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Abstract: Knowledge about the indoor occupancy is one of the important sources of information
to design smart buildings. In some applications, the number of occupants in each zone is required.
However, there are many challenges such as user privacy, communication limit, and sensor’s com-
putational capability in development of the occupancy monitoring systems. In this work, a people
flow counting algorithm has been developed which uses low-resolution thermal images to avoid
any privacy concern. Moreover, the proposed scheme is designed to be applicable for wireless
sensor networks based on the internet-of-things platform. Simple low-complexity image processing
techniques are considered to detect possible objects in sensor’s field of view. To tackle the noisy
detection measurements, a multi-Bernoulli target tracking approach is used to track and finally
to count the number of people passing the area of interest in different directions. Based on the
sensor node’s processing capability, one can consider either a centralized or a full in situ people flow
counting system. By performing the tracking part either in sensor node or in a fusion center, there
would be a trade off between the computational complexity and the transmission rate. Therefore, the
developed system can be performed in a wide range of applications with different processing and
transmission constraints. The accuracy and robustness of the proposed method are also evaluated
with real measurements from different conducted trials and open-source dataset.

Keywords: infrared sensor array; multi-target tracking; occupancy detection; random finite set;
smart building

1. Introduction

Occupancy detection is one of the preliminary requirements of smart buildings where
its resolution level varies in different applications. Sometimes, it is enough to know whether
a zone has been occupied or not. However, in many cases, such as high-level energy saving
via demand-controlled heating, ventilation, and air conditioning (HVAC) systems, it is
required to know the number of occupants in different zones and its variation during
the day [1–3]. There exist many works in the occupancy detection of the building zones
using different sensors such as passive infrared (PIR), carbon dioxide (CO2) concentration,
temperature, humidity, and light beam whose main goal is to figure out whether an area of
interest (AoI) is occupied or not [4,5]. There are also some efforts to count the number of
occupants through sensor fusion techniques over wireless sensor networks (WSNs).

By commercializing the concept of internet-of-things (IoT) in recent years and raising
the interest of IoT integration with WSNs for smart building, there has been a remarkable
research effort in occupancy monitoring of energy-efficient smart buildings [6]. However,
in design of occupancy monitoring systems for smart buildings, occupant’s privacy is
a crucial concern. Hence, approaches which utilize sensitive data (e.g., high-resolution
visual data) are not suitable. On the other hand, and from the perspective of WSN, there
are some constraints such as sensor’s lifetime and implementation cost, which should be
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taken into account in developing any algorithm integrated into WSNs for edge computing.
Moreover, to apply IoT-based wireless protocols such as long range wide-area network
(LoRaWAN) or narrow-band IoT (NB-IoT) in smart buildings, it is worth noting that
the wireless transmission bandwidth available to a WSN is limited with the low duty
cycles. Therefore, to address the above-mentioned requirements of an IoT-based occupancy
monitoring via WSN, the computational complexity of detection and tracking algorithms
and amount of reporting data by each sensor cannot be high. In this work, our goal is to
develop a practical occupancy monitoring system for smart buildings, by considering the
implementation challenges and privacy concerns.

2. Related Work and Contribution

Using artificial intelligence techniques, different occupancy detection methods are
proposed in [3,7]. Nonetheless, to achieve the reported accuracies in these works, a huge
amount of data is collected from different types of sensors such as ambient sound, light,
PIR, temperature, humidity, CO2, and even outside weather information as in [7].

Authors in [8] proposed a probabilistic fusion algorithm for occupancy estimation in
different building zones, called PLCount. As the input of their occupancy algorithm, the
people flow counts from all sensors are required. However, they have used 3D camera-
based counting sensors which violates the privacy of building occupants.

Low-resolution infrared (IR) sensor array, also known as IR camera, is one of the
sources of information in occupancy monitoring without any privacy concern. This is also
suitable to be utilized in WSNs due to the low power consumption. However, a proper data
preprocessing is still needed to be applicable in the IoT-based occupancy monitoring. In [2],
an IR camera is utilized together with the optical camera to cover the detection failure of
optical camera caused by darkness, optical foreground/background similarities, and partial
occlusion. Nevertheless, the usage of optical camera is in contrast of privacy requirement.
By using a 16× 16 IR camera, the authors in [9] developed a counting method of the people
appear in the sensor’s field of view (FoV). Their pure image processing counting scheme
is based on the blob analysis, when a three-stage morphological algorithm with blob’s
area adjustment is proposed to relax the issues of merged blob (due to the close people)
and multiple blobs from a single person (i.e., head and hands are detected separately).
However, their method is case sensitive and people with different heights might be missed
easily since their detected blob areas may lie beyond the predefined range. In [10–12], an
8 × 8 IR array by Panasonic, called Grid-EYE [13], is used to record the bird’s eye view
of AoI. Due to the computational complexity of the proposed supervised learning based
methods in [10,11] and the amount of data to be transferred via wireless networks, they
are not feasible for an IoT-based WSN. Moreover, their approaches are to monitor the
occupancy within the covered region of each sensor. Based on the deployment height
and the size of AoI, one may need several sensors to cover a desired zone which makes
counting more challenging due to overlapping FoVs. By using 8 × 8 Grid-EYE, the authors
in [12] proposed a method to count the number of people who passed the doorway by
leveraging a combination of Otsu’s thresholding and modeling thermal noise distribution.
For tracking the body(s) over series of frames, they have defined three features: spatial
distance, temperature distance, and temporal distance. Nonetheless, they have considered
a doorway where at most two people may pass simultaneously, and it is not suitable for
more complicated cases with more passing people in different directions. Moreover, the
proposed method is highly related to the detection part. If a person gets missed in one
frame, the tracking part may lose it.

