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Abstract: The acquisition of satellite images over a wide area is often carried out across seasons
because of satellite orbits and atmospheric conditions (e.g., cloud cover, dust, etc.). This results in
spectral mismatch between adjacent scenes as the sun angle and the atmospheric conditions will be
different for different acquisitions. In this work, we developed an approach to generate seamless
mosaics using Scale-Invariant Features Transformation (SIFT). In this process, we make use of the
overlapping areas between two adjacent scenes and then map spectral values of one imagery scene to
another based on the filtered points detected by SIFT features to create a seamless mosaic. We make
use of the Random Sample Consensus (RANSAC) method successively to filter out obtained SIFT
points across adjacent tiles and to remove spectral outliers across each band of an image. Several
high resolution satellite images acquired with WorldView-2 and Dubaisat-2 satellites, and medium
resolution Sentinel-2 satellite imagery are used for experimentation. The experimental results show
that the proposed approach can generate good seamless mosaics. Furthermore, Sentinel-2’s level 2A
(L2A) product surface reflectance data is used to adjust the spectral values for color consistency.

Keywords: seamless mosaic; RANSAC; SIFT; outliers; blend; surface reflectance

1. Introduction

Satellite imagery is used in several earth observation applications such as land mon-
itoring, classification, object detection, damage assessment, etc. Such applications often
span across a wider area and at times country-scale or even larger. This area of interest
cannot always be captured in one image due to the limitation in the field of view of satellite
sensors and the satellite orbits. Due to the limitations of the imaging swath or acquisition
mechanism, it is common that the region of interest (ROI) cannot be contained in only one
remote sensing image scene. Therefore, it is necessary to generate a large-scale composite
image with a sequence of overlapped satellite scenes or tiles, which is usually referred to by
a technique called image mosaicking [1]. Image mosaicking consists of five aspects which
include image registration, extraction of overlapping areas, radiometric normalization,
seam-line detection, and finally, image blending [2].

When the area of interest spans a wider area, the mosaicking process often has color
balancing issues due to different acquisition conditions of underlying scenes. Generally,
there are two desirable properties required in generating visually pleasant color-balanced
mosaic [3]. First, the output mosaic should be as similar as possible to the input images
in terms of intensity and geometry. Furthermore, secondly, the stitching line should not
appear in the mosaic output. Hence, to create a good seamless mosaic, one would need
constituent satellite tiles that are geo-rectified and acquired within a few days or at most
within the same season.

With an assumption that the tiles with partially overlapped regions have already been
rectified by using image registration methods [4–6], image mosaicking methods can be
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reviewed and classified into two categories: blending based method and optimal seam
based method [7,8]. The blending-based method that is commonly known as alpha blend-
ing or feathering approach [9–14], acts by obtaining smooth transition in the overlapped
region. The mosaic output is generated considering a weighted combination of two over-
lapped images, where the weight coefficient is determined according to the distance from
the stitching borders or the centers. Some advanced weighted blending techniques are
constructed by using variational approach [15] or Poisson-based gradient-domain com-
positing approach [16]. However, the blending-based mosaic methods have the drawback
that ghosting and blurring artifacts could be introduced if overlapped images are mis-
aligned [3,17,18]. On the other hand, the optimal seam-based methods look to fit a curve
in the overlapping region, so that the minimum difference is obtained between the two
registered images [18]. With the overlapping region being divided into two parts by the
searched curve, each part can then be filled with the pixels in the corresponding image. In
the literature, many optimal seam searching methods are used that make use of Dijkstra’s
algorithm [19–21], dynamic programming [18,22–24], and graph-cuts [25,26]. However, the
optimal seam-based methods are found to have problems in generating visually pleasant
mosaic output with apparent intensity differences [27]. Hence, histogram matching-based
pre-processing has been extensively used [28–30] to avoid problems related to the visual
inconsistency caused by unbalanced intensity. The histogram matching technique uses
a statistics-based intensity balancing method and is found to be effective in adjusting
the global intensity distribution of the target image to fit the reference image through a
non-linear transformation.

