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Abstract: Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) have
been widely used in hyperspectral image classification (HSIC) tasks. However, the generated HSI
virtual samples by VAEs are often ambiguous, and GANs are prone to the mode collapse, which
lead the poor generalization abilities ultimately. Moreover, most of these models only consider
the extraction of spectral or spatial features. They fail to combine the two branches interactively
and ignore the correlation between them. Consequently, the variational generative adversarial
network with crossed spatial and spectral interactions (CSSVGAN) was proposed in this paper,
which includes a dual-branch variational Encoder to map spectral and spatial information to different
latent spaces, a crossed interactive Generator to improve the quality of generated virtual samples,
and a Discriminator stuck with a classifier to enhance the classification performance. Combining
these three subnetworks, the proposed CSSVGAN achieves excellent classification by ensuring the
diversity and interacting spectral and spatial features in a crossed manner. The superior experimental
results on three datasets verify the effectiveness of this method.

Keywords: hyperspectral image classification; variational autoencoder; generative adversarial
network; crossed spatial and spectral interactions

1. Introduction

Hyperspectral images (HSI) contain hundreds of continuous and diverse bands rich
in spectral and spatial information, which can distinguish land-cover types more efficiently
compared with ordinary remote sensing images [1,2]. In recent years, Hyperspectral images
classification (HSIC) has become one of the most important tasks in the field of remote
sensing with wide application in scenarios such as urban planning, geological exploration,
and agricultural monitoring [3–6].

Originally, models such as support vector machines (SVM) [7], logistic regression
(LR) [8] and and k-nearest neighbors algorithm (KNN) [9], have been widely used in
HSI classification tasks for their intuitive outcomes. However, most of them only utilize
handcrafted features, which fail to embody the distribution characteristics of different ob-
jects. To solve this problem, a series of deep discriminative models, such as convolutional
neural networks (CNNs) [10–12], recurrent neural network (RNN) [13] and Deep Neural
Networks (DNN) [14] have been proposed to optimize the classification results by fully
utilizing and abstracting the limited data. Though having gained great progress, these
methods only analyze the spectral characteristics through an end-to-end neural network
without full consideration of special properties contained in HSI. Therefore, the extraction
of high-level and abstract features in HSIC remains a challenging task. Meanwhile, the
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jointed spectral-spatial features extraction methods [15,16] have aroused wide interest in
Geosciences and Remote Sensing community [17]. Du proposed a jointed network to extract
spectral and spatial features with dimensionality reduction [18]. Zhao et al. proposed a hy-
brid spectral CNN (HybridSN) to better extract double-way features [19], which combined
spectral-spatial 3D-CNN with spatial 2D-CNN to improve the classification accuracy.

Although the methods above enhance the abilities of spectral and spatial features
extraction, they are still based on the discriminative model in essence, which can neither
calculate prior probability nor describe the unique features of HSI data. In addition, the
access to acquire HSI data is very expensive and scarce, requiring huge human resources
to label the samples by field investigation. These characteristics make it impractical to
obtain enough markable samples for training. Therefore, the deep generative models
have emerged at the call of the time. Variational auto encoder (VAE) [20] and generative
adversarial network (GAN) [21] are the representative methods of generative models.

Liu [22] and Su [23] used VAEs to ensure the diversity of the generated data that
were sampled from the latent space. However, the generated HSI virtual samples are
often ambiguous, which cannot guarantee similarities with the real HSI data. Therefore,
GANs have also been applied for HSI generation to improve the quality of generated
virtual data. GANs strengthen the ability of discriminators to distinguish the true data
sources from the false by introducing “Nash equilibrium” [24–29]. For example, Zhan [30]
designed a 1-D GAN (HSGAN) to generate the virtual HSI pixels similar to the real ones,
thus improving the performance of the classifier. Feng [31] devised two generators to
generate 2D-spatial and 1D-spectral information respectively. Zhu [32] exploited 1D-GAN
and 3D-GAN architectures to enhance the classification performance. However, GANs are
prone to mode collapse, resulting in poor generalization ability of HSI classification.

To overcome the limitations of VAEs and GANs, VAE-GAN jointed framework has
been proposed for HSIC. Wang proposed a conditional variational autoencoder with an
adversarial training process for HSIC (CVA2E) [33]. In this work, GAN was spliced with
VAE to realize high-quality restoration of the samples and achieve diversity. Tao et al. [34]
proposed the semi-supervised variational generative adversarial networks with a collabora-
tive relationship between the generation network and the classification network to produce
meaningful samples that contribute to the final classification. To sum up, in VAE-GAN
frameworks, VAE focuses on encoding the latent space, providing creativity of generated
samples, while GAN concentrates on replicating the data, contributing to the high quality
of virtual samples.

Spectral and spatial are two typical characteristics of HSI, both of which must be taken
into account for HSIC. Nevertheless, the distributions of spectral and spatial features are not
identical. Therefore, it is difficult to cope with such a complex situation for a single encoder
in VAEs. Meanwhile, most of the existing generative methods use spectral and spatial
features respectively for HSIC, which affects the generative model to generate realistic
virtual samples. In fact, the spectral and spatial features are closely correlated, which
cannot be treated separately. Interaction between spectral and spatial information should
be established to refine the generated virtual samples for better classification performance.

In this paper, a variational generative adversarial network with crossed spatial and
spectral interactions (CSSVGAN) was proposed for HSIC, which consists of a dual-branch
variational Encoder, a crossed interactive Generator, and a Discriminator stuck together
with a classifier. The dual-branch variational Encoder maps spectral and spatial information
to different latent spaces. The crossed interactive Generator reconstructs the spatial and
spectral samples from the latent spectral and spatial distribution in a crossed manner.
Notably, the intersectional generation process promotes the consistency of learned spatial
and spectral features and simulates the highly correlated spatial and spectral characteristics
of true HSI. The Discriminator receives the samples from both generator and original
training data to distinguish the authenticity of the data. To sum up, the variational Encoder
ensures diversity, and the Generator guarantees authenticity. The two components place
higher demands on the Discriminator to achieve better classification performance.
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Compared with the existing literature, this paper is expected to make the follow-
ing contributions:

• The dual-branch variational Encoder in the jointed VAE-GAN framework is devel-
oped to map spectral and spatial information into different latent spaces, provides
discriminative spectral and spatial features, and ensures the diversity of generated
virtual samples.