In this work, we aim to propose a people flow counting method feasible to be applied
by sensor nodes in an IoT-based WSN where above-mentioned implementation constraints
are met as well as occupant’s privacy. To do so, low-resolution thermal images, captured by
8 × 8 Grid-EYE IR camera, are used to count the number of people who pass the sensor’s
FoV in different directions. The people flow counting of sensor nodes can be then used by
other algorithms such as PLCount to monitor the occupancy of different building zones.
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Therefore, we would like to track the trajectories of unknown number of people which
can be treated as multi-target tracking (MTT). The MTT has been one of the active areas of
the signal processing for many decades with a wide range of applications, from aerospace
to robotic and vehicular fields and even biology. The main objective of MTT is to jointly
estimate unknown and time-varying number of targets and their states by using noisy
measurements. Among all approaches for MTT, the multi-target Bayesian filtering approach
has been developed widely in recent works by applying the concept of random finite set
(RFS) for a collection of targets’ states. Moreover, several sequential Monte Carlo (SMC)
based approaches have been proposed in [14–16] to enhance the performance of systems
with joint model selection and tracking problems. To relax the numerical complexity of
Bayesian MTTs, some approximations have been proposed, such as probability hypothesis
density (PHD) and multi-Bernoulli filters. In [17], a multi-sensor multi-Bernoulli filter is
used for group target tracking. However, their method is not strictly a tracker since it
cannot provide the target trajectory. When one is talking about the tracking, it is required
to distinguish the targets to be able to link each target’s states over the time. Therefore,
labeled RFS [18,19] is introduced by Vo et al. to address the requirement of distinguishable
targets and to find their trajectories.

In recent works, labeled RFSs have been considered in different visual MTT appli-
cations. The authors in [20] have applied labeled RFSs on the tracking of resident space
objects (RSOs) via SMC-based multi-Bernoulli filtering framework by assuming that RSOs
normally have a few pixels of images in size and they do not have any significant position
changes between two consecutive frames. We will see that the position changes of targets
are much higher in our case considering the size of FoV, number of pixels, and gait velocity
of moving users. In [21], an MTT method within the framework of labeled RFS is presented
using high-resolution thermal images. In these works, in addition to their main effort on
image processing and pixel assignments of different targets (i.e., detection), the SMC-based
tracking approaches increase the computational complexity, especially with a multinomial
resampling approach as in [21].

To the best of our knowledge, this work is the first attempt to provide a labeled
multi-Bernoulli (LMB) [22] based framework of visual MTT for occupancy monitoring of
smart building while the mentioned practical constraints of IoT-based WSNs and privacy
concerns are taken into account. Furthermore, although the computational cost of some
LMB-based approaches can be high (e.g., cubic in both numbers of hypothesized labels and
measurements), we will show that lower complexity of the Gibbs sampling-based LMB
framework [23] used in this work is acceptable for our use case.

Throughout this paper, X, Z, and L are used to denote state, observation, and label
spaces, respectively. R is used to denote the set of real numbers, and | · | defines the
cardinality of a set. We use boldfaced characters to denote vectors and matrices, and the
superscript (·)T denotes matrix transpose.

3. System Model

Suppose that a smart building has been divided to different zones and sensors are
deployed in their connection points, as shown in Figure 1, where the area of each desired
connection point is within FoV of a monitoring sensor. To count the number of people who
travel between adjacent zones, each sensor only needs to monitor the people flow passing
through connection points in two directions.
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FC

Figure 1. Possible sensor deployment (in orange) and their FoVs (green areas) to monitor occupancy
of different zones in a smart building using the proposed method.

As already discussed, the low transmission rate of wireless communications and low
computational capability of the sensors are two fundamental constraints in design of an
indoor IoT-based people flow monitoring scheme on the WSN platform where one gets
worse to ease the other one. That is, the sensor needs either to send raw/less-processed
data (to meet the low computational capability) or to apply high-level data processing
algorithms (to transmit a lower amount of data). Since we are talking about the counting
of people flow, enough numbers of consecutive measurements are required to track the
people in the sensor’s FoV. Considering the walking speed and the deployment height of
the sensor (which defines the size of FoV), we may need a measurement rate up to a few
frames per second (fps). To meet the occupant’s privacy, we utilize an 8 × 8 Grid-EYE IR
array. It means that each sensor node must send 64 thermal values in each transmission,
if no data processing is applied in the sensor node. Therefore, as shown in Figure 2,
our proposed algorithm consists of two main stages: target detection via thermal image
processing and multi-target tracking and counting algorithm. Since sending raw IR data
with the enough measurement rate of tracking algorithms needs a high transmission duty
cycle [24], the first part is integrated into the sensor to only report a lower amount of data
consist of positions of detected objects within the sensor’s FoV. It is worth mentioning that
the complexity of the in situ image processing algorithm must be low enough to guarantee
the required sensor lifetime, from the perspective of WSNs. This results in erroneous
measurements which may contain clutters. The detected positions will be then fed into the
tracking algorithm. Although it is supposed that the tracking algorithm is implemented in
a fusion center (FC), it is possible to have a full in situ people flow counting if the sensor
nodes are capable of performing the tracking algorithm as well. Nonetheless, in this work,
we suppose that there is an FC which is responsible to collect reported measurements from
all nodes and to monitor the people flow of all building zones. Performing the tracking part
in an FC results in a lower implementation cost at the expense of a higher transmission duty
cycle of sensor nodes to have the required measurement rates by the tracking algorithm.
Therefore, by performing the tracking part either in sensor node or in FC, there would be
a trade off between the computational complexity and the transmission rate while both
affect the sensor lifetime.
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Figure 2. People flow monitoring framework.