Considering the pros and cons of the blending-based methods and the optimal seam-
based methods, both types of methods were also incorporated into one framework to
improve the performance of a mosaic [31]. Usually, a low-pass filter is applied to decom-
pose each overlapped image into two components of high-frequency and low frequency.
Furthermore, mosaic schemes are designed for stitching each component. The weighted
approach of blending rule-based mosaic scheme is used to achieve smooth intensity transi-
tion for low-frequency components consisting of uneven illumination information. With
very little information available in the low-frequency components, the weighted blending
rule can help to avoid ghosting or blurring effect [9]. However, for high-frequency com-
ponents that consist of detailed information (for example edges, structures, and texture),
an optimal seam searching method is modified to determine the seam line and perform
the stitching process within the overlapping area [22–24]. Thus, modified optimal seam-
based mosaic methods work well in preserving structure and texture consistency in the
high-frequency components with proper intensity information. Then the final mosaic
is obtained by jointly considering the linear composition of the high-frequency and the
low-frequency components.

In this work, we make use of the idea of an optical seam-based approach to find
the appropriate points in the curve, and then, a blending process is used to create a
mosaic. We use a two-step filtration approach: first, using Random Sample Consensus
(RANSAC) [32–34] method, collinear points are obtained using Scale-Invariant Feature
Transformation (SIFT). In the second step, we again use RANSAC as a robust approach to
remove spectral outliers across each band to determine the linear function for mapping
adjoining tile onto the base tile [34]. This method helps to properly deal with color balancing
issues by mapping spectrally-consistent control points between the images. Furthermore,
we also correct the spectral values of the resulting mosaic to map to standard surface
reflectance values. This allows us to relate spectral values of unknown objects from satellite
mosaics to the available standard spectral library for more accurate change detection,
classification, and object detection [35]. The remapping of the values can be performed
either by collecting the stable ground spectra or by using validated standard reflectance
products. In our approach, the standard reflectance product of Sentinel’s L2A is considered
for re-mapping. Since the sensors of WV-2 and Sentinel-2 do not perfectly match, slight
inconsistencies are expected for actual reflectance values, but the color consistency is
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guaranteed across scenes. The rest of the manuscript is organized as follows. ’Proposed
Methodology’ is provided in Section 2, which is followed by ’Results and Discussion’ in
Section 3, while Section 4 is ‘Conclusions and Future Work’.

2. Proposed Methodology

In our approach, we use a two-step approach for extracting the feature points to be
used for blending purposes. For this, we first find scale-invariant features in the overlapped
region of the adjacent tiles. The Random Sample Consensus (RANSAC) approach is used
to find the collinear points in the scale-invariant features across two adjacent tiles based
on distance [36]. The RANSAC approach is used again as a robust approach for further
removing the spectral outliers across each band. A linear function is determined to map
the spectrally-consistent pixels for each band of a tile to map it onto the base image tile
to create the homogeneous mosaic. The overview of the proposed process can be found
in Figure 1, and its details are explained in Algorithm 1.

Figure 1. Flowchart of the proposed approach.

Algorithm 1 Proposed Workflow

for each tile in two adjacent image tiles do
Consider one tile as base and other tile as adjoining tile
Ensure the two tiles are geo-rectified
Use blending approach to determine the homogeneity of consisted points in the
blended image in each band of the image
if The points are homogeneous then

Generate a mosaic using a blending process
Repeat the process for the remaining adjacent image tiles

else
Find scale invariant (SIFT) features within the overlapped region of two tiles
Apply a RANSAC approach to retrieve set of collinear points among the SIFT
features
for each band in two adjacent image tiles do

Use RANSAC approach as robust approach and develop linear models for every
band to map adjoining image onto the base image by removing spectral outliers
across each band
Apply the fitting function from each band of the adjoining image onto base tile to
obtain homogeneously distributed data points across each band

end for
Generate a mosaic using a blending process
Apply the proposed approach
Repeat the process for the remaining adjacent image tiles

end if
end for
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2.1. Extraction of Robust Key Match Points in Overlapping Regions