• The crossed interactive Generator is proposed to improve the quality of generated
virtual samples, which exploits the consistency of learned spatial and spectral features
to imitate the highly correlated spatial and spectral characteristics of HSI.

• The variational generative adversarial network with crossed spatial and spectral
interactions is proposed for HSIC, where the diversity and authenticity of generated
samples are enhanced simultaneously.

• Experimental results on the three public datasets demonstrate that the proposed
CSSVGAN achieves better performance compared with other well-known models.

The remainder of this paper is arranged as follows. Section 2 introduces VAEs and
GANs. Section 3 provides the details of the CSSVGAN framework and the crossed inter-
active module. Section 4 evaluates the performance of the proposed CSSVGAN through
comparison with other methods. The results of the experiment are discussed in Section 5
and the conclusion is given in Section 6.

2. Related Work
2.1. Variational Autoencoder

Variational autoencoder is one variant of the standard AE, proposed by Kingma et al.
for the first time [35]. The essence of VAE is to construct an exclusive distribution for each
sample X and then sample it represented by Z. It brings Kullback–Leibler [36] divergence
penalty method into the process of sampling and constrains it. Then the reconstructed data
can be translated to generated simulation data through deep training. The above principle
gives VAE a significant advantage in processing hyperspectral images with expensive
and rare samples. VAE model adopts the posterior distribution method to verify that
ρ(Z|X) rather than ρ(Z) obeys the normal distribution. Then it manages to find the mean
µ and variance σ of ρ(Z|Xk)) corresponding to each Xk through the training of neural
networks (where Xk represents the sample of the original data and ρ(Z|Xk) represents
the posterior distribution). Another particularity of VAE is that it makes all ρ(Z|X) align
with the standard normal distribution N ∼ (0, 1). Taking account of the complexity of
HSI data, VAE has superiority over AE in terms of noise interference [37]. It can prevent
the occurrence of zero noise, increase the diversity of samples, and further ensure the
generation ability of the model.

A VAE model is consists of two parts: Encoder M and Decoder N. M is an approxima-
tor for the probability function mτ(z|x), and N is to generate the posterior’s approximate
value nθ(x, z). τ and θ are the parameters of the deep neural network, aiming to optimize
the following objective functions jointly.

V(P, Q) = −KL(mτ(z|x)‖pθ(z|x)) + R(x), (1)

Among them, R is to calculate the reconstruction loss of a given sample x in the VAE
model. The framework of VAE is described in Figure 1, where ei represents the sample of
standard normal distribution, corresponding with Xk one to one.
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Figure 1. The framework of VAE.

2.2. Generative Adversarial Network

Generative adversarial network is put forward by Goodfellow et al. [24], which trains
the generation model with a minimax game based on the game theory. The GAN has gained
remarkable results in representing the distribution of latent variables for its special structure,
which has attracted more attention from the field of visual image processing. A GAN
model includes two subnets: the generator G, denoted as G(z; θg) and the discriminator D,
denoted as G(x; θd), and θg and θd are defined as parameters of the deep neural networks.
G shows a prominent capacity in learning the mapping of latent variables and synthesizing
new similar data from mapping represented by G(z). The function of D is to take the
original HSI or the fake image generated by G as input and then distinguish its authenticity.
The architecture of GAN is shown in Figure 2.
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Figure 2. The architecture of GAN.

After the game training, G and D would maximize log-likelihood respectively and
achieve the best generation effect by competing with each other. The expression of the
above process is as follows:

minGmaxGV(G, D) = Ex∼P(x)[logD(x)] + Ex∼Pg(z)
[log(1− D(G(z)))], (2)

where P(x) represents the real data distribution and Pg(z) means the samples’ distribution
generated by G. The game would reach a global equilibrium situation between the two
players when P(x) equaling to Pg(z) happened. In this case, the best performance of D(x)
can be expressed as:

D(x)max = P(x)+Pg(x)
, (3)



Remote Sens. 2021, 13, 3131 5 of 23

However, the over-confidence of D would cause inaccurate results of GAN’s identifi-
cation and make the generated data far away from the original HSI. To tackle the problem,
endeavors have been made to improve the accuracy of HSIC by modifying the loss, such
as WGAN [38], LSGAN [39], CycleGAN [40] and so on. Salimans [41] raised a deep convo-
lutional generative adversarial network (DCGAN) to enhance the stability of the training
and improve the quality of the results. Subsequently, Alec et al. [42] proposed a one-side
label smoothing idea named improved DCGAN, which multiplied the positive sample
label by alpha and the negative sample label by beta, that is, the coefficients of positive and
negative samples in the objective function of D were no longer from 0 to 1, but from α to
β. (β in the real application could be set to 0.9). It aimed to solve the problems described
as follows:

D(x) =
αP(x) + βPg(x)

P(x) + Pg(x)
, (4)

In this instance, GAN can reduce the disadvantage of overconfidence and make the
generated samples more authentic.

3. Methodology
3.1. The Overall Framework of CSSVGAN

The overall framework of CSSVGAN is shown in Figure 3. In the process of data
preprocessing, assuming that HSI cuboid X contains n pixels; the spectral band of each
pixel is defined as px; and X can be expressed as XεRn∗px . Then HSI is divided into several
patch cubes of the same size. The labeled pixels are marked as X1 = x1

i εR(s∗s∗px∗n1), and
the unlabeled pixels are marked as X2 = x2

i εR(s∗s∗px∗n2). Among them, s, n1 and n2 stand
for the adjacent spatial sizes of HSI cuboids, the number of labeled samples and the number
of unlabeled samples respectively, and n equals to n1 plus n2.
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Figure 3. The overall framework of the variational generative adversarial network with crossed spatial and spectral
interactions (CSSVGAN) for HSIC.

It is noteworthy that HSI classification is developed at the pixel level. Therefore, in
this paper, the CSSVGAN framework uses a cube composed of patches of size 9× 9× px as
the inputs of the Encoder, where p denotes the spectral bands of each pixel. Then a tensor
represents the variables and outputs of each layer. Firstly, the spectral latent variable Z1
and the spatial latent variable Z2 are obtained by taking the above X1 as input into the dual-
branch variational Encoder. Secondly, these two inputs are taken to the crossed interactive
Generator module to obtain the virtual data F1 and F2. Finally, the data are mixed with
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X1 into the Discriminator for adversarial training to get the predicted classification results
Ŷ = ŷi by the classifier.