4. Target Detection via Image Processing

As discussed earlier, target detection is the first step to measure the position of possible
targets in the scene. At this stage, the main goal is to detect valid objects with different
thermal levels from a low-resolution IR image. The body temperature, width, height
(which defines distance to the sensor), and cloths (e.g., with or without cap) are some
parameters which affect the detection of targets from low-resolution thermal images.
Designing an image processing algorithm capable of detecting all possible targets is quite
challenging. Even through deep learning (DL) methods, it is not feasible due to the limited
computational capability of the sensor nodes in a WSN and necessity of a dataset with
a huge number of labeled data. Therefore, in this work, a simple detection method is
utilized. The parameters of detecting algorithm and thermal thresholds are chosen to be
able to detect objects with lower thermal level (i.e., those who might be short and/or their
body temperature is low). In this way, the amount of false alarm (i.e., clutters) increases to
reduce the possibility of missed detection. The clutters can then be handled by a proper
tracking algorithm.

As shown in Figure 2, the low-resolution thermal image is first upsampled, and back-
ground image will then be deducted to obtain the foreground image. The update rate of
background image is based on environmental changes. It can be scheduled for a predeter-
mined time of the day when the building is empty. The wiser method is to use other motion
detectors (e.g., PIR) in vicinity of the sensor and to update the background image when no
motion has been detected for a certain period. In addition to the background subtraction,
one can also consider a temperature range to have even more reliable foreground thermal
image.

To separate the merged blobs, a Laplacian of Gaussian (LoG) filter is applied on the
foreground image. It helps to distinguish passing people who are close to each other [9].
The filtered image is then fed into an object detector. Figure 3 depicts steps of the object
detector. After binarization and noise removal, since the boundaries of objects may still
touch each other, a distance transformation is applied together with a proper thresholding
to have a more clear foreground image. Note that both thresholds, obtained by utilizing
Otsu’s method (in binarization) and distance transformation of the binary images, are
dynamically updated for each frame. Finally, the central positions of remaining objects in
the foreground image are measured and reported.

Otsu’s Binarization
Noise Removal via 

Morphogical Opening

Distance Transform 
and Thresholding

Measuring Positions 
of Separated Objects

Figure 3. Object detection.
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Among the mentioned constraints, the range of target’s height is a key parameter to
define the detection parameters and sensor deployment. When the target is too short, its
detection is challenging since it is far from the sensor and measured temperature level lies
within a lower thermal range [12]. On the other hand, when the target is very tall, it can be
easily detected but the number of consecutive frames in which the target appears might
be reduced depending on its body temperature, cloths, and walking speed. Therefore,
tracking of tall targets would be more difficult since it might be seen as a clutter due the
small number of appearances (and being detected) over consecutive frames. It implies
that there would be a minimum detectable and a maximum trackable height of target
depending on the deployment height of the sensor, as shown in Figure 4. For the minimum
detectable height, we may reduce the detection temperature threshold at the expense of
more clutters. This issue can be then relaxed by tuning the parameters of tracking algorithm
properly. However, the maximum trackable height still remains as a practical constraint,
and it can be improved by deploying sensors in a higher ceiling or using sensors with a
wider angle of view (AoV), which is defined as θ in Figure 4.

𝜃

Deployment
Height

Maximum
Trackable
Height

Field-of-View

Minimum
Detectable
Height

Figure 4. Sensor’s deployment and its corresponding heights.

5. Multi-Target Tracking

To have a reliable tracking algorithm, we need to apply an algorithm which is robust
enough to the level of clutters measured and reported by the first detection part. To do so,
an LMB filter [22,23] has been utilized for the multi-target tracking part of this work. By
using the Gibbs sampling and applying truncation in prediction and update stages jointly,
an efficient implementation of LMB with linear complexity in the number of measurements
has been introduced in [23]. Therefore, depending on the processing capability of the
sensor node, it is possible to integrate the tracking part into the sensor node to have a
complete in situ people flow monitoring.

Despite single-target tracking with only one target’s state xk ∈ X at time k, there is
a finite set of targets’ states, called multi-target state Xk = {xk,1, . . . , xk,Nk

} ∈ X, in the
MTT. Note that the number of targets, Nk (also known as cardinality), is an unknown
time-varying variable. The multi-target state evolves in time where some targets die (e.g.,
they leave the AoI) and new targets get born (e.g., they enter the AoI). On the other hand,
there is a set of observations, called multi-target observation Zk = {zk,1, . . . , zk,Mk

} ∈ Z,
which includes both valid measurements from targets/objects and clutters. Note that
there might be some missed detected targets. By treating both multi-target state and
multi-target observation as RFSs, it would be possible to develop tracking algorithms
based on the concept of Bayesian filtering. Therefore, given the measurement history
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Z1:k = (Z1, · · · , Zk), if a multi-target state is distributed according to π(·), the multi-target
posterior at time k is recursively obtained by

πk|k−1(Xk|Z1:k−1)=
∫

fk|k−1(Xk|X )πk−1(X |Z1:k−1)δX ; (1)

and

πk(Xk|Z1:k) =
gk(Zk|Xk)πk|k−1(Xk|Z1:k−1)∫
gk(Zk|X )πk|k−1(X |Z1:k−1)δX

, (2)

as prediction and update stages, where fk|k−1(·|·) and gk(·|·) define multi-target transition
model and likelihood function at time k, respectively.

