google Scholar] [CrossRef] [Green Version]
- Tanase, M.A.; Ismail, I.; Lowell, K.; Karyanto, O.; Santoro, M. Detecting and Quantifying Forest Change: The Potential of Existing C- and X-Band Radar Datasets. PLoS ONE 2015, 10, e0131079. [Google Scholar] [CrossRef]
- Forzieri, G.; Pecchi, M.; Girardello, M.; Mauri, A.; Klaus, M.; Nikolov, C.; Rüetschi, M.; Gardiner, B.; Tomaštík, J.; Small, D. A Spatially Explicit Database of Wind Disturbances in European Forests over the Period 2000–2018. Earth Syst. Sci. Data 2020, 12, 257–276. [Google Scholar] [CrossRef] [Green Version]
- Tropek, R.; Sedla ek, O.; Beck, J.; Keil, P.; Musilova, Z.; Šimova, I.; Storch, D. Comment on “High-Resolution Global Maps of 21st-Century Forest Cover Change”. Science 2014, 344, 981. [Google Scholar] [CrossRef] [Green Version]
- Grohmann, C.H. Effects of Spatial Resolution on Slope and Aspect Derivation for Regional-Scale Analysis. Comput. Geosci. 2015, 77, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Moudrý, V.; Lecours, V.; Malavasi, M.; Misiuk, B.; Gábor, L.; Gdulová, K.; Šímová, P.; Wild, J. Potential Pitfalls in Rescaling Digital Terrain Model-Derived Attributes for Ecological Studies. Ecol. Inform. 2019, 54, 100987. [Google Scholar] [CrossRef]
- Weihr Jr, R.C.; Mattson, T.L. Modeling Slope in a Geographic Information System. J. Ark. Acad. Sci. 2004, 58, 10. [Google Scholar]
- Millan, R.; Dehecq, A.; Trouve, E.; Gourmelen, N.; Berthier, E. Elevation Changes and X-Band Ice and Snow Penetration Inferred from TanDEM-X Data of the Mont-Blanc Area. In Proceedings of the 2015 8th International Workshop on the Analysis of Multitemporal Remote Sensing Images (Multi-Temp), Annecy, France, 22–24 July 2015; pp. 1–4. [Google Scholar]
- Dehecq, A.; Millan, R.; Berthier, E.; Gourmelen, N.; Trouvé, E.; Vionnet, V. Elevation Changes Inferred from TanDEM-X Data over the Mont-Blanc Area: Impact of the X-Band Interferometric Bias. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3870–3882. [Google Scholar] [CrossRef] [Green Version]
- Deutscher, J.; Perko, R.; Gutjahr, K.; Hirschmugl, M.; Schardt, M. Mapping Tropical Rainforest Canopy Disturbances in 3D by COSMO-SkyMed Spotlight InSAR-Stereo Data to Detect Areas of Forest Degradation. Remote Sens. 2013, 5, 648–663. [Google Scholar] [CrossRef] [Green Version]
Study | Validated DEMs | Reference Data |
---|---|---|
Rizzoli et al. (2017) [39] | TanDEM-X 12 m | Globally available elevation data provided by ICESat |
Wessel et al. (2018) [40] | TanDEM-X 12 m | Kinematic GPS points, GPS on Bench Marks points (23,728 points distributed across the US, DTM of Cape Town (South Africa; 2460 km2), DSM of Thuringia (Germany; 100 km2), and DSM of Kumamoto city (Japan; ~ 10,000 km2) |