3.2. The Dual-Branch Variational Encoder in CSSVGAN

In the CSSVGAN model mentioned above, the Encoder (Figure 4) is composed of a
dual-branch spatial feature extraction E1 and a spectral feature extraction E1 to generate
more diverse samples. In the E1 module, the size of the 3D convolution kernel is (1× 1× 2),
the stride is (2, 2, 2) and the spectral features are marked as Z1. The implementation details
are described in Table 1. Identically, in the E2 module, the 3D convolution kernels, the
strides and the spatial features are presented by (5× 5× 1), (2, 2, 2) and Z2 respectively, as
described in Table 2.

（5540,64） （3320,128） （2210,256） （2210,512） （1,2*2*10*512）

Dense_1024FlattenDense_512

112,64

…

BN +

（5540,64） （3320,128） （2210,256） （2210,512）

112,128

…

BN +

112,256

…

BN + Dense_512 Flatten Dense_1024

（1,1024）

（1,1024）

Tanh
（1,1024）

551,64

…

BN +

551,128

…

BN +

551,256

…

BN +

（1,1024）

（1,1024）

Tanh

Z_mean1

Z_var1

Z_mean2

Z_var2

Z1

（1,1024）

Z2

（1,2*2*10*512）

E1-Spectral

E2-Spatial

… 3D Conv LeakyReLU Spectral Vector Spatial Vector 

Figure 4. The dual-branch Encoder in CSSVGAN.

Table 1. The implementation details of the Spectral feature extraction E1.

Input Size Layer Operations Output Size

(9× 9× 80, 1) Conv3D (1× 1× 2, 64)− BN − LeakyReLU (5× 5× 40, 64)
(5× 5× 40, 64) Conv3D (1× 1× 2, 128)− BN − LeakyReLU (3× 3× 20, 128)
(3× 3× 20, 128) Conv3D (1× 1× 2, 256)− BN − LeakyReLU (2× 2× 10, 256)
(2× 2× 10, 256) Dense (512)− BN − LeakyReLU (2× 2× 10, 512)
(2× 2× 10, 512) Flatten (, 20, 480)

(, 20, 480) Dense (1024) (, 1024)
(, 1024) Dense (1024)− Tanh (, 1024)
(, 1024) Lambda (Sampling) (, 1024)

Table 2. The implementation details of the Spatial feature extraction E2.

Input Size Layer Operations Output Size

(9× 9× 80, 1) Conv3D (5× 5× 1, 64)− BN − LeakyReLU (5× 5× 40, 64)
(5× 5× 40, 64) Conv3D (5× 5× 1, 128)− BN − LeakyReLU (3× 3× 20, 128)
(3× 3× 20, 128) Conv3D (5× 5× 1, 256)− BN − LeakyReLU (2× 2× 10, 256)
(2× 2× 10, 256) Dense (512)− BN − LeakyReLU (2× 2× 10, 512)
(2× 2× 10, 512) Flatten (, 20, 480)

(, 20, 480) Dense (1024) (, 1024)
(, 1024) Dense (1024)− Tanh (, 1024)
(, 1024) Lambda (Sampling) (, 1024)
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Meanwhile, to ensure the consistent distribution of samples and original data, KL
divergence principle is utilized to constrain Z1 and Z2 separately. Assuming that the mean
and variance of Zi are expressed as Zmeani and Zvari(i = 1, 2), the loss function in the
training process is as follows:

Li(θ, ϕ) = −KL(qϕ(zi|x)‖pθ(zi|x)), (5)

where p(zi|x) is the posterior distribution of potential eigenvectors in the Encoder module,
and its calculation is based on the Bayesian formula as shown below. But when the
dimension of Z is too high, the calculation of P(x) is not feasible. At this time, a known
distribution q(zi|x) is required to approximate p(zi|x), which is given by KL divergence.
By minimizing KL divergence, the approximate p(zi|x) can be obtained. θ and ϕ represent
the parameters of distribution function p and q separately.

Li(θ, ϕ) = Eqϕ(zi ,x)[log pθ (x,zi)
qϕ(zi ,x)

]− Eq(x)[logq(x)], (6)

Formula (6) in the back is provided with a constant term logN, the entropy of empirical
distribution q(x). The advantage of it is that the optimization objective function is more
explicit, that is, when pθ(zi, x) is equal to qϕ(zi, x), KL dispersion can be minimized.

3.3. The Crossed Interactive Generator in CSSVGAN

In CSSVGAN, the crossed interactive Generator module plays a role in data restoration
of VAE and data expansion of GAN, which includes the spectral Generator G1 and the
spatial Generator G2 in the crossed manner. G1 accepts the spatial latent variables Z2 to
generate spectral virtual data F1, and G2 accepts the spectral latent variables Z1 to generate
spatial virtual data F2.

As shown in Figure 5, the 3D convolution of spectral Generator G1 is (1× 1× 2) that
uses (2, 2, 2) strides to convert the spatial latent variables Z2 to the generated samples.
Similarly, the spatial Generator G2 with (5× 5× 1) convolution uses (2, 2, 2) strides to
transform the spectral latent variables Z1 into generated samples. Therefore, the correlation
between spectral and spatial features in HSI can be fully considered to further improve the
quality and authenticity of the generated samples. The implementation details of G1 and
G2 are described in Tables 3 and 4.

Table 3. The implementation details of spectral Generator G1.

Input Size Layer Operations Output Size

(, 1024) Dense (2 ∗ 2 ∗ 10 ∗ 256) (10, 240)
(, 10, 240) Reshape (2× 2× 10× 256)BN − LeakyReLU (2, 2, 10, 256)

(2, 2, 10, 256) Conv3DTranspose (1× 1× 2, 128)BN − LeakyReLU (4, 4, 20, 128)
(4, 4, 20, 128) Conv3DTranspose (1× 1× 2, 64)BN − LeakyReLU (8, 8, 40, 64)
(8, 8, 40, 64) Conv3DTranspose (1× 1× 2, 1)LeakyReLU − Tanh (9, 9, 80, 1)

Table 4. The implementation details of spatial Generator G2.