5.1. Labeled Multi-Bernoulli RFS

Based on definition of the Bernoulli trial, a Bernoulli RFS X ∈ X has only two possible
cases, X ⊂ {∅, x : x ∈ X} (i.e., either empty or single-state set), where at most one target’s
state can exist with probability r which is distributed based on the probability distribution
p(x). It implies that a Bernoulli RFS has distribution π(X) = δ{1,|X|} · r · p(x) + δ{0,|X|} ·
(1− r). Note that δ{·,·} is Kronecker delta function. Eventually, a multi-Bernoulli RFS can be

defined as the union of a finite number of Bernoulli RFSs, X =
⋃ν

i=1 X(i), whose cardinality
probabilities, r(i), and distribution probabilities, p(i)(x), are independent. Hence, the
probability density of a multi-Bernoulli RFS with n targets’ states from ν independent
Bernoulli RFSs, {r(i), p(i)(x)}ν

i=1, is given by [18], [25] (Page 369)

π({x1, . . . , xn}) =
ν

∏
j=1

(1− r(j)
k ) ∑

16i1 6=···6=in6ν

(
n

∏
j=1

r(ij)p(ij)(xj)

1− r(ij)

)
, (3)

with the summation over all possible permutation of n-variable subsets of a ν-variable set
(n 6 ν). The cardinality distribution of a multi-Bernoulli RFS is then obtained by

ρ(n) =
ν

∏
j=1

(1− r(j)
k ) ∑

16i1 6=···6=in6ν

(
n

∏
j=1

r(ij)

1− r(ij)

)
. (4)

On the other hand, the concept of labeled RFS is introduced for multi-target scenarios
to have distinguishable targets where they are marked with unique labels. By considering
X as state space and L as label space, a labeled RFS is an RFS on X× L with distinct
realizations of labels. It is worth noting that the labeling of an RFS does not affect its
cardinality distribution since an unlabeled RFS can be easily obtained by discarding the
labels from its labeled version [18]. Let L , L(X) be the label set of labeled RFS X =
{(x1, `1), . . . , (xn, `n)} ∈ X×L. Hence, |L| = |X|.

Finally, a labeled multi-Bernoulli RFS X with parameter set {(r(ζ), p(ζ)) : ζ ∈ Ψ},
is a multi-Bernoulli RFS on X whose non-empty Bernoulli components are labeled from
label space L. Let us define α : Ψ → L as a one-to-one mapping function. Then, for a
non-empty Bernoulli component with parameter (r(ζ), p(ζ)), α(ζ) provides the label of the
corresponding state.

Eventually, the probability density of LMB RFS X with parameter set π = {r(`), p(`)}`∈L
is given by

π(X) = δ{|X|,|L|}∏
i∈L

(
1− r(i)

)
∏
`∈L

1{L,`}r(`)p(`)(x)

1− r(`)
, (5)
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where

1{A,B} ,

{
1, B ⊆ A;
0, otherwise.

(6)

A general expression of the LMB filter, called generalized LMB (GLMB) filter or Vo-Vo
filter, proposed by Vo et al. in [18]. Considering a district index set of components, C, the
probability density of a GLMB filter is given by

π(X) = δ{|X|,|L|} ∑
c∈C

w(c)(L) ∏
(x,`)∈X

p(c)(x, `) (7)

where ∑I⊆L ∑c∈C w(c)(I) = 1 and
∫

p(c)(x, `)dx = 1 are satisfied [22].
By comparing (5) and (7), one can see that the LMB is a special case of GLMB with

only one component where

w(c)(L) = ∏
i∈L

(
1− r(i)

)
∏
`∈L

1{L,`}r(`)

1− r(`)
, (8)

and

p(c)(x, `) = p(`)(x). (9)

5.2. Tracking via Labeled Multi-Bernoulli Filter

In some tracking applications, like in our case, it is necessary to monitor the target
trajectory. Therefore, we need to mark them individually and monitor states of objects with
the same mark (label) along the time to observe their trajectories. Therefore, LMB filter has
been considered for the tracking part of our algorithm in this work.

One of the main issues of the MTT is data association, where it is difficult to distin-
guish which observation is related to which target. It is an advantage of the multi-Bernoulli
filter-based tracking algorithm that there is no data association requirement. However,
its computational complexity increases as the size of measurements goes higher since all
survived and possible new born targets will be evaluated and weighted with all measure-
ments at the update stage. Therefore, to relax the computational complexity, especially
for the cases with a large number of measurements (which is not our case), Vo et al. have
proposed a gating mechanism for the update stage [22], where each target is only evaluated
with those measurements whose Mahalanobis distances to the target lie below a certain
threshold. In this work, we use the method proposed in [23] where the authors have even
improved it by integrating prediction and update stages of the tracking filter to apply only
one truncation (instead of truncation at the end of each step) based on the Gibbs sampling.
However, some modifications must be applied to fit our use case.

At each timestamp, there are three types of target tracks, those who are newly born
(i.e., entered into the FoV at current timestamp), those who survived from the previous
timestamp (with an updated state), and those who have just died (i.e., left the FoV).

One advantage of utilizing the LMB filter in our use case is that the area of possible
birth points is known and limited. The possible target’s birth points of the multi-Bernoulli
filter lie within the trackable regions on both sides. Moreover, there is a minimum distance
between two people who are walking side-by-side. Considering this minimum distance
and the trackable regions, we can define the target’s birth regions as depicted in Figure 5.
The number of birth regions depends on size of FoV and the minimum distance between
two targets.
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FoV

Directions of Interest

Figure 5. Possible birth regions (patterned) within the FoV.

Another important difference is related to the possibility of having two people in the
same birth region. Obviously, when a target reaches to its exit point, its position would be
within one of the birth regions. Therefore, the possibility of having a new born target in
that region is low. Hence, we can change weights of any birth in those regions or even omit
the related birth points from the RFS. Dropping birth points can reduce the computational
time. However, the first option is more reliable since it is still possible to have a new target
in that region if big areas are chosen for the birth regions (e.g., two targets might be located
in two extreme points of that region) or even a pre-tracked target is wrongly located in a
birth region.