We employ Scale-Invariant Feature Transform (SIFT) on the base image and adjoining
image to detect the key match points across the adjacent tiles. To select the robust key
match points, we employ the RANSAC algorithm with the homography model [37], to
avoid misleading points. The RANSAC method computes a homography and provides a
prediction of outliers. Using SIFT, we generate keypoints and the feature vector for each
keypoint. Furthermore, if k is a keypoint in image x and k′ is a keypoint in image x′, the
feature vectors provide a way to identify whether k, k′ are good matches or not. Then, for
each k, we look for a good match: a k′ from x′ that is significantly closer to k than any other
keypoint in x′. The set formed with a good matches forms a potential candidate set for
image registration.

Algorithm 2 shows steps of the RANSAC algorithm. We initially pick four non-
collinear feature pairs randomly to compute a homography from these four pairs, and then
test the goodness of this homography, by checking whether the number of good matches
is consistent with this homography or not. If k, k′ are a good match, we assume that in
most cases the homography will map k to something near k′. The one with good matches
that are consistent with the homography would be treated as inliers, and those that are
inconsistent are considered as outliers (for this homography) for the chosen threshold. By
using a trial and error method, a good choice for threshold value was found to be 65 for
dealing with the case of our experiment of finding collinear points across adjacent satellite
scenes. Eventually we repeat this process 100 times and pick a set of four good matches
each time. In each iteration, a homography is derived and the number of associated outliers
is counted. At the end, we obtain the homography with the smallest number of inliers that
constitute our feature points for image mapping. This step provides a set of refined points
from a pool of SIFT feature points obtained from the base and adjoining images. With the
first application of RANSAC, it allows filtering SIFT feature points across the overlapping
region to find eligible points based on distance.

Algorithm 2 RANSAC algorithm

for each four non-colinear feature pairs selected randomly do
Compute homography H for these features
Compute inliers where Sum of Squared Distances (p

′
i, Hpi) < threshold

Keep largest set of inliers
Re-compute least-squares H estimate on all of the inliers

end for

2.2. Mapping of Points from Adjoining Image to Base Image

Once the SIFT points are filtered out using RANSAC algorithm, the obtained points
are further refined based on spectral values in individual bands using RANSAC as a robust
approach to identify spectral outliers across each band. A linear fitting function is calculated
for each band, to map the adjoining image tile onto the base image tile. Furthermore, finally,
a blending method is used to create the final homogeneous mosaic.

2.3. Blending Method

Overlapping regions of two images may have different brightness or intensities. A
simple way to perform blending is to use a weighted sum of the image intensities along
each band using weight functions [38].

We can assign a weight function to each image w(x, y) = w(x)w(y) where w(x) varies
linearly from 1 at the center of the image to 0 at the edge. If there exists a small registration
error, this process may lead to blurring of high-frequency detail. Hence, a multi-band
blending strategy developed by Burt and Adelson [39] is applied. The rationale behind
using multi-band blending is to blend low frequencies over a large spatial range and high
frequencies over a short-range.
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2.4. Mapping of Mosaic to Standard Surface Reflectance

A color balanced mosaic obtained after a successful color blending approach leads to
a change in the spectral values in the considered tiles/scenes. To guarantee spectral consis-
tency, an approach to map mosaic values to standard surface reflectance is required. The
remapping of the values can be performed either by collecting the ground reflectance values
for stable surfaces or by using known standard reflectance products such as Sentinel-2 L2A
data. We apply the procedure similar to the approach explained in Sections 2.1 and 2.2 for
remapping. A linear robust regression method is applied in each band of the obtained
mosaic to map the features to the surface reflectance.

2.5. Evaluation of Proposed Approach

Correlation Coefficient: The correlation coefficient helps to reflect the similarity be-
tween the base image and the final mosaic. The higher the correlation value, the higher
will be the fidelity of the image spectrum and the better is the fusion quality. It can be
calculated as shown in Equation (1).