Input Size Layer Operations Output Size

(, 1024) Dense (2 ∗ 2 ∗ 10 ∗ 256) (, 10, 240)
(, 10, 240) Reshape (2× 2× 10× 256)BN − LeakyReLU (2, 2, 10, 256)

(2, 2, 10, 256) Conv3DTranspose (5× 5× 1, 128)BN − LeakyReLU (4, 4, 20, 128)
(4, 4, 20, 128) Conv3DTranspose (5× 5× 1, 64)BN − LeakyReLU (8, 8, 40, 64)
(8, 8, 40, 64) Conv3DTranspose (5× 5× 1, 1)LeakyReLU − Tanh (9, 9, 80, 1)
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…
3D ConvTranspose LeakyReLU Spectral Vector Spatial Vector 

Figure 5. The Crossed Interactive Generator in CSSVGAN.

Because the mechanism of GAN is that the Generator and Discriminator are against
each other before reaching the Nash equilibrium, the Generator has two target functions,
as shown below.

MSELoss_i =
1
n ∑(yij − ȳij)2, (7)

where n is the number of samples, i = 1, 2, yj means the label of virtual samples, and ȳj
represents the label of the original data corresponding to yj. The above formula makes the
virtual samples generated by crossed interactive Generator as similar as possible to the
original data.

BinaryLoss_i = −
1
N

N

∑
j=1

yij · log(p(yij)) + (1− yij · (1− p(yij))), (8)

BinaryLoss is a logarithmic loss function and can be applied to the binary classification
task. Where y is the label (either true or false), and p(y) is the probability that N sample
points belonging to the real label. Only if yj equals to p(yi), the total loss would be zero.

3.4. The Discriminator Stuck with a Classifier in CSSVGAN

As shown in Figure 6, the Discriminator needs to specifically identify the generated
data as false and the real HSI data as true. This process can be regarded as a two-category
task using one-sided label smoothing: defining the real HSI data as 0.9 and the false
as zero. The loss function of it marked with Binary(LossD) is the same as the Formula
(10) enumerated above. Moreover, the classifier is stuck as an interface to the output of
Discriminator and the classification results are calculated directly through the SoftMax
layer, where C represents the total number of labels in training data. As mentioned
above, the Encoder ensures diversity and the Generator guarantees authenticity. All
these contributions place higher demands on Discriminator to achieve better classification
performance. Thus, the CSSVGAN framework yields a better classification result.
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Flatten …
..

（9980,1）
552,64

…

BN +

（9980,1） （5540,64） （3320,128）

552,128

…

BN +

（2210,256）

552,256

…

BN +

（1,2*2*10*256）

Dense_1024

（1,1024）

Dense_C

+ SoftMax

3D Conv LeakyReLU…

Figure 6. The Discriminator stuck with a classifier in CSSVGAN.

The implementation details of the Discriminator in CSSVGAN are described in Table 5
with the 3D convolution of (5× 5× 2) and strides of (2, 2, 2). Identifying C categories
belongs to a multi-classification assignment. The SoftMax method is taken as the standard
for HSIC. As shown below, the CSSVGAN method should allocate the sample x of each
class c to the most likely one of the C classes to get the predicted classification results. The
specific formula is as follows:

yi = S(xi) =
exi

∑C
j=1 exj

, (9)

Then the category of X can be expressed as the formula below:

class(c) = arg max
i

(yi = S(xi)), (10)

where S, C, X, Yi signify the SoftMax function, the total number of categories, the input of
SoftMax, and the probability that the prediction object belongs to class C, respectively. Xi
similar with Xj is a sample of one certain category. Therefore, the following formula can be
used for the loss function of objective constraint.

CLoss = −
n

∑
i=1

p(yi1) · log yi1 + p(yi2) · log(yi2) + · · ·+ p(yic) · log(yic), (11)

where n means the total number of samples, C represents the total number of categories,
and y denotes the single label (either true or false) with the same description as above.

Table 5. The implementation details in Discriminator.

Input Size Layer Operations Output Size

(9× 9× 80, 1) BN − LeakyReLU (9× 9× 80, 1)
(9× 9× 80, 1) Conv3D (5× 5× 2, 64)− BN − LeakyReLU (5× 5× 40, 64)
(5× 5× 40, 64) Conv3D (5× 5× 2, 128)− BN − LeakyReLU (3× 3× 20, 128)
(3× 3× 20, 128) Conv3D (5× 5× 2, 256)− BN − LeakyReLU (2× 2× 10, 256)
(2× 2× 10, 256) Flatten (, 10, 240)

(, 10, 240) Dense (16) (, 16)

3.5. The Total Loss of CSSVGAN

As illustrated in Figure 3, up till now, the final goal of the total loss of the CSSVGAN
model can be divided into four parts: two KL divergence constraint losses and a mean-
square error loss from the Encoder, two binary losses from the Generator, one binary loss
from the Discriminator and one multi-classification loss from the multi classifier. The
ensemble formula can be expressed as:
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LTotal = σ1L1(θ, ϕ) + σ2L2(θ, ϕ) + σ3MSELoss1_2︸ ︷︷ ︸
Encoder_Loss

+ σ4BinaryLoss1 + σ5BinaryLoss2︸ ︷︷ ︸
Generator_Loss

+ Binary_LossD︸ ︷︷ ︸
Discrminator_Loss

+ CLoss︸ ︷︷ ︸
Classi f ier_Loss

,
(12)

where L1 and L2 represent the loss between Z1 or Z2 and the standard normal distribution
respectively in Section 3.2. MSELoss1 and MSELoss2 signify the mean square error of y1 and
y2 in Section 3.3 separately. MSELoss1_2 calculates the mean square error between y1 and
y2. The purpose of BinaryLoss1 and BinaryLoss2 is to assume that the virtual data F1 and F2
(in Section 3.3) are true with a value of one. BinaryLossD denotes that the Discriminator
identifies F1 and F2 as false data with a value of zero. Finally, the CLoss is the loss of multi
classes of the classifier.