Figure 6 depicts the framework of our LMB-based tracking algorithm while it starts
with a set of newborn points, TB

k , (at k = 1) including their initialized states, existence
probabilities, weights, and given labels. For k > 1, the set of newborn tracks is concatenated
with the set of predicted surviving target tracks, TP

k , as a new set, Tk = {TB
k ||T

P
k }. In the

next step, all target tracks in Tk are updated with each measurement from their related
gated measurements separately. They are then concatenated together and with their
un-updated version as a set of updated tracks, TU

k . With the help of Gibbs sampling, a
components/hypotheses analysis is applied which results in a set of possible surviving
target tracks, TS

k . Note that each component refers to a possible assignment (or combination)
of target tracks in TU

k . Finally, the target tracks with the low existence probabilities are
dropped in the first pruning attempt. The current states of the desired labeled targets
are then extracted from the remain target tracks. The second pruning is applied at the
beginning of the next iteration to remove target points located out of the FoV and to release
all active tracks if there is no detected point over a predefined number of consecutive
measurements. It depends on the data rate and average walking speed within the FoV
and must be defined properly to avoid missed detection. This extra pruning is to relax
unnecessary computational load of the prediction stage.

A linear Kalman filter (KF) is applied within the structure of an LMB filter. That is
the new state of each target from the previous timestamp (as a possible surviving track)
is first predicted via a linear transition model individually. They are then updated with
the gated observations together with the newly generated birth tracks. In this work, the
constant velocity model is considered for the dynamic model because of the low rate of
change in speed of moving targets (i.e., change of walking speed) and there is no space to
have sudden maneuvers due to the limited FoV. In our test, we observed that it is still able
to track those who turn within the FoV since changes in velocities of the target in different
directions are tolerable. i.e., ac/deceleration rates in x and y axes are small.
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Figure 6. LMB-based tracking framework.

Let τ
(`)
k be set of histories of association maps for a labeled target track with label `.

Suppose that the state of t-th history of a target track with label ` ∈ L at time k is defined
as a four-dimensional vector x(`)t,k , as follows:

x(`)t,k , (xt,k, `k) , [x p(`)t,k , y p(`)t,k , xv(`)t,k , yv(`)t,k ]
T ∈ R4, ∀ t = 1, . . . , |τ(`)

k | (10)

which includes positions, {x,y}p(`)t,k , and velocities, {x,y}v(`)t,k , of the t-th element of labeled

target track ` in a two-dimensional plane (i.e., x and y) at time k with covariance P(`)
t,k .

It can then be predicted and updated recursively via a linear KF, as follows:

x(`)t,k|k−1 = fk|k−1(x(`)t,k−1) = Fx(`)t,k−1; (11)

P(`)
t,k|k−1 = FP(`)

t,k−1FT + Q; (12)

K(`)
t,k = P(`)

t,k|k−1HT(HP(`)
t,k|k−1HT + R)−1; (13)

x(`)t|zj ,k
= x(`)t,k|k−1 + K(`)

t,k (z
(`)
j,k −Hx(`)t,k|k−1); (14)

P(`)
t,k = P(`)

t,k|k−1 − K(`)
t,k HP(`)

t,k|k−1, (15)

where

F =

[
I2 TsI2
02 I2

]
, (16)

and

H =
[

I2 02
]
, (17)

are, respectively, dynamic (transition) and observation models in which 0n and In represent
n× n zero and identity matrices. The process noise, Q, and measurement noise, R, are
given by

Q = σ2
v ΣnΣT

n , Σn =

[
T2

s
2

I2 TsI2

]T
, (18)

and

R = σ2
z I2. (19)
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Note that the predicted state of each history element (i.e., x(`)t,k|k−1, ∀ t = 1, . . . , |τ(`)
k |)

will be updated, separately, with each measurement in the gated observation set of the
related labeled target track (i.e., z(`)j,k , ∀ j = 1, . . . , |Z(`)

k |). The gated observation set of
a target includes all measurements whose Mahalanobis distances to at least one history
element of the desired target track is less than a predetermined threshold. Moreover, the
resulted RFS (after update stage) includes the un-updated version of all states as well.
Let us define Tk = |Tk| = |TB

k | + |T
P
k | as total number of possibly survived and new

born targets. Thus, without the observation gating, the size of RFS would be related to
(1 +Mk)× Tk after update stage, whereMk = |Zk| is number of observations at time k. It
is worth mentioning that each survived target in TS

k (and then in the predicted set TP
k in the

next iteration) has a set of state(s) history at time k (i.e., τ
(`)
k for labeled target `) which may

include more than one state vector. By applying the observation gating, the size of RFS
reduces to

∑
`∈Tk

(1 + |Z(`)
k |) ≤ (1 +Mk)× Tk, (20)

results in a lower computational complexity.
Another parameter, to determine the possibility of survival or death of a pre-detected

target at time k, is the existence probability of target track, r(`)k|k−1, which is predicted based
on the survival probability, PS, at each timestamp. For the newborn tracks, it is initialized
with the birth probability of the related birth region, PB, as follows:

r(`)k|k−1 =

{
r(`)k−1PS, ∀` ∈ TP

k ;
PB, ∀` ∈ TB

k .
(21)

As it is already discussed, and shown in Figure 6, PB is dynamically updated for
each region in our tracking algorithm, based on the possibility that a pre-detected target is
located close to the related birth region.

Algorithms 1 and 2 depict pseudocodes of prediction and update stages. The weight
w(`)

t|zj ,k
is actually the marginal likelihood of observation z(`)j,k (given filter parameters), which

can recursively be obtained using the last normalized marginal likelihood of the same
target’s history, w(`)

t,k−1, and its marginal likelihood ratio for observation z(`)j,k , q(`)t|zj ,k|k−1, as

follows:

w(`)
t|zj ,k

= q(`)t|zj ,k|k−1w(`)
t,k−1, ∀t ∈ τ

(`)
k (22)

where

q(`)t|zj ,k|k−1 = exp
{
− 0.5 d

z(`)j,k
ln(2π)− 0.5 ln

(∣∣∣S(`)
t,k

∣∣∣)− 0.5
(

y(`)j,k

T
S(`)

t,k

−1
y(`)j,k

)}
, (23)

in which d
z(`)j,k

= 2 is the dimension of measurement z(`)j,k , and

S(`)
t,k = HP(`)

t,k|k−1HT + R; (24)

y(`)j,k = z(`)j,k −Hx(`)t,k|k−1, (25)
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are innovation covariance and residual.