Hawker et al. (2019) [9] | TanDEM-X 90 m SRTM 90 m MERIT 90 m | DTMs of 32 locations located across six continents derived from airborne laser scanning; cumulative area 11,477 km2 |
Kramm and Hoffmeister (2019) [41] | TanDEM-X 12 m TanDEM-X 90 m SRTM 30 m SRTM 90 m ALOS World 3D 30 m ASTER 30 m | ICESat and ICESat-2 points for an area of approximately 190,000 km2, and several small DTMs derived from UAV-photogrammetry and terrestrial laser scanning; all located in the northern part of Chile |
Podgórski et al. (2019) [42] | TanDEM-X 12 m TanDEM-X 30 m SRTM 30 m ASTER 30 m | Airborne laser scanning DTM of Universidad Glacier located in central Chile covering about 30 km2 |
Pasquetti et al. (2019) [43] | TanDEM-X 12 m | 2217 GPS points in Patagonia (Argentina) |
González-Moradas and Viveen (2020) [44] | TanDEM-X 12 m SRTM 30 m ALOS World 3D 30 m ASTER 30 m | 139 GNSS points in Peru |
Vassilaki and Stamos (2020) [45] | TanDEM-X 12 m SRTM 30 m ALOS World 3D 30 m ASTER 30 m | Visual inspection and accuracy analysis of 7 sites in Europe and USA with a cumulative area of 167 km2; and 7 sites located in the polar area in Antarctica. The reference data consisted of LiDAR returns or nodes of photogrammetrically compiled DSM |
Gdulová et al. (2020) [46] | TanDEM-X 12 m | DTMs and DSMs derived from airborne laser scanning located in three mountain ranges in Czechia covering about 1000 km2 |
Uuemaa et al. (2020) [47] | TanDEM-X 90 m SRTM 30 m MERIT 90 m NASADEM 30 m ALOS World 3D 30 m ASTER 30 m | The reference DEMs for three study areas (Estonia: 225 km2, New Zealand: 111 km2, and Norway: 193 km2) were obtained from airborne laser scanning surveys. For China (103 km2), DEM derived from Pleiades-1A images was used. It is not clear whether reference data were DSMs or DTMs. |
Kumar et al. (2020) [48] | TanDEM-X 90 m SRTM 30 m ALOS World 3D 30 m ALOS PALSAR 12.5 m ASTER 30 m High Mountain Asia 8 m | 158 GNSS points and 661 ICESat points located in Nubra Valley, Karakoram mountains (India) |
Briole et al. (2021) [49] | TanDEM-X 12 m | GNSS kinematic surveys in western Gulf of Corinth (Greece) with a total number of 885,252 points |
Study Area Characteristics | ALS Parameters | |||||
---|---|---|---|---|---|---|
Study Area | Area (km2) | Height Range (m) | Forest Cover (%) | Agricultural Areas (%) | Year | Point Cloud Density |
Bohemian Forest | 680 | 564–1378 | 80 | 9 | 2017 | 55 p/m2 |
Erzgebirge | 1846 | 294–1212 | 47 | 42 | 2015–2017 | 4 p/m2 |
Giant Mountains | 1200 | 332–1603 | 66 | 27 | 2011–2012 | 4–5 p/m2 |
Non-Forest | Forests | ||||||||
---|---|---|---|---|---|---|---|---|---|
Study Area | Model | Cells | ME (m) | RMSE (m) | LE90 (m) | Cells | ME (m) | RMSE (m) | LE90 (m) |
BEF | SRTM | 7254 | −2.53 | 4.39 | 7.71 | 70,611 | −2.91 | 7.03 | 10.93 |
TDX90 | −2.36 | 4.31 | 7.21 | −3.32 | 5.74 | 8.24 | |||
EGG | SRTM | 87,777 | −1.36 | 2.93 | 4.34 | 97,345 | −4.06 | 6.58 | 10.20 |