4. Experiments
4.1. Dataset Description

In this paper, three representative hyperspectral datasets recognized by the remote
sensing community (i.e., Indian Pines, Pavia University and Salinas) are accepted as
benchmark datasets. The details of them are as follows:

(1) Indian pines (IP): The first dataset was accepted for HSI classification imaged by
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) in Northwestern Indiana in the
USA. It includes 16 categories with a spatial resolution of approximately 20 m per pixel.
Samples are shown in Figure 7. The spectral of AVIRIS coverage ranges from 0.4 to 2.5 µm
and includes 200 bands for continuous imaging of ground objects (20 bands are influenced
by noise or steam, so only 200 bands are left for research), bring about the total image
size of 145× 145× 200. However, since it contains a complex sample distribution, the
category samples of training labels were very imbalanced. As some classes have more
than 2000 samples while some have less than 30 merely, it is relatively difficult to achieve a
high-precision classification of IP HSI.

(2) Pavia University (PU): The second dataset was a part of the hyperspectral image
data of the Pavia city in Italy, photographed by the German airborne reflective optics
spectral imaging system (Rosis-03) in 2003, containing 9 categories (see Figure 8). The
resolution of this spectral imager is 1.3 m, including continuously 115 wavebands in the
range of 0.43–0.86 µm. Among these bands, 12 bands were eliminated due to the influence
of noise. Therefore, the images with the remaining 103 spectral bands in size 610× 340 are
normally used.

(3) Salinas (SA): The third dataset recorded the image of Salinas Valley in California,
USA, which was also captured by AVIRIS. Unlike the IP dataset, it has a spatial resolution
of 3.7 m and consists of 224 bands. However, researchers generally utilize the image of
204 bands after excluding 20 bands affected by water reflection. Thus, the size of the Salinas
is 512× 217, and Figure 9 depicts the color composite of the image as well as the ground
truth map.
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1 alfalfa 46

2 corn-no till 1428

3 corn-min till 830

4 corn 237

5 grass/pasture 483

6 Grass-trees 730

7 grass/pasture-mowed 28

8 hay-windrowed 478

9 oats 20

10 soybean-no till 972

11 soybean-min till 2455

12 soybean-clean till 593

13 wheat 205

14 woods 1265

15 bldg-grass-tree-drives 386

16 stone-steel towers 93

17 Background 10,776

Total 21,025

(a) (b) (c)

Figure 7. Indian Pines imagery: (a) color composite with RGB, (b) ground truth, and (c) category
names with labeled samples.

1 Asphalt 6631

2 Meadows 18,649

3 Gravel 2099

4 Trees 3064

5 Painted metal sheets 1345

6 Bare Soil 5029

7 Bitumen 1330

8 Self-blocking bricks 3682

9 Shadows 947

Background 164,624

Total 207,400

(a) (b) (c)

Figure 8. Pavia University imagery: (a) color composite with RGB, (b) ground truth, and (c) class
names with available samples.

1 brocoli-green-weeds-1 2009

2 brocoli-green-weeds-2 3726

3 fallow 1976

4 fallow-rough-plow 1394

5 fallow-smooth 2678

6 stubble 3959

7 celery 3579

8 grapes-untrained 11,271

9 soil-vineyard-develop 6203

10 corn-senesced-green-weeds 3278

11 lettuce-romaine-4wk 1068

12 lettuce-romaine-5wk 1927

13 lettuce-romaine-6wk 916

14 lettuce-romaine-7wk 1070

15 vinyard-untrained 7268

16 vinyard-vertical-trellis 1807

Background 56,975

Total 111,104

(a) (c)(b)

Figure 9. Salinas imagery: (a) color composite with RGB, (b) ground truth, and (c) class names with
available samples.
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4.2. Evaluation Measures

In the experiments, the available data of these datasets were randomly divided into
two parts, a small part for training and the rest for testing. Whether the training samples
or the testing samples were arranged according to the pixels, whose size was in 1× px
(px is selected as 80 in this paper). Each pixel can be treated as a feature of a certain class,
corresponding to a unique label and classified by the classifier stuck to the Discriminator.
Tables 6–8 list the sample numbers for the training and testing of three datasets.

Table 6. The samples for each category of training and testing for the Indian Pines dataset.

Number Class Train Test Total

1 Alfalfa 3 43 46
2 Corn-notill 71 1357 1428
3 Corn-mintill 41 789 830
4 Corn 11 226 237
5 Grass-pasture 24 459 483
6 Grass-trees 36 694 730
7 Grass-pasture-mowed 3 25 28
8 Hay-windrowed 23 455 478
9 Oats 3 17 20

10 Soybean-notill 48 924 972
11 Soybean-mintill 122 2333 2455
12 Soybean-clean 29 564 593
13 Wheat 10 195 205
14 Woods 63 1202 1265
15 Buildings-Grass-Trees-Drives 19 367 386
16 Stone-Steel-Towers 4 89 93

Total 510 9739 10,249

Table 7. The samples for each category of training and testing for the Pavia University dataset.

Number Class Train Test Total

1 Asphalt 66 6565 6631
2 Meadows 186 18,463 18,649
3 Gravel 20 2079 2099
4 Trees 30 3034 3064
5 Painted metal sheets 13 1333 1345
6 Bare Soil 50 4979 5029
7 Bitumen 13 1317 1330
8 Self-Blocking Bricks 36 3646 3682
9 Shadows 9 938 947

Total 423 42,353 42,776
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Table 8. The samples for each category of training and testing for the Salinas dataset.

Number Class Train Test Total

1 Broccoli_green_weeds_1 20 1989 2009
2 Broccoli_green_weeds_2 37 3689 3726
3 Fallow 19 1960 1976
4 Fallow_rough_plow 13 1381 1394
5 Fallow_smooth 26 2652 2678
6 Stubble 39 3920 3959
7 Celery 35 3544 3579
8 Grapes_untrained 112 11,159 11,271
9 Soil_vineyard_develop 62 6141 6203

10 Corn_senesced_green_weeds 32 3236 3278
11 Lettuce_romaine_4wk 10 1058 1068
12 Lettuce_romaine_5wk 19 1908 1927
13 Lettuce_romaine_6wk 9 909 916
14 Lettuce_romaine_7wk 10 1060 1070
15 Vineyard_untrained 72 7196 7268
16 Vineyard_vertical_trellis 18 1789 1807

Total 533 53,596 54,129

Taking the phenomenon of “foreign matter of the same spectrum in surface cover” [15,43]
into consideration, the average accuracy was reported to evaluate the experiment results
quantitatively. Meanwhile, the proposed method was contrasted with the comparative
method by three famous indexes, i.e., overall accuracy (OA), average accuracy (AA) and
kappa coefficient (KA) [44], which can be denoted as below:

OA = sum(diag(M))/sum(M), (13)

AA = mean((diag(M)./(sum(M, 2)), (14)

Kappa =
OA− sum(M, 1)× sum(M, 2)/(sum(M))2

1− sum(M, 2)/(sum(M))2 , (15)

where m represents the number of land cover categories and MεR(m×n) symbolizes the
confusion matrix of the classification results. Then, diag(M)εRm×1 comes to be a vector of
diagonal elements in M, sum()εR1 proves to be the sum of all elements of matrices, where
(, 1) means each column and (, 2) means each row. Finally, the mean()εR1 describes the
mean value of all elements along with the ./, which implies the element-wise division.