Algorithm 1: Prediction of the surviving targets.
// Over all surviving targets:
foreach ` ∈ TS

k−1 do
// Over all possible association histories of track `:
for t← 1 to |τ(`)

k−1| do

1. predict state, x(`)t,k|k−1, and its covariance, P(`)
t,k|k−1, according

to (11) and (12), respectively;
end
2. predict existence probability of the target track according to (21);
3. keep the track’s label, i.e., `k = `k−1.

end

Algorithm 2: Update using gated observations.
// Over all target tracks:
foreach ` ∈ Tk do

// Over all gated measurements for target track `:
foreach z(`)j,k ∈ Z(`)

k do
// Over all possible association histories of track `:
for t← 1 to |τ(`)

k | do
1. update state, x(`)t|zj ,k

, and its covariance, P(`)
t,k , according to (13)–(15);

2. weight, w(`)
t|zj ,k

, according to (22);

end

3. predictive likelihood w(`)
zj ,k

= ∑
|τ(`)k |
t=1 w(`)

t|zj ,k
;

4. weight normalization w(`)
t|zj ,k

= w(`)
t|zj ,k

/w(`)
zj ,k

.

end
end

In the next step, by considering all possible cases for each track (i.e., being either not
survived, survived but misdetected, or survived and one of detected observations is from
that track), a cost matrix is used to draw a few random combinations (associations) of
target tracks using Gibbs sampling.

Let us define Zk = | ∪`∈Tk
Z(`)

k | as total number of measurements used in the update
stage. The cost matrix is a Tk × (2Tk + Zk) matrix consisting of three parts: The first
Tk × Tk part is related to probabilities of target tracks are not survived (either died or not
born). Its diagonal elements are obtained from the non-existence probabilities of the target
tracks, i.e., 1− r(`)k|k−1; the second Tk × Tk part reflects the probability that the target track
has been survived but it has not been detected whose diagonal elements are related to
the existence probabilities of the track, r(`)k|k−1, and the missed detection probability of the
system, 1− PD; and the last Tk × Zk part reflects the probability of being survived and
detecting whose element in `-th row and j-th column is related to the predictive likelihood
of j-th observation being from track ` (i.e., w(`)

zj ,k
in Algorithm 2) and clutter intensity as well

as existence probabilities of track ` and detection probability, PD. One of the drawn target
associations would be the case that all targets are supposed to be alive but not detected.

After drawing some combination samples, all possible survived cases (either misde-
tected or detected and updated with one of the observations) of target track ` that have
appeared in different combination samples get merged together and form a new set of
histories for target track `. Note that each merging case might be a set of histories by itself.
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States and covariances are merged directly while the weight of each history element is first
weighted by cost of its related combination sample before merging. The summation of the
weights in the newly formed history set of track ` defines its updated existence probability,
r(`)k|k . The marginal likelihoods of the target’s histories at time k, w(`)

t,k , is then obtained by
normalizing the weights of histories.

Finally, the new state of target track ` (if it is survived) is the state of t′-th his-
tory element which has the maximum marginal likelihood. i.e., x(`)k = x(`)t′ ,k where t′ =

argmax
t

(w(`)
t,k ).

5.3. Counting

In the counting part of the system, as the final stage of the algorithm, a target’s move
from one side to another side is considered complete if it begins before the middle of FoV
and ends within the region that lies after the maximum trackable height, as shown in
Figure 7. It can be more strict (to avoid false alarm) by considering that the starting point
lies in the region which is before the maximum trackable height of the other side. However,
it may increase the possibility of misdetection. The choice of starting region depends on
the size of FoV and average walking speed.

𝜃

Field-of-View

A complete
move from
left to right

A complete
move from
right to left

Figure 7. Complete target’s trajectory.

5.4. Computational Complexity

As discussed earlier, to meet the low processing capability of sensor nodes, a simple
image processing algorithm has been considered in the detection stage to avoid high
computational complexity. The most complex part of the detection algorithm is Otsu’s
thresholding method. However, since low-resolution images are used in this work and it
is not aimed to use any high-resolution images due to the privacy concerns, its effect on
the total computational complexity is not significant. In the next section, we will show its
limited range of processing time since it is not related to the number of targets.

The computational complexity of the implemented LMB-based MTT method in this
work is O(T 2M) which is quadratic in the number of target tracks and linear in the number
of measurements [23]. As it is discussed, the limited possible birth points in our case is
an important advantage that makes the use of this filter reasonable. The second pruning
stage and gated measurements are further attempts to improve the processing time. Note
that ∑`∈Tk

|Z(`)
k | ≤ MkTk and the second pruning stage minimizes the size of active target

track set Tk, Tk, by eliminating unnecessary active tracks considering our main goal which
is the people flow counting for occupancy monitoring.
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6. Experimental Results

To record the required data, Elsys ERS Eye sensors [26] are used which are equipped
with 8× 8 Panasonic Grid-EYE IR arrays. Due to the lack of required network infrastructure
and processing capability, the raw data has been recorded in a micro SD card in each sensor
at an approximate effective rate of 8 fps. They are then processed off-line.

To evaluate the performance of the proposed scheme, two trials have been conducted
with different levels of tracking complexity. Figure 8 depicts the layouts and sensor
deployments of different trials. Note that the detectable area under each sensor’s FoV is
highlighted in Figure 8. They are calculated roughly by considering the deployment height,
the 60 degree FoV of sensors, and their maximum detectable distance. The patterned zones
are those portions of FoV which are blocked by barriers (e.g., wall or column).