TDX90 | −0.90 | 2.47 | 3.56 | −1.79 | 5.39 | 7.57 | |||
GIM | SRTM | 36,755 | −1.08 | 3.26 | 5.24 | 93,492 | −2.06 | 5.16 | 8.36 |
TDX90 | −0.68 | 3.53 | 4.69 | −0.48 | 5.07 | 7.17 |
Non-Forest Areas | Forests | |||||
---|---|---|---|---|---|---|
ME (m) | RMSE (m) | LE90 (m) | ME (m) | RMSE (m) | LE90 (m) | |
Overall accuracy | Overall accuracy | |||||
0.42 | 2.03 | 2.72 | 1.30 | 5.59 | 7.99 | |
Aspect (degrees) | Aspect (degrees) | |||||
[0.0, 22.5] | 0.48 | 1.66 | 2.46 | 1.35 | 4.97 | 7.21 |
(22.5, 45.0] | 0.43 | 1.62 | 2.49 | 1.27 | 4.99 | 7.33 |
(45.0, 67.5] | 0.37 | 1.70 | 2.61 | 1.47 | 5.07 | 7.54 |
(67.5, 90.0] | 0.44 | 1.69 | 2.64 | 1.94 | 4.90 | 7.34 |
(90.0, 112.5] | 0.45 | 1.72 | 2.67 | 2.19 | 4.88 | 7.45 |
(112.5, 135.0] | 0.44 | 1.71 | 2.63 | 2.23 | 4.87 | 7.50 |
(135.0, 157.5] | 0.47 | 1.72 | 2.64 | 2.21 | 5.04 | 7.61 |
(157.5, 180.0] | 0.44 | 1.93 | 2.73 | 2.14 | 5.20 | 7.72 |
(180.0, 202.5] | 0.33 | 2.79 | 2.94 | 1.97 | 5.63 | 8.28 |
(202.5, 225.0] | 0.40 | 2.77 | 2.93 | 1.18 | 6.02 | 8.77 |
(225.0, 247.5] | 0.29 | 2.61 | 3.09 | 0.62 | 6.44 | 9.21 |
(247.5, 270.0] | 0.28 | 2.29 | 3.09 | 0.16 | 6.66 | 9.73 |
(270.0, 292.5] | 0.29 | 2.44 | 2.94 | −0.01 | 6.91 | 10.25 |
(292.5, 315.0] | 0.41 | 2.11 | 2.80 | 0.52 | 6.40 | 8.95 |
(315.0, 337.5] | 0.60 | 1.92 | 2.68 | 0.94 | 5.72 | 7.78 |
(337.5, 360.0] | 0.60 | 1.79 | 2.45 | 1.26 | 5.24 | 7.38 |
Slope (degrees) | Slope (degrees) | |||||
(0,10] | 0.51 | 1.67 | 2.45 | 1.45 | 5.15 | 7.54 |
(10,20] | −0.12 | 3.60 | 4.40 | 1.23 | 6.17 | 8.72 |
(20,30] | −0.64 | 5.51 | 7.65 | 0.05 | 6.50 | 10.02 |
(30,75] | −1.69 | 1.69 | 1.69 | −0.53 | 5.84 | 9.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gdulová, K.; Marešová, J.; Barták, V.; Szostak, M.; Červenka, J.; Moudrý, V. Use of TanDEM-X and SRTM-C Data for Detection of Deforestation Caused by Bark Beetle in Central European Mountains. Remote Sens. 2021, 13, 3042. https://doi.org/10.3390/rs13153042
Gdulová K, Marešová J, Barták V, Szostak M, Červenka J, Moudrý V. Use of TanDEM-X and SRTM-C Data for Detection of Deforestation Caused by Bark Beetle in Central European Mountains. Remote Sensing. 2021; 13(15):3042. https://doi.org/10.3390/rs13153042
Chicago/Turabian StyleGdulová, Kateřina, Jana Marešová, Vojtěch Barták, Marta Szostak, Jaroslav Červenka, and Vítězslav Moudrý. 2021. "Use of TanDEM-X and SRTM-C Data for Detection of Deforestation Caused by Bark Beetle in Central European Mountains" Remote Sensing 13, no. 15: 3042. https://doi.org/10.3390/rs13153042
APA StyleGdulová, K., Marešová, J., Barták, V., Szostak, M., Červenka, J., & Moudrý, V. (2021). Use of TanDEM-X and SRTM-C Data for Detection of Deforestation Caused by Bark Beetle in Central European Mountains. Remote Sensing, 13(15), 3042. https://doi.org/10.3390/rs13153042