4.3. Experimental Setting

In this section, for the sake of verifying the effectiveness of CSSVGAN, several classical
hyperspectral classification methods such as SVM [45], Mulit-3DCNN [46], SS3DCNN [47],
SSRN [15] and certain deep generative algorithms like VAE, GAN and some jointed VAE-
GAN models like the CVA2E [33] and the semisupervised variational generative adversarial
networks (SSVGAN) [34] were used for comparison.

To ensure the fairness of the comparative experiments, the best hyperparameter set-
tings were adopted for each method based on their papers. All experiments were executed
on the NVIDIA GeForce GTX 2070 SUPER GPU with a memory of 32 GB. Moreover,
Adam [48] was used as the optimizer with an initial learning rate of 1× 10−3 for Generator
and 1× 10−4 for Discriminator, and the training epoch was set to 200.
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4.4. Experiments Results

All experiments in this paper were randomly selected train samples from the la-
beled pixels, and the accuracies of three datasets were reported to two decimal places in
this chapter.

4.4.1. Experiments on the IP Dataset

The experimental test on IP Dataset was performed to evaluate the proposed CSSV-
GAN model quantitatively with other methods for HSIC. For the labeled samples, 5% of
each class was randomly selected for training. The quantitative evaluation of various meth-
ods is shown in Table 9, which describes the classification accuracy of different categories
in detail, as well as the indicators including OA, AA and kappa for different methods. The
best value is marked in dark gray.

Table 9. The classification results for the IP dataset with 5% training samples.

Num/IP ClassName SVM M3DCNN SS3DCNN SSRN VAE GAN CVA2E SSVGAN CSSVGAN

1 Alfalfa 58.33 0.00 0.00 100.00 100.00 60.29 67.35 90.00 50.00
2 Corn-notill 65.52 34.35 39.61 89.94 73.86 90.61 90.61 90.81 90.61
3 Corn-mintill 73.85 17.83 33.75 93.36 97.66 92.97 93.56 94.77 92.30
4 Corn 58.72 9.40 10.41 82.56 100.00 93.48 98.91 98.47 95.29
5 Grass-pasture 85.75 33.46 32.33 100.00 82.00 98.03 96.48 97.72 87.27
6 Grass-trees 83.04 90.68 82.10 95.93 91.98 93.69 95.69 90.49 97.60
7 Grass-pasture-mowed 88.00 0.00 0.00 94.73 0.00 0.00 100.00 82.76 93.33
8 Hay-windrowed 90.51 87.70 85.29 95.68 100.00 97.22 98.70 99.34 91.71
9 Oats 66.67 0.00 0.00 39.29 100.00 50.00 100.00 100.00 100.00

10 Soybean-notill 69.84 37.46 51.53 79.08 92.88 80.04 94.77 86.52 94.74
11 Soybean-mintill 67.23 57.98 64.71 88.80 92.42 94.40 88.56 98.51 95.75
12 Soybean-clean 46.11 21.08 21.26 94.43 84.48 80.84 81.30 84.03 84.48
13 Wheat 87.56 83.33 41.18 99.45 100.00 77.63 98.99 94.20 100.00
14 Woods 85.95 83.00 85.04 95.26 98.38 97.62 98.19 87.67 98.04
15 Buildings-GT-Drives 73.56 34.16 31.43 97.18 100.00 91.35 95.63 83.49 97.08
16 Stone-Steel-Towers 100.00 0.00 0.00 93.10 98.21 96.55 98.72 90.14 91.30

OA(%) 72.82 53.54 56.23 91.04 90.07 91.01 92.48 91.99 93.61
AA(%) 75.02 34.48 33.57 89.92 73.82 82.47 85.69 89.49 91.16

Kappa(%) 68.57 45.73 49.46 89.75 88.61 89.77 91.40 90.91 93.58

First of all, although SVM achieves good exactitude, there is still a certain gap from
the exact classification because of the IP dataset containing high texture spatial information,
which leads to bad performance. Secondly, some conventional deep learning methods (such
as M3DCNN, SS3DCNN) does not perform well in some categories due to the limitation
of the number of training samples. Thirdly, the algorithms with jointed spectral-spatial
feature extraction (like SSRN, etc.) show a better performance, which indicate a necessity to
combine spectral information and spatial information for HSIC. Moreover, it is obvious that
the generated virtual samples by VAE tend to be fuzzy and cannot guarantee similarities
with the real data. While GAN lacks sampling constraints, leading to the low quality of
the generated samples. Contrasted with these two deep generative models, CSSVGAN
overcomes their shortcomings. Finally, compared with CVA2E and SSVGAN, the two
latest jointed models published in IEEE, CSSVGAN uses dual-branch feature extractions
and crossed interactive method, which proves that these manners are more suitable for
HSIC works. It can increase the diversity of samples and promote the generated data more
similar to the original.
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Among these comparative methods, CSSVGAN acquires the best accuracy in OA, AA
and kappa, which improves by 2.57%, 1.24% and 3.81% respectively, at least. In addition,
although all the methods have different degrees of misclassification, CSSVGAN achieves
perfect accuracy in “Oats” “Wheat” and so on. The classification visualizations on the
Indian Pines of comparative experiments are shown in Figure 10.

(b)SVM

(g)GAN

(e)SSRN

(j)CSSVGAN

(d)SS3DCNN

(i) SSVGAN(f)VAE

(a)GroundTruth (c)M3DCNN

(h) CVA2E

Figure 10. Classification maps for the IP dataset with 5% labeled training samples: (a) GroungTruth
(b) SVM (c) M3DCNN (d) SS3DCNN (e) SSRN (f) VAE (g) GAN (h) CVA2E (i) SSVGAN (j) CSSVGAN.