We further analyze the performance of our proposed framework by using an open-
source dataset provided by Nagoya University. Finally, the measured processing times will
be discussed.

Corridor

Fikarum
(coffee room)

P
an

tr
y

Coffee 
machine

Fridges
Sensor 2

Sensor 1

(a) First trial: Coffee Room

Corridor

Glass ceiling area

Stairecase

Study area

Sensor 2

Sensor 1

(b) Second trial: Study Area
Figure 8. Layout and sensor deployment in different trials.

6.1. Coffee Room

In the first trial, a sensor was deployed on the ceiling close to the entrance of the coffee
room at department of applied physics and electronics, as shown in Figure 8a. It is not
deployed exactly at the entrance (i.e., on or next to the door frame) since the ceiling height
is shorter than the minimum required height at the entrance. This trial is considered as the
less challenging case due to the following conditions:

• In general, the entry/exit rate is low with the maximum rate during the coffee breaks
and lunch time;

• The light intensity of the coffee room was almost constant during the trial since it was
lit only by lamps;

• Since the entrance door frame is narrow, users move in a row (when they are more
than one) in the majority of the FoV. In the worst case, they may walk side-by-side
after or before the entrance door.

However, it has its own challenges. As one may see in Figure 8a, the area around the
coffee machine and the fridges, in which the movement is usually high, is within the FoV.
Most of the users go directly to that area, after entering the room, to take either coffee or
their food from the fridge. They usually spend a few minutes there, either standing or
moving. Moreover, some users leave the room after taking coffee with a hot mug in their
hand, which might be detected as another user (by target detection part), resulting in more
clutters in the measured data.

To make it more challenging, another sensor was deployed at the center of coffee
room, as depicted as Sensor 2 in Figure 8a, where more users could pass through the FoV
simultaneously and towards different directions. We also recorded different infrequent
maneuvers, intentionally, for example, walking side-by-side and close to each other, with
different walking speeds, diagonal walking, turning at the middle while others are passing
FoV, and even when four users are in FoV at the same time walking towards both directions
of interest (to simulate concurrent entry and exit). Figures 9 and 10 depict some recorded
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frames and tracking results of different challenging maneuvers by using Sensor 2 in the
coffee room.

Interpolation

8x8 to 128x128

Figure 9. Some frames recorded by Sensor 2 in coffee room.

Figure 10. Some tracking results using Sensor 2 in coffee room.

For the controlled part (i.e., intentional maneuvers), there were both male and female
users with different hair volumes, and their heights were within the range of 1.6–1.85 m.

In this trial, we could count the moving users (i.e., occupancy monitoring) and track
different maneuvers (including turning) with an accuracy of 98%.

6.2. Study Area

In the second trial, two sensors were deployed on the ceiling at two entrances of a
study room at Natural Sciences Building, as shown in Figures 8b and 11. This trial is
considered as a more challenging case since

• The occupancy rate of this area is much higher than that of the coffee room;
• The entry/exit rate is also high;
• Some parts of the main corridor and area around the staircase are within the sensors’

FoV, where the movement is too high. Many people pass through those zones without
entering or leaving the study area;

• A significant part of the study area is also within the sensors’ FoV. Many students
may sit at FoV for a long time. This may increase the tracking error due to the
higher clutters;
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• Moreover, there is a glass ceiling area where the intensity of direct sun can interfere
and reduce the detection ability of Sensor 1 as shown in Figure 11.

Sensor 2
Sensor 1

Figure 11. The trial’s environmental condition (e.g., sunlight and location of entrances) and sensor
deployment in the study area.

The data was collected on different days both in the morning and in the afternoon.
The accuracy of tracking algorithm was 86%.

The results can be improved further by using a dynamically updated background data.
It can be obtained by using another sensor such as PIR to inform the system when there is
no movement in the scene for a predefined period of the time. It also helps to reduce power
consumption of the sensor node. In both trials with Grid-EYE IR sensors, a thermal range of
20–35 ◦C has been considered in the detection stage to obtain more reliable measurements,
considering the measurement error provided by the manufacturer in [27]. The chosen
range is based on the average temperature of the human skin in indoor environments
(considering hairs and cloths) [28,29] and our further investigation in the collected data to
ensure that the maximum reasonable range has been considered. In [28] (Section 8.4.1.1), it
is stated that “With normal clothing in a room at 15–20 ◦C, mean skin temperature is 32–35 ◦C”.
Moreover, from [27], the measurement accuracy of the sensor in our operating range is
±2–3 ◦C in the worst case (without calibration) which can be reduced to ±0.5–1.5 ◦C
by calibration.

6.3. Nagoya-OMRON Dataset

To evaluate the robustness of our tracking framework using different senors, we
considered a dataset provided by Nagoya University using OMRON 16 × 16 IR array
(OMRON D6T-1616L) [30]. This dataset includes low-resolution thermal images of daily
human actions such as walking, sitting down, standing up, and falling down which are
originally used by authors in [31] for a DL-based action recognition. Since the recorded
frames of walking cases are related to our occupancy monitoring framework, they are used
to evaluate the performance of our proposed method. Compared to our recorded data, the
main differences can be listed as follows:

• A sensor array from another manufacturer is used;
• The original resolution is a bit higher (16 × 16). However, it can still be categorized as

the low-resolution IR images;
• They include both dark and light situations;
• In general, the thermal contrast of recorded IR images is lower which results in

generating much higher clutters by the image processing part.
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Some recorded frames and related tracking results are shown in Figure 12. From this
figure, one can realize the challenges in target detection compared to that of our dataset as
shown in Figure 10. Using this dataset, the accuracy of the proposed occupancy tracking
method was 87%. It is worth noting that, in [31], their DL-based method has been compared
with other methods in which the accuracy of detecting walking action is reported less than
84% when only thermal images are used for classification, a case similar to our framework.
However, compared to our dataset, we experienced more false alarms, 3%, which was
expected due to the higher clutter rate, and yet, it is still in an acceptable range.