C.C. =
∑m

i=1 ∑n
i=1[ f1(i, j)− A1] f2(i, j)− A2]√

∑m
i=1 ∑n

i=1[ f1(i, j)− A1]2 f2(i, j)− A2]2
(1)

Here, f1(i, j) is the image pixel value of the base image, f2(i, j) is the mapped color
pixel value after mosaicking. A1 and A2 represent the pixel values of the two images to be
mosaicked, respectively. The larger the value of C.C. in Equation (1), the greater will be the
correlation between the base image tile and the final mosaic.

2.6. Satellite Images

Three different satellite datasets are used to demonstrate the effectiveness of our
proposed approach. The datasets were acquired over the region of UAE during 2015/2016
using WorldView-2, Sentinel-2, and DubaiSat-2 satellites.

The WorldView-2 dataset consists of high resolution satellite imagery with eight
multi-spectral bands at a spatial resolution of 2 m. The panchromatic band having 0.5 m
spatial resolution is used to improve the spatial resolution of the images. Only 4 bands
(R-5, G-3, B-2, and IR-8) of WorldView-2 data are considered in this work for the images
acquired over the Northern Emirates of UAE in summer (June/July) months of 2014/2015.
Sentinel-2 provides medium spatial resolution satellite imagery which is freely available.
In this work, we use imagery acquired over UAE during the summer months of 2016. Only
four bands available at 10 m spatial resolution are used. The third dataset consists of high
resolution satellite imagery having 4 bands at 4m spatial resolution acquired over Dubai
emirate during summer months of 2016 with DubaiSat-2 satellite. The image tiles in all the
three datasets have significant color variation making it difficult to produce high quality
mosaics using traditional methods.

3. Results and Discussion
3.1. Experiments, Observation and Analysis

The experimental setup is explained in Section 2. The process has been applied to
all the three mentioned datasets and an illustration of the process is provided with the
WorldView-2 and DubaiSat-2 dataset.

3.1.1. WorldView-2 Data

Figure 2a shows the adjacent tiles of the WorldView-2 dataset for the Northern Emi-
rates region in the UAE. The acquisition of tiles is mostly during the summer time in 2014,
with some of the tiles acquired in 2015 that led to mosaicking issues. These issues can be
clearly observed in Figure 2b, where significant differences in spectral values across some
tiles led to color balancing issues during a simple blending procedure. Figure 3a shows the
overlapping region in the sample adjacent tiles. The SIFT features are extracted followed
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by a RANSAC procedure that would allow obtaining selected points by removing distance
outliers from the adjacent tiles as shown in Figure 3b. This process is followed by another
application of the RANSAC method in each band to remove spectral outliers, after which
a linear function for each band is developed to map the adjoining tile onto the base tile.
An example of such mapping for one band is demonstrated in Figure 4. Then a blending
process is followed to obtain the mosaic as seen in Figure 5a. Finally, the obtained mosaic is
mapped to standard surface reflectance using a robust linear regression approach to obtain
an improved surface reflectance product as seen in Figure 5b. Thus, the obtained mapped
surface reflectance product is observed to have a reflectance value within the 3% limit of
the considered standard surface reflectance values of stable objects such as sand, roads,
alluvial plains, and roofs.

Figure 2. WorldView-2 tiles: (a) for Northern Emirates region, UAE and (b) a preview of color
balancing issues observed using mosaicking algorithm available in Envi software.

Figure 3. Demonstration of process in sample area: (a) true color RGB image of the adjacent
tiles. (b) Illustration of identified collinear points from SIFT feature points in adjacent tiles using
RANSAC algorithm.
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Figure 4. A plot showing outliers and linear function fitting on Band-1 data w.r.t base tile ’Sen-B1’
and adjoining tile ’DS-B1’. The linear function developed for mapping adjoining tile to base tile with
a function y = 6.294x − 203.2.

Figure 5. (a) Mosaicking output of WorldView-2 images; (b) final product after remapping of the
mosaic to surface reflectance values.