From Figure 10, it can be seen that CSSVGAN reduces the noisy scattering points and
effectively improves the regional uniformity. That is because CSSVGAN can generate more
realistic images from diverse samples.

4.4.2. Experiments on the PU Dataset

Differ from the IP dataset experiments, 1% labeled samples were selected for training
and the rest for testing. Table 10 shows the quantitative evaluation of each class in compar-
ative experiments. The best accurate value is marked in dark gray to emphasize, and the
classification visualizations on the Pavia university are shown in Figure 11.

Table 10. The classification results for the PU dataset with 1% training samples.

Num/PU ClassName SVM M3DCNN SS3DCNN SSRN VAE GAN CVA2E SSVGAN CSSVGAN

1 Asphalt 86.21 71.39 80.28 97.24 87.96 97.13 86.99 90.18 98.78
2 Meadows 90.79 82.38 86.38 83.38 86.39 96.32 96.91 94.90 99.89
3 Gravel 67.56 17.85 33.76 93.70 93.46 58.95 87.91 78.30 97.70
4 Trees 92.41 80.24 87.04 99.51 93.04 78.38 97.86 95.11 98.91
5 Painted metal sheets 95.34 99.09 99.67 99.55 99.92 93.50 96.86 96.70 99.70
6 Bare Soil 84.57 25.37 51.71 96.70 98.15 99.64 98.48 98.00 99.42
7 Bitumen 60.87 47.14 49.60 98.72 75.06 52.11 75.25 86.92 99.47
8 Self-Blocking Bricks 75.36 44.69 68.81 86.33 62.53 84.06 72.50 91.17 96.03
9 Shadows 100.00 88.35 97.80 100.00 82.86 42.57 97.13 82.53 99.14

OA(%) 86.36 68.43 76.59 89.27 85.08 87.58 91.97 92.93 99.11
AA(%) 83.68 53.00 64.14 95.01 73.45 83.58 89.32 87.83 98.47

Kappa(%) 81.76 56.60 68.80 85.21 79.58 83.67 85.64 90.53 98.83

Table 10 shows that, as a non-deep learning algorithm, SVM has been able to improve
the classification result to 86.36%, which is wonderful to some extent. VAE shows good
performance in the training of the “Painted metal sheets” class but low accuracy in the “Self-
blocking bricks” class, which leads to the “fuzzy” phenomenon of a single VAE network
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in the training of individual classes. SSRN achieves a completely correct classification in
“shadows,” but it lost to the CSSVGAN overall. In the index of OA results, CSSVGAN
improved 12.75%, 30.68%, 22.52%, 9.83%, 14.03%, 11.53%, 7.14% and 6.18% respectively
and in the index of Kappa results, CSSVGAN improved 17.07%, 42.23%, 30.03%, 13.62%,
19.25%, 15.16%, 13.19% and 8.3% respectively compared with the other eight algorithms.

(b)SVM (e)SSRN

(g)GAN (j)CSSVGAN

(c)M3DCNN (d)SS3DCNN

(f)VAE (h)CVA2E (i)SSVGAN

(a)GroundTruth

Figure 11. Classification maps for the PU dataset with 1% labeled training samples: (a) GroungTruth
(b) SVM (c) M3DCNN (d) SS3DCNN (e) SSRN (f) VAE (g) GAN (h) CVA2E (i) SSVGAN (j) CSSVGAN.

In Figure 11, the proposed CSSVGAN has better boundary integrity and better clas-
sification accuracy in most of the classes because the Encoder can ensure the diversity of
samples, the Generator can promote the authenticity of the generated virtual data, and the
Discriminator can adjust the overall framework to obtain the optimal results.

4.4.3. Experiments on the SA Dataset

The experimental setting on the Salinas dataset is the same as PU. Table 11 shows the
quantitative evaluation of each class in various methods with dark gray to emphasize the
best results. The classification visualization of the comparative experiments on Salinas is
shown in Figure 12.

Table 11 shows that in the index of OA, AA and Kappa, CSSVGAN improved 0.57%,
1.27% and 0.62% at least compared with others. Moreover, it has a better performance in the
“brocoli-green-weeds-1” and “stubble” class with a test accuracy of 100%. For the precisions
of other classes, although SSRN, VAE or SSRN prevails, CSSVGAN is almost equal to them.
It can be seen that CSSVGAN has smoother edges and the minimum misclassification in
Figure 12, which further proves that the proposed CSSVGAN can generate more realistic
virtual data according to the diversity of extracted features of samples.
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Table 11. The classification results for the SA dataset with 1% training samples.

Num/SA ClassName SVM M3DCNN SS3DCNN SSRN VAE GAN CVA2E SSVGAN CSSVGAN

1 Broccoli_green_weeds_1 99.95 94.85 56.23 100.00 97.10 100.00 100.00 100.00 100.00
2 Broccoli_green_weeds_2 98.03 65.16 81.56 98.86 97.13 62.32 99.34 97.51 99.92
3 Fallow 88.58 40.61 92.40 99.40 100.00 99.78 100.00 93.74 98.99
4 Fallow_rough_plow 99.16 97.04 95.63 96.00 98.68 93.91 99.76 91.88 99.35
5 Fallow_smooth 90.38 89.31 95.08 95.11 99.26 97.67 99.30 94.08 99.08
6 Stubble 99.64 95.64 98.78 99.69 99.24 94.36 90.53 99.31 100.00
7 Celery 98.58 75.75 98.90 99.32 97.98 98.93 99.39 99.54 99.66
8 Grapes_untrained 77.58 65.28 81.87 89.16 96.55 96.87 89.36 93.57 92.79
9 Soil_vineyard_develop 99.50 96.04 96.20 98.33 99.74 89.66 89.85 98.53 99.56

10 Corn_sg_weeds 95.01 44.82 84.13 97.67 96.79 91.71 95.71 92.44 97.81
11 Lettuce_romaine_4wk 94.00 44.66 79.64 96.02 100.00 87.95 96.82 91.62 97.76
12 Lettuce_romaine_5wk 97.40 36.69 96.19 98.45 90.89 98.73 100.00 99.42 99.32
13 Lettuce_romaine_6wk 95.93 12.17 91.50 99.76 99.87 100.00 91.97 96.78 99.67
14 Lettuce_romaine_7wk 94.86 79.53 66.83 97.72 95.83 94.14 100.00 95.85 99.71
15 Vineyard_untrained 79.87 40.93 69.11 83.74 88.09 57.33 85.41 85.17 91.75
16 Vineyard_vertical_trellis 98.76 57.78 85.09 97.07 99.61 97.32 97.00 99.11 99.66