Figure 12. Some tracking results using Nagoya-OMRON Dataset.

The parameters settings and the performance of proposed people flow monitoring
framework on different scenarios are summarized in Tables 1 and 2, respectively.

Table 3 compares the accuracy of our method and that of the proposed method
in [12] (we call it Doorway method). To do so, the measurements obtained from the
controlled trail (i.e., intentional maneuvers recorded by Sensor 2 in coffee room) are
evaluated separately, and our uncontrolled measurements in coffee room are evaluated
together with the recorded data in study area. From this table, one can see that our tracking
system outperforms in the controlled environment while more challenging maneuvers are
tracked as explained in Section 6.1. Although the accuracy of Doorway method is about
3% higher than that of our method in uncontrolled situations, their trials are conducted in
a shorter duration (totally 6 hrs with many fewer events) in areas whose environmental
parameters are more stable compared to our case (e.g., high entry/exit rate and glass ceiling
of the study area). Note that the tracking part of the Doorway method is highly dependent
to the performance of its detection part in consecutive frames which limits the flexibility of
the system in different applications, especially in IoT-based WSNs.

Table 1. Parameters settings.

Scenario IR Array
Model

Resolution
(pixels)

Height
(m)

Rate
(fps)

Image
Filter

PD
(%)

Min. Targets’
Distance (m)

Max. Trackable
Height (m)

σv
(m)

σz
(m)

1st Pruning
Threshold (%)

2nd Pruning Det.
Gap (no. of Frames)

Coffee Room Panasonic
Grid-EYE 8 × 8 2.4 8 LoG 98 0.7–0.75 2 [ 1 0.15 0.01 7Study Area 2.65

Nagoya-OMRON OMRON
D6T-1616L 16 × 16 2.2 10 LoG 98 0.7–0.75 1.8 1 0.22 0.01 3 *

[ It can be set higher for development height of 2.65 m. However, it is kept 2 m for the challenging study area to be more safe against
the false alarm. * Due to the higher clutter rate in this scenario, the number of invalid tracks increases while the detection gap reduces.
Therefore, a shorter period of detection gap is considered to better release unnecessary active tracks.
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Table 2. Performance of proposed occupancy monitoring method in different scenarios.

Scenario Detection Accuracy False Alarm

Coffee Room 98% <1%

Study Area 86% <1%

Nagoya-OMRON 87% 3%

Table 3. Performance comparison of different occupancy monitoring methods.

Method Controlled Environment Uncontrolled Environment

Proposed Method 98% 87%

Doorway Method [12] 96% 90%

6.4. Processing Time

In this work, both MATLAB 2018b and 2020a are tried on two different PCs with Intel
Core i7 processors, one with clock speed of 2.4 GHz (5th Gen.) and the other one with clock
speed of 3.2 GHz (8th Gen.). The average CPU time in each frame analysis is calculated
in the range of 15–17 ms and 35–47 ms for detection and tracking steps, respectively. It
implies that an average 50–64 ms is required for off-line processing of each measured frame
by executing non-optimized codes in a normal PC, which is quite enough for an occupancy
tracking system with 8–10 fps measurement rate. The required CPU time can be further
reduced by code optimization and using lower level programming languages to be suitable
for embedded systems with lower processing capacities, in the case of complete in situ
processing. If the required processing capability is still higher than that of the sensor node,
we can only implement the detection part in the sensor node and let an FC be responsible
for the tracking step.

7. Conclusions

In this work, a multi-Bernoulli-based occupancy monitoring scheme has been pro-
posed for the smart buildings using low-resolution IR cameras. Privacy of the occupants
and implementation constraints of the IoT-based wireless sensor networks are two main
concerns which are tried to be met in the developed method. Sensor nodes with low pro-
cessing capabilities, due to the required sensor’s lifetime and implementation cost, together
with the limited transmission capacity of IoT wireless protocols, available to the reporting
sensors, are main challenges which need to be addressed in applications with integration
of IoT and wireless sensor networks. In the discussed framework, it is shown that the
proposed scheme has potential to be utilized in the applications with the mentioned con-
straints. We have also conducted two separate experimental trials to evaluate the accuracy
of the proposed algorithm in different scenarios. Although the required accuracy depends
on the application, the obtained accuracy is still within an acceptable range for many appli-
cations of smart buildings such as space utilization management and demand-controlled
HVAC systems. The robustness of the tracking framework is further evaluated by applying
it on an open-source dataset using a different sensor. As future work, the integration of
IR arrays with other sensors can be considered to enhance the performance of the system.
One may consider the usage of PIR to improve both the accuracy and the sensor’s lifetime
by doing measurement and background update in a more dynamic manner.
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Abbreviations

AoI Area of interest
AoV Angle of view
CO2 Carbon dioxide
DL Deep learning
FC Fusion center
fps Frames per second
FoV Field of view
GLMB Generalized labeled multi-Bernoulli
HVAC Heating, ventilation, and air conditioning
IoT Internet-of-things
IR Infrared
KF Kalman filter
LMB Labeled multi-Bernoulli
LoG Laplacian of Gaussian
LoRaWAN Long range wide-area network
LRIR Low-resolution infrared
MTT Multi-target tracking
NB-IoT Narrow-band IoT
PHD Probability hypothesis density
PIR Passive infrared
RFS Random finite set
RSO Resident space object
SMC Sequential Monte Carlo
WSN Wireless sensor network
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