3.1.2. DubaiSat-2 Data

Figure 6a shows the DubaiSat-2 adjacent tiles where the considered leftmost base tile
seem to consist of spectral values that are very different from standard surface reflectance.
As a result, the obtained color-balanced mosaic is also observed to have spectral values
in line with this considered base tile as shown in Figure 6b. Afterward, the mosaic is
remapped to surface reflectance (shown in Figure 7) which is observed to have a reflectance
value within the 2% limit of the considered standard surface reflectance values of above
mentioned stable objects.
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Figure 6. (a) Initial satellite tiles. (b) The color balanced mosaic output in DubaiSat-2 images using
the proposed approach.

Figure 7. The remapping of DubaiSat-2 mosaic to Surface Reflectance.

3.2. Analysis

Table 1 shows how a base tile relates to a color-balanced mosaic tile using a proposed
approach, and we can clearly see that the correlation coefficient concerning all four datasets
is very high. A correlation coefficient is calculated based on the pixel value of the base tile
(before mosaicking) and the same corresponding pixel value of the final mosaic. There are
no significant differences one can observe visually between mosaics of Sentinel-2’s level 2A
and 1C product data as shown in Figures 8 and 9 but statistically, the correlation coefficient
seems to decay more in the case of Sentinel-2’s level 1C data.
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Image mosaicking has been traditionally used to develop basemaps primarily for
visualization. However, such data may not be ideal for applications like change detection,
classification, object detection, etc. In addition to this, since the sun angle tends to vary
significantly from one month to another, the acquisition of images must be within the same
period (within a few days to a maximum time of a season), otherwise, the spectral values
will differ leading to significant color-balancing issues in the image mosaic. As an example,
significant color balancing issue can be clearly noticed while trying to create a mosaic from
Copernicus’s Sentinel-2 images that have a revisit time of 10 days and whose data products
are freely available at Level 1C and Level 2A processing levels. The mosaicking process
has relatively fewer issues while using Level 2A data which is a reflectance product at
surface level (also known as Top of Canopy (TOC)) in comparison to using level 1C which
is a reflectance product at top of the atmosphere (TOA) due to the extra processing to map
to surface characteristics. However, irrespective of the data product used, the proposed
approach will map all the data products whether it is a radiance product or, reflectance
product at TOA or TOC to obtain the acceptable surface reflectance mosaic.

Table 1. Correlation coefficient (C.C.) between reference base image and the final mosaic image.

Band WV-2 DS-2 Sen-2 2A Sen-2 1C

Red 0.941 0.954 0.982 0.962

Green 0.952 0.963 0.971 0.956

Blue 0.955 0.949 0.973 0.964

Infra-red 0.938 0.924 0.962 0.951

Figure 8. The mosaic of UAE developed using the proposed approach on Sentinel-2 Level 2A data.
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Figure 9. The mosaic of UAE developed using the proposed approach on Sentinel-2 Level 1C data.

The computational cost of the proposed method depends on the size and resolution of
the dataset used. A standard multi-spectral scene or tile of WorldView-2 satellite consists
of 4096 rows and 4096 columns contributing towards the file size of about 256 MB for
8 bands that covers about 8 km in length as well as in breadth. In our experimentation,
the execution time for mosaicking two scenes of the WorldView-2 high-resolution dataset
is about 2 min. It usually takes less than 30 s for extracting the filtered feature points
within the overlapping region and up to 1 min for mapping the adjacent scene based on
the baseline scene and performing a blending procedure. Similarly, depending upon the
standard tile size of the WorldView-2 data, remapping the reflectance values back to the
physical domain in a mosaic of two tiles takes less than 1 min of execution time.