OA(%) 90.54 66.90 85.14 94.40 96.43 86.97 95.06 94.60 97.00
AA(%) 94.20 56.78 78.89 96.65 95.87 92.17 97.08 95.50 98.35

Kappa(%) 89.44 62.94 83.41 93.76 96.03 85.50 94.48 94.00 96.65

(e)SSRN(b)SVM (c)M3DCNN 

(j)CSSVGAN(g)GAN(f)VAE

(d)SS3DCNN 

(h)CVA2E

(a)GroundTruth

(i)SSVGAN

Figure 12. Classification maps for the SA dataset with 1% labeled training samples: (a) GroungTruth
(b) SVM (c) M3DCNN (d) SS3DCNN (e) SSRN (f) VAE (g) GAN (h) CVA2E (i) SSVGAN (j) CSSVGAN.

5. Discussions
5.1. The Ablation Experiment in CSSVGAN

Taking IP, PU and SA datasets as examples, the frameworks of ablation experiments
are shown in Figure 13, including NSSNCSG, SSNCSG and SSNCDG.

As shown in Table 12, compared with NSSNCSG, the OA of CSSVGAN on IP, PU and
SA datasets increased by 1.02%, 6.90% and 4.63%, respectively.
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Figure 13. The frameworks of ablation experiments: (a) NSSNCSG (b) SSNCSG (c) SSNCDG
(d) CSSVGAN.

Table 12. The OA(%) of Ablation experiments.

Name Dual
Branch

Crossed
Interaction

Single
Generator

Double
Generator IP PU SA

NSSNCSG × ×
√

× 92.59 92.21 92.07
SSNCSG

√
×

√
× 92.62 98.54 96.61

SSNCDG
√

× ×
√

92.36 98.67 96.26
CSSVGAN

√ √
×

√
93.61 99.11 97.00

It shows that the effect of using dual-branch special-spatial feature extraction is better
than not using it because the distributions of spectral and spatial features are not identical,
and a single Encoder cannot handle this complex situation. Consequently, using the dual-
branch variational Encoder can increase the diversity of samples. Under the constraint of
KL divergence, the distribution of latent variables is more consistent with the distribution
of real data.

Contrasted with SSNCSG, the OA index on IP, PU and SA datasets increase by 0.99%,
1.07% and 0.39% respectively, which means that the result of utilizing the crossed interac-
tive method is more effective, and further influences that the crossed interactive double
Generator can fully learn the spectral and spatial information and generate spatial and
spectral virtual samples in higher qualities.

Finally, a comparison is made between SSNCDG and CSSVGAN, where the latter
can better improve the authenticity of virtual samples by crossed manner. All these
contributions of both the Encoder and the Generator put forward higher requirements to
the Discriminator, optimizing Discriminator’s ability to identify the true or false data and
further achieve the final classification results more accurately.

5.2. Sensitivity to the Proportion of Training Samples

To verify the effectiveness of the proposed CSSVGAN, three datasets were taken as
examples. The percentage of training samples was changed for each class from 1% to
9% at 4% intervals and added 10%. Figures 14–16 shows the OAs of all the comparative
algorithms with various percentages of training samples.
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Figure 14. Sensitivity to the Proportion of Training Samples in IP dataset.
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Figure 15. Sensitivity to the Proportion of Training Samples in PU dataset.
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Figure 16. Sensitivity to the Proportion of Training Samples in SA dataset.

It can be seen that the CSSVGAN has the optimal effect in each proportion of training
samples in three datasets because CSSVGAN can learn the extracted features interactively,
ensure diverse samples and improve the quality of generated images.

5.3. Investigation of the Proportion of Loss Function

Taking the IP dataset as an example, the proportion σi (i = 1, 2, . . . 5) of loss functions
and other super parameters of each module are adjusted to observe their impact on
classification accuracy and the results are recorded in Table 13 (the best results are marked
in dark gray). Moreover, the learning rate is also an important factor, which will not be
repeated here. It can be obtained by experiments that using 1× 10−3 for Generator and
1× 10−4 for Discriminator are the best assignments.

Table 13. Investigation of the proportion σi of loss functions in IP dataset with 5% training samples.

σ1 σ2 σ3 σ4 σ5 IP_Result

0.25 0.25 0.15 0.15 0.2 91.88
0.3 0.3 0.15 0.15 0.1 91.23
0.3 0.3 0.1 0.1 0.2 92.87

0.35 0.35 0.05 0.05 0.2 92.75
0.35 0.35 0.1 0.1 0.1 93.61

Analyzing Table 13 reveals that when σ1∼σ5 are set as 0.35, 0.35, 0.1, 0.1 and 0.1
respectively, the CSSVGAN model achieves the best performance. Under this condition,
the Encoder can acquire the maximum diversity of samples. The Discriminator is able
to realize the most accurate classification, and the Generator is capable of generating the
images most like the original data. Moreover, the best parameter combination σ1∼σ5 on
the SA dataset is similar to IP, while in the PU dataset, they are set as 0.3, 0.3, 0.1, 0.1
and 0.2.

6. Conclusions

In this paper, variational generative adversarial network with crossed spatial and
spectral interactions (CSSVGAN) is proposed for HSIC. It mainly consists of three modules:
a dual-branch variational Encoder, a crossed interactive Generator, and a Discriminator



Remote Sens. 2021, 13, 3131 21 of 23

stuck with a classifier. From the experiment results of these three datasets, it showed
that CSSVGAN can outperform the other methods in the index of OA, AA and Kappa in
its abilities because of the dual-branch and the crossed interactive manners. Moreover,
using the dual-branch Encoder can ensure the diversity of generated samples by mapping
spectral and spatial information into different latent spaces, and utilizing the crossed
interactive Generator can imitate the highly correlated spatial and spectral characteristics
of HSI by exploiting the consistency of learned spectral and spatial features. All these
contributions made the proposed CSSVGAN give the best performance in three datasets. In
the future, we will develop towards to realize lightweight generative models and explore
the application of the jointed “Transformer and GAN” model for HSIC.
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