3.3. Comparison with other Methods

The proposed approach has been developed to resolve the color balancing issues
encountered with the parametric mosaicking methods available with commercial software
such as ArcGIS and ENVI. The advantage of using our approach over other approaches
and other available methods in proprietary software is that we simulate the reflectance
values to achieve consistency in mosaicking during the process of color balancing or
blending operations. This is especially proven to be extremely useful when performing the
classification of habitats and sub-habitats consisting of more than 30 classes where a slight
change in spectral values could alter and induce errors in classification outputs. Otherwise,
automatic object mapping or classification in mosaic images may not provide accurate
results. In our proposed approach, the RANSAC method was used successively to filter
out the obtained SIFT points across adjacent tiles and to remove spectral outliers across
each band of an image so that proper mapping of the spectral reflectance values can be
performed. In addition to this, our approach has demonstrated a good seamless mosaic
output in various three demonstrated datasets.

Figures 10 and 11 show the output of various histogram and overlapping based color
balancing approaches performed in the WorldView-2 images consisting of the parts of the
Northern Emirates, UAE. In Figure 10, we can clearly observe that when information across
bands over adjacent tiles are not linearly represented, it causes distinct color balancing
issues. Even though histogram-based methods are found to be effective in many cases,
the non-uniform distribution of information across the bands leads to mosaicking issues
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in such approaches. In Figure 10a–c, we can observe slight greenish and pinkish tint
in the obtained mosaic while in Figure 10d, we can clearly observe how our proposed
approach can handle color balancing issues and provide better mosaic as compared to other
overlapping methods with different mentioned parameters for the earlier mentioned case.

Figure 10. The color balancing outputs obtained in the South-Eastern part of the WorldView-2 tiles
provided in Figure 2 using different Histogram based approaches: (a) minimum difference with
adaptive filter, (b) minimum difference with hot spot, (c) minimum square distance with hot spot,
(d) minimum difference with adaptive filter.

Figure 11. The color balancing outputs obtained in the South-Eastern part of WorldView-2 tiles
provided in Figure 2 using different overlapping based approaches: (a) minimum squared difference
with hot spot, (b) minimum difference with hot spot, (c) minimum difference with adaptive filter.
(d) Proposed approach.

3.4. Shortcomings of the Proposed Approach

The proposed approach has the following shortcomings. To establish proper mapping
function from adjoining tile onto the base tile, sufficient points or SIFT features across the
overlapping region of these two tiles need to exist, for which there has to be significant
overlapping between the two adjacent tiles to properly represent the different population
(object classes) of the constituent images. In the case of some tiles, whose overlapping is
not sufficient, another set of tiles that has overlapping are required so that sufficient points
are available to develop mapping functions. Furthermore, the overlapping region needs
to contain features from various classes of objects. The presence of only a few specific
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classes of objects in the overlapping region makes the mapping function biased towards
those few object classes only and the proposed approach may not work well with unseen
classes of objects outside the overlapped region. Therefore, it is required to have significant
overlapping between the tiles with the presence of various diverse classes of objects.

In the case of mapping spectral values of obtained mosaic to standard surface re-
flectance, it would have been better to use stable ground spectra as sensor bands of
WorldView-2 and DubaiSat-2 do not perfectly match with Sentinel-2. Hence, while map-
ping obtained mosaic to surface reflectance using Sentinel-2 L2A product, some inconsis-
tencies were observed as a result of which surface reflectance values for WorldView-2 and
DubaiSat-2 differ by 3% and 2% respectively.

4. Conclusions and Future Work

We have developed an approach to generate seamless mosaics based on SIFT features
by filtering outliers based on a robust approach. The RANSAC method was used succes-
sively to filter the SIFT points across adjacent tiles and to also remove spectral outliers
across each band of the images. Our approach has demonstrated a good seamless mo-
saic output in various datasets. In our approach, we also demonstrated remapping the
color-balanced mosaic image to the standard surface reflectance values. This is necessary
for mapping and relating spectral values of unknown objects with the available standard
spectral library especially when the task is to perform habitat and sub-habitat classification
consisting of several classes. In the future, we would like to use stable ground surface
reflectance measurements collected over a systematically sampled region of a mosaic to
map its color-balanced mosaic to standard surface reflectance.
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